JPH0564873B2 - - Google Patents

Info

Publication number
JPH0564873B2
JPH0564873B2 JP60022860A JP2286085A JPH0564873B2 JP H0564873 B2 JPH0564873 B2 JP H0564873B2 JP 60022860 A JP60022860 A JP 60022860A JP 2286085 A JP2286085 A JP 2286085A JP H0564873 B2 JPH0564873 B2 JP H0564873B2
Authority
JP
Japan
Prior art keywords
trapezoid
internal electrodes
exposed
electrostrictive
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60022860A
Other languages
Japanese (ja)
Other versions
JPS61182284A (en
Inventor
Atsushi Ochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60022860A priority Critical patent/JPS61182284A/en
Publication of JPS61182284A publication Critical patent/JPS61182284A/en
Publication of JPH0564873B2 publication Critical patent/JPH0564873B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/501Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane parallel to the stacking direction, e.g. polygonal or trapezoidal in side view

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

PURPOSE:To reduce spaces among internal electrodes to a fine value, and to enable driving at low voltage by alternately laminating electrostrictive material layers and internal electrode layers, forming these layers to a trapezoid shape with a parallel surface, insulating the internal electrode layers exposed to a nonparallel trapezoid surface at every other one and applying external electrodes along the internal electrodes exposed at every other one. CONSTITUTION:An extremely small quantity of an organic binder is added to the baking material of an electrostrictive material mainly comprising magnesium lead niobate and lead titanate, and green sheets 21, 22, etc. consisting of the electrostrictive material are manufactured by using a casting film forming device. Internal electrodes 23, 24, etc. composed of Pt are printed on one surfaces of these green sheets, and several hundred of these sheets are superposed, hot-pressed, contact-bonded and unified. The unified sheets are cut to trapezoid shapes with parallel surfaces, the internal electrodes exposed to nonparallel trapezoid surfaces are coated with glass films 27, 28, etc. at every other one while being alternated on mutually opposite trapezoid surfaces, external electrodes 29 are applied on trapezoid surfaces along the exposed internal electrodes, and external connecting terminals 32, 33 are fitted positioned at trapezoid top sections.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の素子は圧電又は電歪材料の電気・機械
エネルギー変換能力を利用した駆動素子や微小変
位素子等のエレクトロメカニカルデバイスに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The element of the present invention relates to electromechanical devices such as drive elements and minute displacement elements that utilize the electric/mechanical energy conversion ability of piezoelectric or electrostrictive materials.

(従来技術) 縦効果を利用した電歪効果素子の構造において
素子断面積と同じ大きさの内部電極を有すること
が必要である。これは電圧印加時に電歪材料又は
圧電材料全体に均一な電界を発生させるためであ
る。内部電極面積が素子断面より小さいと電歪又
は、圧電材料内部の内部電極端部付近に必ず電界
の不均一な部分が生まれそれに伴つて強い応力集
中が起こる。
(Prior Art) In the structure of an electrostrictive effect element utilizing a longitudinal effect, it is necessary to have an internal electrode having the same size as the cross-sectional area of the element. This is to generate a uniform electric field throughout the electrostrictive material or piezoelectric material when voltage is applied. If the area of the internal electrode is smaller than the cross section of the element, a non-uniform part of the electric field will always be created near the end of the internal electrode inside the electrostrictive or piezoelectric material, and strong stress concentration will occur accordingly.

また、低電圧で大きな電界を発生させ大きな歪
を得るためには内部電極相互の間隔を100ミクロ
ン程度にして多数の内部電極を電歪又は圧電材料
内部に形成することが必要である。
In addition, in order to generate a large electric field at a low voltage and obtain a large strain, it is necessary to form a large number of internal electrodes inside the electrostrictive or piezoelectric material with a distance between the internal electrodes of about 100 microns.

以上2つの理由で縦効果を利用した電歪効果素
子を電気的に接続するのは従来の方法では非常に
困難である。つまり前者の制約より積層セラミツ
クコンデンサで行なわれるように素子端面全体を
覆うような外部電極による接続方法は用いること
ができない。また後者の制約により厚膜プロセス
等で用いられている絶縁膜と導体とを印刷により
形成する方法は精度上から適用が困難である。
For the above two reasons, it is extremely difficult to electrically connect electrostrictive elements that utilize longitudinal effects using conventional methods. In other words, due to the former restriction, it is not possible to use a connection method using external electrodes that covers the entire end face of the element, as is done with multilayer ceramic capacitors. Further, due to the latter limitation, it is difficult to apply a method of forming an insulating film and a conductor by printing, which is used in a thick film process, etc., from the viewpoint of accuracy.

そこで本発明者等は先に電気泳動法により電歪
又は圧電材料積層体の端面に露出した内部電極層
とその近傍のセラミツク上に一層おきに帯状の無
機絶縁物を形成することを特徴とする電気的接続
方法を提案した。第9図はこの方法により電気的
接続を行なつた電歪効果素子の外観図である。電
歪材料11,12と内部電極13,14が積層さ
れて構成される素子の側面に露出した内部電極層
およびその周辺のセラミツク上に一層おきに無機
絶縁物15が形成されている。反対側の側面には
一層ずらした内部電極上に同じく無機絶縁物16
が形成されている。この絶縁物および露出したま
まの内部電極14又は13は横断して帯状の外部
電極17と18が形成されている。図中番号13
と14で示される多数の内部電極は一層おきにプ
ラス側外部接続端子19およびマイナス側外部接
続端子20にそれぞれ接続している。
Therefore, the present inventors first formed a band-shaped inorganic insulating material every other layer on the internal electrode layer exposed on the end face of the electrostrictive or piezoelectric material laminate and the ceramic in the vicinity thereof by electrophoresis. An electrical connection method was proposed. FIG. 9 is an external view of an electrostrictive effect element electrically connected by this method. An inorganic insulator 15 is formed every other layer on the internal electrode layer exposed on the side surface of the element formed by stacking electrostrictive materials 11, 12 and internal electrodes 13, 14, and on the ceramic around the internal electrode layer. On the opposite side, an inorganic insulator 16 is placed on the inner electrode that is further shifted.
is formed. Band-shaped external electrodes 17 and 18 are formed across this insulator and the exposed internal electrodes 14 or 13. Number 13 in the diagram
A large number of internal electrodes indicated by and 14 are connected to the positive external connection terminal 19 and the negative external connection terminal 20 at every other layer, respectively.

この方法を用いると内部電極の間隔が60μmま
での電歪効果素子は電気的に接続することができ
る。一方、電歪材料積層体は層間20μm程度のも
のも容易に作製できる。
Using this method, electrostrictive elements with internal electrode spacing of up to 60 μm can be electrically connected. On the other hand, an electrostrictive material laminate with a layer spacing of about 20 μm can be easily produced.

(発明が解決しようとする問題点) しかし、例えば層間距離30μmの素子を接続す
ることはきわめて困難である。その理由は第一
に、電気泳動法を用いて30μmの精度でガラス粉
末を付着させることはむつかしい。その原因とし
てはケンダク液中でガラス粉末が5μm程度の大
きさに凝集している等の理由がある。第二に、層
間距離が狭くなるに従つて形成できる帯状絶縁物
の厚みも比例して薄くなり充分な耐電圧が得られ
ないことがある。そのため駆動電圧を50V以下に
することは従来の構造の素子においては困難であ
る。
(Problems to be Solved by the Invention) However, it is extremely difficult to connect elements with an interlayer distance of 30 μm, for example. The first reason is that it is difficult to deposit glass powder with an accuracy of 30 μm using electrophoresis. The reason for this is that the glass powder aggregates to a size of about 5 μm in the Kendaku solution. Second, as the interlayer distance becomes narrower, the thickness of the band-shaped insulator that can be formed becomes proportionally thinner, and a sufficient withstand voltage may not be obtained. Therefore, it is difficult to reduce the drive voltage to 50V or less in elements with conventional structures.

本発明は内部電極の間隔が30μm以下でも容易
に電気的接続ができ、従つて30V程度の極めて低
い電圧で駆動することができ電歪効果素子を提供
することを目的とする。
An object of the present invention is to provide an electrostrictive element that can be easily electrically connected even when the interval between internal electrodes is 30 μm or less, and can therefore be driven at an extremely low voltage of about 30V.

(問題を解決するための手段) 本発明は電歪材料層の膜または薄板と内部電極
とが交互に積層され、一体となつて焼結された電
歪効果素子であつて、該素子の側端面に前記内部
電極板の端面が露出しており、この側端面上の該
内部電極板の一層おきの露出部とその近傍の電歪
材料上のみに無機絶縁層が直接形成されており、
該無機絶縁層を横断して同一側端面上の各内部電
極露出部を接続する外部電極が形成され、かつ該
素子の2側面でそれぞれ異なる内部電極が一層お
きに外部電極で接続されている電歪効果素子であ
つて、前記外部電極が形成される2側面は上面又
は底面に対して垂直でないことを特徴とする。
(Means for Solving the Problem) The present invention is an electrostrictive effect element in which films or thin plates of electrostrictive material layers and internal electrodes are alternately laminated and integrally sintered. The end face of the internal electrode plate is exposed on the end face, and an inorganic insulating layer is directly formed only on the exposed portion of every other layer of the internal electrode plate on this side end face and the electrostrictive material in the vicinity thereof,
An external electrode is formed across the inorganic insulating layer and connects each internal electrode exposed portion on the same side end face, and different internal electrodes are connected every other layer by an external electrode on two sides of the element. The strain effect element is characterized in that the two side surfaces on which the external electrodes are formed are not perpendicular to the top surface or the bottom surface.

(作用) 本発明の素子は電気的接続を施す側面を底面に
対し傾斜させることにより内部電極間の距離を広
げ電気的接続を容易にしようとするものである。
(Function) The device of the present invention is intended to widen the distance between internal electrodes and facilitate electrical connection by making the side surface on which electrical connection is made inclined with respect to the bottom surface.

従来の内部電極型電歪効果素子は第9図に示す
ように直方体である。この構造では駆動電圧を下
げるために内部電極間隔を狭めていくと電気的接
続を行なうためには微細な絶縁物のパターンを形
成することが必要になる。ところが第2図に示す
ように側面を底面に対して傾斜させると、この面
においては実質的に内部電極間の間隔が広がるこ
とになる。傾斜の程度を調整すれば、例えば、内
部電極の間隔が30μmの素子でも、傾斜面の露出
部において60μmの間隔にすることができ第3図
に示すように絶縁物パターンの形成が容易にな
る。
A conventional internal electrode type electrostrictive effect element has a rectangular parallelepiped shape as shown in FIG. In this structure, when the interval between internal electrodes is narrowed in order to lower the driving voltage, it becomes necessary to form a fine pattern of insulating material in order to establish electrical connection. However, if the side surface is inclined with respect to the bottom surface as shown in FIG. 2, the distance between the internal electrodes will substantially increase on this surface. By adjusting the degree of inclination, for example, even in a device where the internal electrode spacing is 30 μm, it can be made to have a spacing of 60 μm in the exposed portion of the slope, making it easier to form an insulator pattern as shown in Figure 3. .

このような形状の積層体は通常の方法で焼結体
を作製し、それを単に従来とは異なる位置で切断
することが得られる。また電気泳動法によりガラ
ス粉末を付着させる工程においては対象となる側
面の構造のみが問題となる。よつて製造工程の面
からはこのような傾斜面を有する素子構造の問題
点は特にない。
A laminate having such a shape can be obtained by producing a sintered body using a conventional method and simply cutting the sintered body at a position different from the conventional method. Further, in the process of attaching glass powder by electrophoresis, only the structure of the target side surface is a problem. Therefore, from the viewpoint of the manufacturing process, there are no particular problems with the element structure having such an inclined surface.

ここで図中番号11,12は電歪材料、13,
14は内部電極15,16は絶縁物を17,18
は外部電極を19,20は外部接続端子をそれぞ
れ示す。また図中番号21,22は電歪材料、2
3,24は内部電極、25,26は絶縁物を示
す。
Here, numbers 11 and 12 in the figure are electrostrictive materials, 13,
14 is an internal electrode 15, 16 is an insulator 17, 18
19 and 20 indicate external electrodes and external connection terminals, respectively. In addition, numbers 21 and 22 in the figure are electrostrictive materials, 2
3 and 24 are internal electrodes, and 25 and 26 are insulators.

(実施例) 以下本発明の実施例について図面を参照して詳
細に説明する。マグネシウムニオブ酸鉛およびチ
タン酸鉛を主成分とする電歪材料子焼粉末に微量
の有機バインダーを添加しこれを有機溶媒中に分
散させたスラリーを準備した。通常の積層セラミ
ツクコンデンサの製造に使用されるキヤステイン
グ製膜装置にによりこのスラリーをポリエステル
性樹脂(厚さ50〜100μm)のキヤリアシート上
に約45ミクロンの厚さに塗布し乾燥させたこれを
フイルムから剥離し電歪材料グリーンシートを得
た。一部のグリーンシートにはさらに内部電極と
して白金ペーストをスクリーン印刷した。これら
のグリーンシートを数百枚重ね、熱プレスにより
圧着一体化した後1240℃で焼成し電歪材料積層体
を得た。これを内部電極が一層おきに表面に露出
するような位置2ケ所で切断し、あらわれた面に
仮設外部電極を塗布焼き付けし、さらに前記仮設
外部電極形成面とは異なる側面2ケ所を底面に対
し傾斜を持つように切断し内部電極を露出させ
る。第4図は以上のようにして作製した仮設外部
電極付電歪材料積層体の斜視図である。図中番号
21および22は電歪材料、23および24は内
部電極で一層おきにそれぞれ仮設外部電極34お
よび35に接続している。
(Example) Examples of the present invention will be described in detail below with reference to the drawings. A slurry was prepared by adding a small amount of an organic binder to an electrostrictive material powder containing magnesium lead niobate and lead titanate as main components, and dispersing this in an organic solvent. This slurry was coated on a carrier sheet of polyester resin (50 to 100 μm thick) to a thickness of about 45 microns using a casting film-forming device used in the production of ordinary multilayer ceramic capacitors, and then dried. An electrostrictive material green sheet was obtained by peeling from the film. Some of the green sheets were further screen-printed with platinum paste as internal electrodes. Several hundred of these green sheets were stacked, pressed together using a hot press, and then fired at 1240°C to obtain an electrostrictive material laminate. This is cut at two locations where the internal electrodes are exposed on the surface every other layer, temporary external electrodes are applied and baked on the exposed surfaces, and two side surfaces different from the surface on which the temporary external electrodes are formed are attached to the bottom surface. Cut at an angle to expose the internal electrodes. FIG. 4 is a perspective view of the electrostrictive material laminate with temporary external electrodes produced as described above. In the figure, numbers 21 and 22 are electrostrictive materials, and numbers 23 and 24 are internal electrodes, which are connected to temporary external electrodes 34 and 35, respectively, every other layer.

次に、底面に対し傾斜している2つの側面の内
部電極露出部とその周辺セラミツク上に、帯電し
たガラス粉末を含むケンダク液を用いた電気泳動
法により帯状にガラス粉末を析出させる。これを
焼成固着させてガラス被膜を形成し、これを用い
て素子の電気的接続を行なう。
Next, glass powder is deposited in a band shape on the internal electrode exposed portions on the two side surfaces inclined with respect to the bottom surface and the surrounding ceramic by electrophoresis using Kendaku solution containing charged glass powder. This is baked and fixed to form a glass film, which is used to electrically connect the elements.

まず以下の方法で帯電したバラス粉末を含むケ
ンダク液を作製する。ホウケイ酸亜鉛系結晶化ガ
ラス粉末30g、エタノール290ml、5%ヨウ素エ
タノール溶液10mlを高速ホモジナイザーで混合す
る。ヨウ素が電解質の役割をはたし、ガラス粉末
はプラスに帯電する。30分間超音波をかけた後、
30分間静置して沈殿物を除去し残りのケンダク液
を使用する。
First, Kendaku liquid containing charged Balasu powder is prepared by the following method. Mix 30 g of zinc borosilicate crystallized glass powder, 290 ml of ethanol, and 10 ml of 5% iodine ethanol solution using a high-speed homogenizer. Iodine acts as an electrolyte, and the glass powder becomes positively charged. After applying ultrasound for 30 minutes,
Leave it to stand for 30 minutes to remove the precipitate and use the remaining Kendaku liquid.

前記仮設外部電極付電歪材料積層体の底面に対
し傾斜している2つの側面のうち一方を粘着テー
プで被いケンダク液にぬれるのを防ぐ。これを前
記ケンダク液を満たした容器に沈め、粘着テープ
で被つていない傾斜側面の前方約1cm手前に側面
よりも大きめのステンレス製対向電極板を沈め
る。次に直流電源を準備しそのプラス端子に対向
電極板を接続しマイナス端子には図中番号35で
示す仮設外部電極を接続する。また図中番号23
で示す内部電極上へのガラス粉末の付着を防止す
るために仮設外部電極34はステンレス製対向電
極板に接地し同電位とする。直流電圧10Vを600
秒間印加しガラス粉末を析出させた後、ケンダク
液から引き上げ乾燥させる。第5図はこのように
処理を行なつた電歪材料積層体を示す斜視図であ
る。図中番号26は一層おきの内部電極露出部と
その周辺のセラミツク上に析出した帯状のガラス
粉末を示す。
One of the two side surfaces of the temporary external electrode-attached electrostrictive material laminate that is inclined with respect to the bottom surface is covered with adhesive tape to prevent it from getting wet with the Kendaku liquid. This is submerged in a container filled with the Kendaku solution, and a stainless steel counter electrode plate, which is larger than the side surface, is submerged approximately 1 cm in front of the inclined side surface that is not covered with adhesive tape. Next, a DC power source is prepared, a counter electrode plate is connected to its positive terminal, and a temporary external electrode indicated by number 35 in the figure is connected to its negative terminal. Also number 23 in the diagram
In order to prevent glass powder from adhering to the internal electrodes shown in , the temporary external electrode 34 is grounded to the stainless steel counter electrode plate to have the same potential. DC voltage 10V 600
After applying for a second to precipitate the glass powder, it is removed from the Kendaku solution and dried. FIG. 5 is a perspective view showing an electrostrictive material laminate treated in this manner. In the figure, number 26 indicates a band-shaped glass powder deposited on the exposed portions of the internal electrodes in every other layer and the ceramic around them.

裏面の前記粘着テープを取り除いた後、705℃
で10分間焼成し帯状のガラス被膜を焼きつける。
次に全く同様な方法で裏側の傾斜面の内部電極露
出部の一層おきにガラス被膜を形成する。ただし
その位置は最初にガラス被膜を形成した内部電極
とは一層だけずらせておく。
After removing the adhesive tape on the back side, 705℃
Bake for 10 minutes to create a band-shaped glass coating.
Next, in exactly the same manner, a glass coating is formed on every other layer of the exposed internal electrodes on the sloped surface on the back side. However, its position is shifted by one layer from the internal electrode on which the glass coating was first formed.

このようにして得られた2つの傾斜側面に帯状
のガラス被膜を持つ積層体は第5図の被膜で示す
位置で切断し最終素子形状にする。第6図はこの
ようにして得られた電歪効果素子を示す外観図で
ある。図中番号23,24は内部電極を、27,
28はガラス被膜を示す。次にガラス被膜と内部
電極露出部を横断する形で、一対の外部電極を焼
き付ける。第1図はこのようにして電気的接続を
行なつた電歪効果素子を示す外観図である。図中
番号29は外部電極を、30,31はそれぞれ底
面と上面を32,33はそれぞれプラス側および
マイナス側の外部接続端子を示す。外部接続端子
間に直流電圧30Vを印加すると素子は底面および
上面に垂直な方向に7μmの変位を生じる。
The thus obtained laminate having band-shaped glass coatings on the two inclined sides is cut into the final element shape at the positions indicated by the coatings in FIG. FIG. 6 is an external view showing the electrostrictive effect element thus obtained. In the figure, numbers 23 and 24 indicate internal electrodes, 27,
28 indicates a glass coating. Next, a pair of external electrodes is baked across the glass coating and the exposed internal electrodes. FIG. 1 is an external view showing an electrostrictive effect element electrically connected in this manner. In the figure, numeral 29 indicates an external electrode, 30 and 31 indicate the bottom and top surfaces, respectively, and 32 and 33 indicate positive and negative external connection terminals, respectively. When a DC voltage of 30 V is applied between the external connection terminals, the element is displaced by 7 μm in the direction perpendicular to the bottom and top surfaces.

また本構造の採用により角錐台形状の素子を作
製することもできる。第7図はガラス被覆を形成
した電歪材料積層体を示す外観図である。図中破
線で示すような位置で切断し最終の素子形状とす
る。第8図はこのようにして切断し外部電極を形
成した電歪効果素子の外観図である。底面を装置
に取付けて固定し上面方向の変位を利用すれば座
りの良い安定な電歪効果素子となる。図中番号2
9は外部電極を、30,31は底面および上面を
それぞれ示す。32,33はそれぞれプラス側お
よびマイナス側の外部接続端子を示す。
Further, by employing this structure, a truncated pyramid-shaped element can also be manufactured. FIG. 7 is an external view showing an electrostrictive material laminate with a glass coating formed thereon. The final element shape is obtained by cutting at the position shown by the broken line in the figure. FIG. 8 is an external view of an electrostrictive effect element with external electrodes formed by cutting in this manner. If the bottom surface is attached and fixed to the device and the displacement in the direction of the top surface is utilized, a stable electrostrictive effect element with good seating can be obtained. Number 2 in the diagram
Reference numeral 9 indicates an external electrode, and 30 and 31 indicate a bottom surface and a top surface, respectively. Reference numerals 32 and 33 indicate positive and negative external connection terminals, respectively.

(発明の効果) 本発明の構造を採用することにより従来電気的
接続が困難であつた内部電極間隔が30μm程度の
電歪材料積層体を容易に電気的に接続し30V程度
の極めて低い電圧で駆動できる電歪効果素子が得
られる。また電歪効果素子としての形状の自由度
が広がり、変位拡大機構に素子を組み込んで使用
する場合に変位拡大機構の形状の自由度が増し設
計上都合が良い。
(Effects of the Invention) By adopting the structure of the present invention, it is possible to easily electrically connect an electrostrictive material laminate with an internal electrode spacing of about 30 μm, which was difficult to electrically connect in the past, with an extremely low voltage of about 30 V. An electrostrictive element that can be driven is obtained. Further, the degree of freedom in the shape of the electrostrictive effect element is increased, and when the element is incorporated into a displacement magnification mechanism for use, the degree of freedom in the shape of the displacement magnification mechanism is increased, which is convenient in terms of design.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電歪効果素子の一例を示す外
観図、第2図〜第6図は本発明の電歪効果素子の
製造工程を示す外観図、第7図、第8図は本発明
の他の例を示す外観図、第9図は従来の電歪効果
素子の外観図である。 各図において、11,12,21,22は電歪
材料、13,14,23,24は内部電極、1
5,16,28,27はガラス被膜、17,1
8,29は外部電極、19,20,32,33は
外部接続端子である。
Fig. 1 is an external view showing an example of the electrostrictive effect element of the present invention, Figs. 2 to 6 are external views showing the manufacturing process of the electrostrictive effect element of the present invention, and Figs. An external view showing another example of the invention, FIG. 9 is an external view of a conventional electrostrictive effect element. In each figure, 11, 12, 21, 22 are electrostrictive materials, 13, 14, 23, 24 are internal electrodes, 1
5, 16, 28, 27 are glass coatings, 17, 1
8 and 29 are external electrodes, and 19, 20, 32, and 33 are external connection terminals.

Claims (1)

【特許請求の範囲】[Claims] 1 電歪材料層と内部電極とが交互に積層され、
一体となつて焼結された電歪効果素子であつて、
該素子の側端面に前記内部電極板の端面が露出し
ており、この側端面上の該内部電極板の一層おき
の露出部とその近傍の電歪材料上のみに一層おき
に無機絶縁層が形成されており、該無機絶縁層を
横断して同一側端面上の各内部電極露出部を接続
する外部電極が形成され、かつ該素子の2側面で
それぞれ異なる内部電極が一層おきに外部電極で
接続されている電歪効果素子であつて、前記外部
電極が形成される2側面は上面又は底面に対して
垂直でないことを特徴とする電歪効果素子。
1 Electrostrictive material layers and internal electrodes are alternately laminated,
An electrostrictive element that is integrally sintered,
The end face of the internal electrode plate is exposed on the side end face of the element, and an inorganic insulating layer is formed every other layer only on the exposed portion of the internal electrode plate on the side end face and on the electrostrictive material in the vicinity thereof. An external electrode is formed across the inorganic insulating layer to connect each exposed internal electrode on the same side end face, and different internal electrodes are connected to the external electrode every other layer on the two sides of the element. An electrostrictive effect element connected to each other, wherein the two side surfaces on which the external electrodes are formed are not perpendicular to the top surface or the bottom surface.
JP60022860A 1985-02-08 1985-02-08 Electrostrictive effect element Granted JPS61182284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022860A JPS61182284A (en) 1985-02-08 1985-02-08 Electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022860A JPS61182284A (en) 1985-02-08 1985-02-08 Electrostrictive effect element

Publications (2)

Publication Number Publication Date
JPS61182284A JPS61182284A (en) 1986-08-14
JPH0564873B2 true JPH0564873B2 (en) 1993-09-16

Family

ID=12094466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022860A Granted JPS61182284A (en) 1985-02-08 1985-02-08 Electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPS61182284A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803763A (en) * 1986-08-28 1989-02-14 Nippon Soken, Inc. Method of making a laminated piezoelectric transducer
JP2598301Y2 (en) * 1992-06-19 1999-08-09 株式会社村田製作所 Chip piezoelectric vibrator
DE4332966A1 (en) * 1993-09-28 1995-03-30 Philips Patentverwaltung Torsion actuator and a method for its production
US20030020377A1 (en) 2001-07-30 2003-01-30 Ngk Insulators, Ltd. Piezoelectric/electrostrictive element and piezoelectric/electrostrictive device and production method thereof
JP2003046154A (en) * 2001-07-30 2003-02-14 Ngk Insulators Ltd Piezoelectric/electrostrictive element, piezoelectric/ electrostrictive device, and method of manufacturing them
CN100563039C (en) 2004-03-09 2009-11-25 京瓷株式会社 Laminate type piezoelectric element and manufacture method thereof
JP5123491B2 (en) 2005-06-10 2013-01-23 日本碍子株式会社 Multilayer piezoelectric / electrostrictive element
JP2007142209A (en) * 2005-11-18 2007-06-07 Fujitsu Ltd Piezoelectric element and its manufacturing method
DE102005061752A1 (en) * 2005-12-21 2007-07-05 Eads Deutschland Gmbh Three-dimensional Stapelpiezoelement and piezoelectric actuator with such a Stapelpiezoelement
JP2010199272A (en) * 2009-02-25 2010-09-09 Kyocera Corp Laminated piezoelectric element, method of manufacturing the same, and vibrating body
JP6141598B2 (en) * 2012-01-17 2017-06-07 セイコーエプソン株式会社 pressure sensor

Also Published As

Publication number Publication date
JPS61182284A (en) 1986-08-14

Similar Documents

Publication Publication Date Title
GB2242312A (en) Laminated displacement device
JPS62274681A (en) Electrostrictive effect element
JPH0564873B2 (en)
JPS6317354B2 (en)
EP0167392A2 (en) Method of producing electrostrictive effect element
JPS6317355B2 (en)
JPH0256826B2 (en)
JPS6334636B2 (en)
JPH06105800B2 (en) Electrostrictive effect element
JPH0256827B2 (en)
JPS59115579A (en) Electrostrictive effect element and manufacture thereof
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPH0394487A (en) Piezoelectric actuator
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPH01184968A (en) Manufacture of laminar piezoelectric element
JPS6318352B2 (en)
JPH0256828B2 (en)
JPS6086883A (en) Manufacture of electrostrictive-effect element
JPH0534122Y2 (en)
JPH0256829B2 (en)
JPS6225475A (en) Electrostrictive effect element and manufacture thereof
JPS6086881A (en) Manufacture of electrostrictive-effect element
JPH0745971Y2 (en) Electrostrictive effect element
JPS58196070A (en) Electrostrictive effect element
JPH049390B2 (en)