JPH0565671A - Laminated structural body having amorphous alloy layer and its production - Google Patents

Laminated structural body having amorphous alloy layer and its production

Info

Publication number
JPH0565671A
JPH0565671A JP3224392A JP22439291A JPH0565671A JP H0565671 A JPH0565671 A JP H0565671A JP 3224392 A JP3224392 A JP 3224392A JP 22439291 A JP22439291 A JP 22439291A JP H0565671 A JPH0565671 A JP H0565671A
Authority
JP
Japan
Prior art keywords
melting point
alloy
metal base
amorphous
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3224392A
Other languages
Japanese (ja)
Inventor
富佐雄 ▲廣▼瀬
Fusao Hirose
Makoto Takagi
誠 高木
Hidemi Mori
英視 森
Nozomi Okumura
望 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3224392A priority Critical patent/JPH0565671A/en
Publication of JPH0565671A publication Critical patent/JPH0565671A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a laminated structural body having an amorphous allay layer stickly joinable and capable of forming an amorphous alloy layer free from the change of compsn. and its manufacturing method. CONSTITUTION:On a stainless steel sheet 3, a silver brazing filler metal 2 having the m.p. lower than that of a stainless steel sheet 3 is joined by heating. On the silver brazing filler metal 2, an alloy thin strip 1 having the m.p. higher than that of the silver brazing filler metal 2 is joined by heating, and on the surface of the alloy thin strip 1, an amorphous alloy layer 5 is formed by the irradiation of a laser beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非晶質合金層を有す
る積層構造体及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated structure having an amorphous alloy layer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】非晶質合金層は各種の優れた特性を有し
ていることから、例えば、トルクセンサ等の磁気式セン
サの表面磁性層に、それを用いる試みや、各種摺動部品
等の表面層を、強度に優れた特性を有する非晶質合金で
形成する試みがなされている。しかし、非晶質合金を金
属表面に層状に形成するのは非常に困難である。その形
成方法の1つとして、母材上に非晶質合金層薄帯を樹脂
接着する方法があるが、必要な接合強度や耐熱性が得ら
れない。又、非晶質合金層薄帯を加熱して母材に接合す
る方法があるが、加熱の際に結晶化してしまい優れた特
性は失われる。
2. Description of the Related Art Since an amorphous alloy layer has various excellent characteristics, for example, an attempt to use it as a surface magnetic layer of a magnetic sensor such as a torque sensor, various sliding parts, etc. Attempts have been made to form the surface layer of (1) by an amorphous alloy having excellent properties. However, it is very difficult to form the amorphous alloy on the metal surface in layers. As one of the forming methods, there is a method of resin-bonding the amorphous alloy layer ribbon on the base material, but the required bonding strength and heat resistance cannot be obtained. Further, there is a method of heating the amorphous alloy layer ribbon to bond it to the base material, but it is crystallized during heating, and excellent characteristics are lost.

【0003】そこで、結晶合金表面を非晶質化すること
により非晶質合金層の形成が行われる。その方法は、高
エネルギー密度ビームの照射で表面を局所的に溶融し、
母材への熱伝導で溶融部を急冷凝固して非晶質化するも
のである。この方法を適用するには金属表面を非晶質形
成能の高い組成の材料で被覆する必要があり、これまで
いくつかの被覆法が提案されている。この被覆法として
は、金属母材と合金材料とを直接接触した状態で高温加
熱して接合する方法や溶射法(特開平1−117378
号公報)、レーザクラッディング法等がある。
Therefore, an amorphous alloy layer is formed by amorphizing the surface of the crystal alloy. The method is to locally melt the surface by irradiation with a high energy density beam,
The heat is transferred to the base material to rapidly solidify the melted portion to make it amorphous. In order to apply this method, it is necessary to coat the metal surface with a material having a composition having a high amorphous forming ability, and several coating methods have been proposed so far. As this coating method, a method of heating at high temperature and joining the metal base material and the alloy material in a state of being in direct contact with each other or a thermal spraying method (JP-A-1-117378)
Gazette), laser cladding method and the like.

【0004】[0004]

【発明が解決しようとする課題】ところが、金属母材と
非晶質形成能の高い組成の合金材料とを直接接触した状
態で高温加熱して接合すると、拡散により合金材料の組
成に変化が生じ、又、レーザクラッディング法では合金
材料の組成が不均一になり、両方法とも非晶質形成能が
低下するか、あるいは、非晶質化した時の優れた特性が
失われる問題があった。一方、溶射法では、接合の強度
が弱いといった問題があった。
However, when the metal base material and the alloy material having a composition having a high amorphous forming ability are directly contacted with each other by heating at high temperature, the composition of the alloy material is changed by diffusion. Also, in the laser cladding method, the composition of the alloy material becomes non-uniform, and both methods have a problem that the amorphous forming ability is lowered or the excellent properties when amorphized is lost. .. On the other hand, the thermal spraying method has a problem that the bonding strength is weak.

【0005】この発明の目的は、強固に接合できるとと
もに組成の変化のない均一な非晶質合金層を形成できる
非晶質合金層を有する積層構造体及びその製造方法を提
供することにある。
An object of the present invention is to provide a laminated structure having an amorphous alloy layer capable of forming a strong bond and forming a uniform amorphous alloy layer having no change in composition, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】第1の発明は、金属母材
と、前記金属母材上において加熱により同金属母材と接
合され、同金属母材よりも低融点である低融点材料と、
前記低融点材料上において加熱により同低融点材料と接
合され、同低融点材料よりも高融点であり、かつ、その
表面に高エネルギー密度ビームの照射による非晶質合金
層が形成された合金材料とを備えた非晶質合金層を有す
る積層構造体をその要旨とする。
According to a first aspect of the present invention, there is provided a metal base material, and a low melting point material having a melting point lower than that of the metal base material joined to the metal base material by heating. ,
An alloy material which is joined to the low melting point material by heating on the low melting point material, has a higher melting point than the low melting point material, and has an amorphous alloy layer formed on its surface by irradiation with a high energy density beam. The gist is a laminated structure having an amorphous alloy layer provided with.

【0007】第2の発明は、金属母材上に、同金属母材
よりも低融点の低融点材料を配置し、その低融点材料上
に同低融点材料よりも高融点で、かつ非晶質形成能の高
い組成の合金材料を配置する第1工程と、前記金属母材
と低融点材料と合金材料との三層構造体を加熱して金属
母材と低融点材料と合金材料とを接合する第2工程と、
前記合金材料に高エネルギー密度ビームを照射して合金
材料の表面を非晶質合金層にする第3工程とを備えた非
晶質合金層を有する積層構造体の製造方法をその要旨と
する。
A second aspect of the present invention is to dispose a low melting point material having a lower melting point than the metal base material on the metal base material, and have a higher melting point than the low melting point material on the low melting point material and amorphous. A first step of disposing an alloy material having a composition with a high quality forming ability; and heating the three-layer structure of the metal base material, the low melting point material, and the alloy material to form the metal base material, the low melting point material, and the alloy material. The second step of joining,
A gist is a method for manufacturing a laminated structure having an amorphous alloy layer, which comprises a third step of irradiating the alloy material with a high energy density beam to turn the surface of the alloy material into an amorphous alloy layer.

【0008】[0008]

【作用】第1の発明は、金属母材と合金材料とが低融点
材料を介在させた状態で接合されている。このとき、金
属母材と低融点材料、及び合金材料と低融点材料は、加
熱により接合されており、低融点材料の融点は金属母材
の融点及び合金材料の融点よりも低いので、金属母材と
合金材料とを直接接触させて加熱して接合したものに比
べ低い温度で強固に接合でき、拡散が抑制され合金材料
の組成変化が抑制される。
In the first aspect of the invention, the metal base material and the alloy material are joined together with the low melting point material interposed. At this time, the metal base material and the low melting point material, and the alloy material and the low melting point material are joined by heating, and the melting point of the low melting point material is lower than the melting point of the metal base material and the melting point of the alloy material. The material and the alloy material can be firmly bonded at a lower temperature than those in which the material and the alloy material are directly contacted and heated and bonded, diffusion is suppressed and composition change of the alloy material is suppressed.

【0009】第2の発明は、第1工程により金属母材上
に、同母材よりも低融点の低融点材料が配置され、その
低融点材料上に同低融点材料よりも高融点で、かつ非晶
質形成能の高い組成の合金材料が配置される。第2工程
により、金属母材と低融点材料と合金材料との三層構造
体が加熱されて金属母材と低融点材料と合金材料とが接
合され、第3工程により合金材料に高エネルギー密度ビ
ームが照射されて合金材料の表面が非晶質合金層にな
る。その結果、第1の発明の非晶質合金層を有する積層
構造体が製造される。
According to a second aspect of the present invention, a low melting point material having a lower melting point than the base material is arranged on the metal base material by the first step, and a high melting point material on the low melting point material is higher than the low melting point material. Further, an alloy material having a composition having a high amorphous forming ability is arranged. In the second step, the three-layer structure of the metal base material, the low melting point material, and the alloy material is heated to bond the metal base material, the low melting point material, and the alloy material, and in the third step, the alloy material has a high energy density. The surface of the alloy material is irradiated with the beam to form an amorphous alloy layer. As a result, a laminated structure having the amorphous alloy layer of the first invention is manufactured.

【0010】[0010]

【実施例】以下、本発明を具体化した一実施例を図面に
従って説明する。図1には非晶質合金層5を有する積層
構造体6を示す。又、図2〜図6にはその製造工程を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a laminated structure 6 having an amorphous alloy layer 5. 2 to 6 show the manufacturing process.

【0011】まず、図2に示すように、厚さ25μmの
7813Si9 合金組成を有する非晶質の合金薄帯1を
用意するとともに、図3に示すように、低融点材料とし
て厚さ50μmの銀ロウ材2を用意する。さらに、図4
に示すように、金属母材としての厚さ5mmのステンレ
ス鋼板(SUS304)3を用意する。このステンレス
鋼板3は表面粗さ6.5Zに加工されている。尚、ステ
ンレス鋼板3の融点は約1400〜1450℃であり、
合金薄帯1の融点は1000〜1200℃である。又、
銀ロウ材2は銀と銅とチタンよりなり、その融点は約7
80〜800℃である。
First, as shown in FIG. 2, an amorphous alloy ribbon 1 having an F 78 B 13 Si 9 alloy composition having a thickness of 25 μm is prepared, and as shown in FIG. A silver brazing material 2 having a thickness of 50 μm is prepared. Furthermore, FIG.
As shown in, a stainless steel plate (SUS304) 3 having a thickness of 5 mm is prepared as a metal base material. The stainless steel plate 3 is processed to have a surface roughness of 6.5Z. The melting point of the stainless steel plate 3 is about 1400 to 1450 ° C,
The melting point of the alloy ribbon 1 is 1000 to 1200 ° C. or,
The silver brazing material 2 is made of silver, copper and titanium and has a melting point of about 7
It is 80 to 800 ° C.

【0012】そして、図5に示すように、ステンレス鋼
板3の上に銀ロウ材2を配置し、さらにその上に合金薄
帯1を配置する。そして、この三層構造体4の各材料が
外れないようにバイスを用いて固定する。このとき、バ
イスはトルクレンチを用いて15N・mで締め付ける。
このバイスに固定した三層構造体4を電気炉に入れて1
-3Paの真空下で770℃に加熱し、その後、直ちに
冷却する。この770℃はステンレス鋼板3と銀ロウ材
2と合金薄帯1との接合が完成する最低温度である。
Then, as shown in FIG. 5, the silver brazing material 2 is arranged on the stainless steel plate 3, and the alloy ribbon 1 is further arranged thereon. Then, each material of the three-layer structure 4 is fixed with a vise so as not to come off. At this time, tighten the vise with a torque wrench at 15 N · m.
Put the three-layer structure 4 fixed to this vise in the electric furnace and
Heat to 770 ° C. under vacuum of 0 −3 Pa, then immediately cool. This 770 ° C. is the minimum temperature at which the joining of the stainless steel plate 3, the silver brazing material 2 and the alloy ribbon 1 is completed.

【0013】そして、室温まで冷却した後、バイスに固
定した三層構造体4を電気炉から取り出し、バイスを取
り外す。その結果、F7813Si9 の合金組成を有する
合金薄帯1とステンレス鋼板3とが銀ロウ材2を介して
接合された積層構造体となる。尚、F7813Si9 の合
金組成を有する合金薄帯1は、その結晶化温度が約40
0〜550℃なので770℃の加熱により結晶化してい
る。
After cooling to room temperature, the three-layer structure 4 fixed to the vise is taken out of the electric furnace and the vise is removed. As a result, a laminated structure in which the alloy ribbon 1 having the alloy composition of F 78 B 13 Si 9 and the stainless steel plate 3 are joined via the silver brazing material 2 is obtained. The alloy ribbon 1 having an alloy composition of F 78 B 13 Si 9 has a crystallization temperature of about 40.
Since it is 0 to 550 ° C, it is crystallized by heating at 770 ° C.

【0014】このようにして作成した積層構造体の断面
をEPMA(X線マイクロアナライザ)で組成分析した
結果を図7に示す。この図から、接合した界面付近以外
は各層の組成に変化はなく、F7813Si9 合金組成が
保たれ、その非晶質形成能は変化していないことが確認
できた。
FIG. 7 shows the result of composition analysis of the cross section of the laminated structure thus produced by EPMA (X-ray microanalyzer). From this figure, it was confirmed that there was no change in the composition of each layer except in the vicinity of the joined interface, the F 78 B 13 Si 9 alloy composition was maintained, and its amorphous forming ability did not change.

【0015】引き続き、図6に示すように、この積層構
造体6の合金薄帯1の表面にQスイッチ・パルスYAG
レーザビームLb を照射する。このレーザビームLb
は、出力5Wで、ビーム径が100μmであり、照射時
間0.1msの照射条件でArガスを吹きつけながら1
パルス毎にレーザビームLbを20μmずつ移動してオ
ーバーラップ照射する。その結果、図1に示すように、
合金薄帯1の表面に非晶質合金層5が形成される。つま
り、ステンレス鋼板3上に銀ロウ材2が配置されるとと
もに、銀ロウ材2上に表面に高エネルギー密度ビームの
照射による非晶質合金層5が形成された合金薄帯1が配
置される。
Subsequently, as shown in FIG. 6, a Q switch pulse YAG is formed on the surface of the alloy ribbon 1 of the laminated structure 6.
Irradiate the laser beam Lb. This laser beam Lb
Has an output of 5 W, a beam diameter of 100 μm, and an Ar gas of 1 ms while being blown under the irradiation conditions of 0.1 ms.
The laser beam Lb is moved by 20 μm for each pulse and overlapped irradiation is performed. As a result, as shown in FIG.
An amorphous alloy layer 5 is formed on the surface of the alloy ribbon 1. That is, the silver brazing material 2 is arranged on the stainless steel plate 3, and the alloy ribbon 1 having the amorphous alloy layer 5 formed on the surface of the silver brazing material 2 by irradiation of the high energy density beam is arranged. ..

【0016】このレーザ照射した積層構造体6の表面
(非晶質合金層5)をX線回折で分析した結果を図8に
示す。この図から、2θが40°〜50°の領域におい
て合金薄帯1の非晶質化を示すブロードなパターンが得
られた。
FIG. 8 shows the result of X-ray diffraction analysis of the surface (amorphous alloy layer 5) of the laser-irradiated laminated structure 6. From this figure, a broad pattern showing the amorphization of the alloy ribbon 1 in the region of 2θ of 40 ° to 50 ° was obtained.

【0017】又、その積層構造体6を縦横が8mm×5
mmに裁断して、試料を立てた状態(非晶質合金層5が
側面になるような状態)で上下方向に圧縮力を加える圧
縮試験を行った。その結果、ステンレス鋼板3が塑性変
形を起こす50kg重/mm 2 でも合金薄板1(非晶質
合金層5)の剥離は生じなかった。
The laminated structure 6 is 8 mm × 5 mm in length and width.
The state where the sample is cut by cutting it into mm (the amorphous alloy layer 5 is
Pressure that applies compressive force in the vertical direction with the side surface)
A shrinkage test was performed. As a result, the stainless steel plate 3 is plastically deformed.
50 kg weight / mm that causes shape 2But alloy thin plate 1 (amorphous
No peeling of the alloy layer 5) occurred.

【0018】以上のようにして金属母材としてのステン
レス鋼板(SUS304)3上に強固に接合した非晶質
合金層5が形成される。この非晶質合金層5は結晶化が
無く、割れも無かった。割れは顕微鏡にて確認した。
As described above, the amorphous alloy layer 5 firmly bonded is formed on the stainless steel plate (SUS304) 3 as the metal base material. This amorphous alloy layer 5 was neither crystallized nor cracked. The crack was confirmed with a microscope.

【0019】このように本実施例では、ステンレス鋼板
3(金属母材)上に、ステンレス鋼板3よりも融点の低
い銀ロウ材2(低融点材料)を配置し、その銀ロウ材2
上に銀ロウ材2よりも高融点で、かつ非晶質形成能の高
い組成の合金薄帯1(合金材料)を配置し(第1工
程)、ステンレス鋼板3と銀ロウ材2と合金薄帯1との
三層構造体4を、銀ロウ材2の融点の780〜800℃
より僅かに低い770℃に加熱してステンレス鋼板3と
銀ロウ材2と合金薄帯1とを接合し(第2工程)、合金
薄帯1にレーザビームLb (高エネルギー密度ビーム)
を照射して合金薄帯1の表面を非晶質合金層5にした
(第3工程)。その結果、ステンレス鋼板3上に銀ロウ
材2が加熱により接合され、その銀ロウ材2上に合金薄
帯1が加熱により接合され、銀ロウ材2の表面にレーザ
ビームLb の照射による非晶質合金層5を有する積層構
造体6が製造される。
As described above, in this embodiment, the silver brazing material 2 (low melting point material) having a lower melting point than the stainless steel plate 3 is arranged on the stainless steel plate 3 (metal base material), and the silver brazing material 2
An alloy strip 1 (alloy material) having a composition having a higher melting point than that of the silver brazing material 2 and a high amorphous forming ability is arranged on the upper side (first step), and the stainless steel plate 3 and the silver brazing material 2 and the alloy thin film are arranged. The three-layer structure 4 with the belt 1 is formed at a melting point of the silver brazing material 2 of 780 to 800 ° C.
The stainless steel plate 3, the silver brazing material 2 and the alloy ribbon 1 are joined by heating to a slightly lower temperature of 770 ° C. (second step), and the laser beam Lb (high energy density beam) is applied to the alloy ribbon 1.
To form an amorphous alloy layer 5 on the surface of the alloy ribbon 1 (third step). As a result, the silver brazing material 2 is joined to the stainless steel plate 3 by heating, the alloy ribbon 1 is joined to the silver brazing material 2 by heating, and the surface of the silver brazing material 2 is amorphous due to the irradiation of the laser beam Lb. The laminated structure 6 having the quality alloy layer 5 is manufactured.

【0020】この積層構造体6は、ステンレス鋼板3と
合金薄帯1とが銀ロウ材2を介在させた状態で接合され
ており、ステンレス鋼板3と銀ロウ材2、及び合金薄帯
1と銀ロウ材2は、加熱により接合されている。よっ
て、銀ロウ材2の融点はステンレス鋼板3の融点及び合
金薄帯1の融点よりも低いので、図9に示すように、ス
テンレス鋼板3と合金薄帯1とを直接接触させて加熱し
て接合する場合には約1050℃に加熱する必要がある
が、本実施例では770℃と低い温度で強固に接合で
き、拡散が抑制され合金薄帯1の組成変化が抑制され
る。このようにして、強固に接合できるとともに組成の
変化のない非晶質合金層5を有する積層構造体6とする
ことができる。
In this laminated structure 6, the stainless steel plate 3 and the alloy ribbon 1 are joined together with the silver brazing material 2 interposed therebetween, and the stainless steel plate 3 and the silver brazing material 2 and the alloy ribbon 1 are joined together. The silver brazing material 2 is joined by heating. Therefore, since the melting point of the silver brazing material 2 is lower than the melting points of the stainless steel plate 3 and the alloy ribbon 1, as shown in FIG. 9, the stainless steel plate 3 and the alloy ribbon 1 are directly contacted and heated. When joining, it is necessary to heat to about 1050 ° C., but in this embodiment, it is possible to firmly join at a temperature as low as 770 ° C., diffusion is suppressed, and composition change of the alloy ribbon 1 is suppressed. In this way, it is possible to obtain the laminated structure 6 having the amorphous alloy layer 5 which can be firmly bonded and whose composition does not change.

【0021】さらに、接合温度を銀ロウ材2の融点より
僅かに低い温度とし、銀ロウ材2を完全に溶融させずに
熱伝導のよい銀ロウ材2に厚みを残すことにより、ステ
ンレス鋼板3が熱伝導の悪い材料であってもレーザビー
ムLb (高エネルギー密度ビーム)の照射時に、熱伝導
による溶融部の急冷効果を保つことができる。さらに、
ステンレス鋼板3に強固に接合した合金薄帯1を簡便か
つ実用的な製法で、しかも任意の面積で形成でき、又、
棒材や複雑な形状のステンレス鋼板3の表面にも形成す
ることが可能となり応用の範囲を広めることができる。
Furthermore, the joining temperature is set to a temperature slightly lower than the melting point of the silver brazing material 2, and the silver brazing material 2 is not completely melted but a thickness is left in the silver brazing material 2 having good thermal conductivity, so that the stainless steel plate 3 is obtained. Even if is a material having poor heat conduction, the effect of quenching the melted portion by heat conduction can be maintained when the laser beam Lb (high energy density beam) is irradiated. further,
The alloy ribbon 1 firmly bonded to the stainless steel plate 3 can be formed in a simple and practical method and in an arbitrary area.
Since it can be formed on the surface of a rod or a stainless steel plate 3 having a complicated shape, the range of application can be expanded.

【0022】尚、この発明は上記実施例に限定されるも
のではなく、例えば、高エネルギー密度ビームはパルス
YAGレーザビームの他にも、連続CO2 レーザビーム
や電子ビームでもよい。又、低融点材料としては、銀ロ
ウ材の他にも銅ロウ材等を使用してもよい。さらに、接
合の際の温度は、低融点材料の融点より高い温度に加熱
してもよい。さらには、合金薄帯は非晶質でなくてもよ
い。
The present invention is not limited to the above embodiment, and the high energy density beam may be a pulsed YAG laser beam, a continuous CO 2 laser beam or an electron beam. Further, as the low melting point material, a copper brazing material or the like may be used in addition to the silver brazing material. Further, the temperature at the time of joining may be heated to a temperature higher than the melting point of the low melting point material. Furthermore, the alloy ribbon need not be amorphous.

【0023】[0023]

【発明の効果】以上詳述したようにこの発明によれば、
強固に接合できるとともに組成の変化のない非晶質合金
層を有する積層構造体とすることができる優れた効果を
発揮する。
As described in detail above, according to the present invention,
An excellent effect is obtained in that a laminated structure having an amorphous alloy layer that can be firmly bonded and has no change in composition can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の非晶質合金層を有する積層構造体の断
面図である。
FIG. 1 is a cross-sectional view of a laminated structure having an amorphous alloy layer of an example.

【図2】合金薄帯の断面図である。FIG. 2 is a sectional view of an alloy ribbon.

【図3】銀ロウ材の断面図である。FIG. 3 is a sectional view of a silver brazing material.

【図4】ステンレス鋼板の断面図である。FIG. 4 is a sectional view of a stainless steel plate.

【図5】三層構造体の断面図である。FIG. 5 is a cross-sectional view of a three-layer structure.

【図6】レーザビームの照射処理を説明するための図で
ある。
FIG. 6 is a diagram for explaining a laser beam irradiation process.

【図7】積層構造体の断面のEPMAでの組成分析した
結果を示す図である。
FIG. 7 is a diagram showing a result of a composition analysis of a cross section of the laminated structure by EPMA.

【図8】非晶質合金層をX線回折で分析した結果を示す
図である。
FIG. 8 is a diagram showing a result of analyzing an amorphous alloy layer by X-ray diffraction.

【図9】比較例を説明するための図である。FIG. 9 is a diagram for explaining a comparative example.

【符号の説明】[Explanation of symbols]

1 合金材料としての合金薄帯 2 低融点材料としての銀ロウ材 3 金属母材としてのステンレス鋼板 4 三層構造体 5 非晶質合金層 6 積層構造体 Lb 高エネルギー密度ビームとしてのレーザビーム 1 Alloy ribbon as alloy material 2 Silver brazing material as low melting point material 3 Stainless steel plate as metal base material 4 Three-layer structure 5 Amorphous alloy layer 6 Laminated structure Lb Laser beam as high energy density beam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 望 愛知県刈谷市昭和町1丁目1番地 日本電 装 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nozomu Okumura 1-1-1, Showa-cho, Kariya city, Aichi prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属母材と、 前記金属母材上において加熱により同金属母材と接合さ
れ、同金属母材よりも低融点である低融点材料と、 前記低融点材料上において加熱により同低融点材料と接
合され、同低融点材料よりも高融点であり、かつ、その
表面に高エネルギー密度ビームの照射による非晶質合金
層が形成された合金材料とを備えたことを特徴とする非
晶質合金層を有する積層構造体。
1. A metal base material, a low melting point material having a melting point lower than that of the metal base material, the low melting point material being bonded to the metal base material by heating on the metal base material, and the low melting point material being heated on the low melting point material. An alloy material, which is joined to a low-melting-point material, has a higher melting point than the low-melting-point material, and has an amorphous alloy layer formed on its surface by irradiation with a high energy density beam. A laminated structure having an amorphous alloy layer.
【請求項2】 前記金属母材と低融点材料、及び低融点
材料と合金材料とは、低融点材料の融点より僅かに低い
温度に加熱して接合されているものである請求項1に記
載の非晶質合金層を有する積層構造体。
2. The metal base material and the low-melting point material, and the low-melting point material and the alloy material are heated to a temperature slightly lower than the melting point of the low-melting point material and are bonded to each other. A laminated structure having an amorphous alloy layer of.
【請求項3】 金属母材上に、同金属母材よりも低融点
の低融点材料を配置し、その低融点材料上に同低融点材
料よりも高融点で、かつ非晶質形成能の高い組成の合金
材料を配置する第1工程と、 前記金属母材と低融点材料と合金材料との三層構造体を
加熱して金属母材と低融点材料と合金材料とを接合する
第2工程と、 前記合金材料に高エネルギー密度ビームを照射して合金
材料の表面を非晶質合金層にする第3工程とを備えたこ
とを特徴とする非晶質合金層を有する積層構造体の製造
方法。
3. A low melting point material having a lower melting point than that of the metal base material is disposed on the metal base material, and the low melting point material has a higher melting point than the low melting point material and has an amorphous forming ability. A first step of disposing an alloy material of high composition; and a second step of heating the three-layer structure of the metal base material, the low melting point material, and the alloy material to join the metal base material, the low melting point material, and the alloy material. A laminated structure having an amorphous alloy layer, comprising: a step of irradiating the alloy material with a high energy density beam to form a surface of the alloy material into the amorphous alloy layer. Production method.
【請求項4】 前記第2工程は、金属母材と低融点材料
と合金材料との三層構造体を、低融点材料の融点より僅
かに低い温度に加熱して金属母材と低融点材料と合金材
料とを接合するものである請求項3に記載の非晶質合金
層を有する積層構造体の製造方法。
4. In the second step, the three-layer structure of the metal base material, the low melting point material and the alloy material is heated to a temperature slightly lower than the melting point of the low melting point material, and the metal base material and the low melting point material are heated. The method for manufacturing a laminated structure having an amorphous alloy layer according to claim 3, wherein the amorphous alloy layer and the alloy material are bonded together.
JP3224392A 1991-09-04 1991-09-04 Laminated structural body having amorphous alloy layer and its production Pending JPH0565671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224392A JPH0565671A (en) 1991-09-04 1991-09-04 Laminated structural body having amorphous alloy layer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224392A JPH0565671A (en) 1991-09-04 1991-09-04 Laminated structural body having amorphous alloy layer and its production

Publications (1)

Publication Number Publication Date
JPH0565671A true JPH0565671A (en) 1993-03-19

Family

ID=16813032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224392A Pending JPH0565671A (en) 1991-09-04 1991-09-04 Laminated structural body having amorphous alloy layer and its production

Country Status (1)

Country Link
JP (1) JPH0565671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103590036A (en) * 2013-11-25 2014-02-19 青岛云路新能源科技有限公司 Manufacturing method of strip
WO2019240455A1 (en) * 2018-06-15 2019-12-19 주식회사 엘지화학 Method for manufacturing amorphous thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103590036A (en) * 2013-11-25 2014-02-19 青岛云路新能源科技有限公司 Manufacturing method of strip
WO2019240455A1 (en) * 2018-06-15 2019-12-19 주식회사 엘지화학 Method for manufacturing amorphous thin film
US11680311B2 (en) 2018-06-15 2023-06-20 Lg Chem, Ltd. Method for producing amorphous thin film

Similar Documents

Publication Publication Date Title
US4250229A (en) Interlayers with amorphous structure for brazing and diffusion bonding
JPH0428789B2 (en)
US5322740A (en) Solid state joint between aluminum alloys and/or magnesium alloys, and a method of making same
JP6016095B2 (en) Joining method and joining parts
CA1220307A (en) Bonding sheets
US4915980A (en) Method for producing amorphous metal layer
JPH028333A (en) Method for forming fiber-reinforced metal
JPH0565671A (en) Laminated structural body having amorphous alloy layer and its production
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
US5284290A (en) Fusion welding with self-generated filler metal
JP3272787B2 (en) Manufacturing method of bonded clad plate
JPS5865588A (en) Production of joined sintered hard alloy
JPS60170585A (en) Joining member for sintered hard alloy and steel and its production
JPS62220294A (en) Laser beam welding method and its equipment
JPH01154886A (en) Manufacture of al clad steel plate
JPS58188561A (en) Production of sintered hard alloy tool
JPS59147774A (en) Joining method of sintered hard alloy and steel
JPS5870985A (en) Joining method for different metals
JPH0452181B2 (en)
JP2018114536A (en) Joining method and joined body
JPS63286586A (en) Production of amorphous metal layer
JP2889032B2 (en) Contact material welding method
JPS61129287A (en) Diffusion jointing method
JP2005040805A (en) Method for sealing working part of heat-resistant member
JP2823411B2 (en) Diffusion bonding member manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees