JPH0563543B2 - - Google Patents

Info

Publication number
JPH0563543B2
JPH0563543B2 JP61218775A JP21877586A JPH0563543B2 JP H0563543 B2 JPH0563543 B2 JP H0563543B2 JP 61218775 A JP61218775 A JP 61218775A JP 21877586 A JP21877586 A JP 21877586A JP H0563543 B2 JPH0563543 B2 JP H0563543B2
Authority
JP
Japan
Prior art keywords
weight
less
oxide scale
resistance
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61218775A
Other languages
Japanese (ja)
Other versions
JPS6376850A (en
Inventor
Kazuhide Ishii
Tatsuo Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21877586A priority Critical patent/JPS6376850A/en
Publication of JPS6376850A publication Critical patent/JPS6376850A/en
Publication of JPH0563543B2 publication Critical patent/JPH0563543B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、酸化スケールの耐剥離性に優れた
Fe−Cr−Al−Nd系合金に関し、高温酸化性雰囲
気下で激しい繰返し酸化を受ける自動車排ガス浄
化用触媒コンバータに好適なほか、燃焼ガス排気
系の機器、装置、暖房機部品などにも有用であ
る。 〔従来の技術〕 従来、自動車排ガス浄化用触媒コンバータに
は、コーデイエライト(2MgO・2Al2O3
5SiO2)の押出焼成ハニカムにγ−アルミナ微粒
子を触媒担体としてコーテイングした後、Ptな
どの触媒をつけたものが用いられている。 特開昭56−96726号公報に示されているように、
このコーデイエライト製ハニカムを耐酸化ステン
レス箔を組みたてて製作した金属ハニカムにする
と、コンバータの小型化、エンジン性能の向上な
ど、種々の利点がある。前記引用公報では耐酸化
ステンレス箔としてイツトリウム(x)を添加した
Fe−Cr−Al系合金(Cr:15〜25重量%、Al:3
〜6重量%、Y:0.3〜1.0重量%)を提案してい
るが、Yが希少金属であるため非常に高価であ
り、また供給量にも不安があり、一般の自動車に
用いるのは経済性の点で困難であつた。 これに対し、特開昭58−177437号公報では
Cr:8〜25重量%、Al:3〜8重量%、全希土
類元素が0.06重量%までで、0.002〜0.05重量%の
Ce、La、Ndなどを添加した合金(以下これを
Fe−Cr−Al−REM合金と呼ぶ)の使用を提案し
ている。これは希土類元素の添加によつてスケー
ルの剥離を防いだFe−Cr−Al系合金で、電熱線
などには古くから用いられていたものである。 このようなFe−Cr−Al−REM系合金では一般
用途では十分な酸化スケールの耐剥離性を持つて
いるが、自動車の排気ガス浄化用触媒コンバータ
のように発進、加連、停止のたびに過酷な高温繰
返し酸化と激しい振動を受ける場合、酸化スケー
ルが剥離してしまう。 また、箔であるから、厚さが薄いため、さら
に、このような箔の上に触媒をコーテイングした
構造であるから、酸化スケールが剥離すると排ガ
ス浄化能力の低下を招くこととなる。 REM添加によりスケールの剥離を防止したFe
−Cr−Al−REM系合金ではY以外の希土類元素
は熱間加工性を低下させるため0.05重量%以上の
添加は不可能としている。 〔発明が解決しようとする問題点〕 本発明は上記実情に鑑み、高温繰返し酸化を受
け激しい振動環境下において酸化スケールの耐剥
離性の極めて高い材料につき研究の結果新知見を
得、この知見に基づいて本発明を完成し、このよ
うな材料を提供するこを目的とするものである。
すなわち本発明者らの研究によると、上述の希土
類元素添加による欠点は主にCeが原因であり、
Ndのみを0.03重量%以上添加すると熱間加工中
の割れを発生することなく圧延加工が可能であ
り、かつ耐酸化性、酸化スケールの耐剥離性を大
幅に向上することを新たに知見した。 ところが、前述の特開昭58−177437では「全希
土類の合計が0.06%までである少なくとも0.002
%そして0.05%までのセリウムおよびランタン、
ネオジムおよびプラセオジムよりなる群からの添
加物」として、Ceを必須とし、一方La、Nd等を
区別せず、実施例中にもNdを単独で添加したも
のはない。 〔問題点を解決するための手段〕 本発明の第1発明は C:0.02重量%以下 Si:1.5重量%以下 Cr:13重量%以上27重量%以下 Al:3.5重量%を超え8重量%未満 Nd:0.03重量%以上0.20重量%以下 を含み、かつCeを含まず、残分がFeと不可避不
純物よりなることを特徴とする酸化スケールの耐
剥離性に優れたFe−Cr−Al−Nd系合金である。 本発明の第2発明は第1発明に、 Ti:C重量%の5倍以上0.10重量%以下を加え
たものである。 本発明の第3発明は第1発明にCe、Nd以外の
ランタノイドが0.001重量%以上0.1重量%以下
で、ランタノイドの合計量が0.20重量%としたも
のである。 さらに本発明の第4発明は第3発明に、 Ti:C重量%の5倍以上0.10重量%以下を加え
たものである。 〔作 用〕 本発明合金は各成分の含有量によつて、耐酸化
性及び酸化スケールの剥離性が極めて高くなる作
用を有し、以下各成分の限定理由を述べる。 Nd: 0.03重量%未満では厚さ50μm程度の箔での
耐酸化性及び酸化スケールの耐剥離性を確保で
きず、0.20重量%以上では熱間圧延が不可能に
なるので0.05重量%以上0.20重量%未満とし
た。 Ce、Ndを除くランタノイド: ランタノイドはLa、Ce、Ndその他原子番号
57から71までの15種の金属元素である。Ce、
Ndを除くランタノイドは耐酸化性及び酸化ス
ケールの耐剥離性向上に対し、Ndとほぼ同様
な効果があり、かつ、原鉱石からNdを精製す
る場合、純粋なNdよりもLa等の他のランタノ
イドを含有したNdの形態の方が容易な場合が
あることから、Ce、Ndを除くランタノイドを
0.001〜0.10重量%含有することができる。た
だし、熱間加工性が低下するのでランタノイド
の総和は0.20重量%以下とする。 Cr: 13重量%未満では耐酸化性が確保できず、27
重量%を超えると靭性が低下し、冷間加工が困
難となるので13〜27重量%とした。 Al: 3.5重量%以下では耐酸化性が確保できず、
8重量%以上では熱間圧延が困難となるので
3.5重量%を超え8重量%未満とした。 Si: 耐酸化性向上に有効であるが1.5重量%を超
えると加工性を低下させるので1.5重量%以下
とした。 C: 過剰になると靭性を低下させ、熱間圧延性、
加工性を悪化させるので0.02重量%以下にする
必要がある。 Ti:以上のほかにさらにTiを添加すると
Tiが炭化物となつてCを固定して靭性を改善
する。TiはC濃度の5倍以上添加しないとそ
の改善効果が表れないが、0.1重量%を超えて
添加すると耐酸化性を低下させるので、5×重
量%C〜0.10重量%とする。 〔実施例〕 第1表に本発明の実施例の合金の化学成分を示
し、第2表に比較例の合金の化学成分を示す。 実施例および比較例はそれぞれ10Kgインゴツト
に溶製造塊した後、1200℃で板厚3mmまで熱間圧
延した。この段階でCe、La、Ndの合計濃度が
0.058重量%のB−3、Ce濃度が0.085重量%のB
−6、Nd濃度が0.24重量%のB−17、NdとLaの
和が0.23重量%のB−19、Alが8.5重量%のB−
25は熱間圧延時に鋼塊が割れたので、その後の試
験は行つていない。 実施例および比較例の上記B−3,6,17,
19,25を除く比較例は、次に900℃で焼鈍した後
シヤルピー試験を行ない靭性を調べた。その結果
の一部を第1図に示す。C濃度が0.002重量%と
低いC−1やC濃度は0.018重量%と高いがTiを
0.09重量%添加したC−2は延性・脆性遷移温度
が60〜80℃と良好な靭性があり、冷間圧延が容易
であつた。これに対してCが0.028重量%と高い
B−21は遷移温度が150℃と靭性が悪く冷間圧延
が困難であり温間圧延で行う必要があつた。同様
にCrが27.5重量%のB−24とSiが1.7重量%のB
−23も遷移温度が100℃を超え熱間圧延が困難で
あつた。 その後、脱スケール、冷間圧延、焼鈍を繰返し
板厚50μmの箔にした。これから板厚50μm、幅20
mm、長さ30mmの試験片を採取して、1150℃大気中
雰囲気で酸化試験を行つた。 その結果の一部を第2図に示す。Ceが0.035重
量%のB−15、Ndが0.031重量%であるが、Ceが
0.042重量%添加してあるB−16は100〜120時間
で完全に酸化して原形を留めていない。これに対
し、ほぼ同じCr、Al濃度であるが、Ndが0.032重
量%のC−1、Ndが0.051重量%、Laが0.02重量
%のC−8は高価なFe−Cr−Al−Y合金である
B−1と同様に200時間後も酸化増量が1.2mg/cm2
と非常に良好な耐酸化性を示している。この様に
Ceは耐酸化性を低下させるが、Nd、La、はYと
同様に耐酸化性を大幅に向上させている。様に
Tiが0.31重量%のB−22、Crが11.8重量%のB−
26、Alが3.1重量%のB−27も耐酸化性が不十分
であつた。 最後に同一形状の試験片を1150℃大気中雰囲気
で30分間酸化させた後、12分間急冷するのを1回
として、200回の繰返し酸化を行つた後、電子顕
微鏡で酸化スケールの検査をした。 Ceを含むB−3,B−16,Nd濃度が0.018重量
%と低いB−18、同じくLaを0.024重量%含んで
いるが、Nd濃度が0.013重量%と低いB−20、
Cr、Al濃度が低いB−26、B−27では半分程度
の酸化スケールが剥離していたが、実施例と比較
例中Y添加のB−1には剥離は見られなかつた。 以上の結果を総合して第1表、第2表中に合わ
せて評価したが、本発明の範囲にある第1表の
Fe−Cr−Al−Nd(−Ti)合金は製造性および特
性の両方において優れていることは明白である。 Nd、Laは熱間加工性をあまり低下させず、耐
酸化性、耐剥離性を大幅に向上させるが、Ceは
熱間加工性、耐酸化性を大幅に低下させることが
明白である。 なお、第1表、第2表中における評価の区分は
以下の基準による。 熱間圧延性: 〇:1200℃加熱後、熱間圧延可能であつたも
の。 ×:1200℃加熱後、熱間圧延不可能であつたも
の。 靭性: 〇:熱延焼鈍板での脆性−延性遷移温度が100
℃未満のもの。 ×:熱延焼鈍板での脆性−延性遷移温度が100
℃以上のもの。 耐酸化性: 〇:50μm厚の箔で1150℃×144時間大気中加熱
後の重量増加が1.5mg/cm2未満。 ×:50μm厚の箔で1150℃×144時間大気中加熱
後の重量増加が1.5mg/cm2以上。 耐剥離性: ○:50μm厚の箔で1150℃大気中30分間加熱後
12分間急冷を1回として200回繰返した後酸
化スケールの剥離がないもの。 ×:50μm厚の箔で1150℃大気中30分間加熱後
12分間急冷を1回として200回繰返したとき
酸化スケール剥離があるもの。 また、前述の特開昭56−96726号公報では特殊
な熱処理で表面に長さ数μmのAl2O3ウイスカー
を生成した上に、触媒のコーテイングを行つてい
る。本発明鋼もこれと同一の熱処理を行つた場
合、良好なAl2O3ウイスカーが生成するので、こ
の製造方法による触媒コンバータにも好適であ
る。
[Industrial Application Field] The present invention provides a method for producing oxidized scale with excellent peeling resistance.
Concerning Fe-Cr-Al-Nd alloys, it is suitable for catalytic converters for automobile exhaust gas purification, which are subjected to intense repeated oxidation in high-temperature oxidizing atmospheres, and is also useful for combustion gas exhaust system equipment, equipment, heater parts, etc. be. [Conventional technology] Conventionally, cordierite (2MgO, 2Al 2 O 3 ,
5SiO 2 ) extruded fired honeycomb is coated with γ-alumina fine particles as a catalyst carrier, and then a catalyst such as Pt is attached. As shown in Japanese Patent Application Laid-Open No. 56-96726,
If this cordierite honeycomb is made into a metal honeycomb made by assembling oxidation-resistant stainless steel foil, there are various advantages such as miniaturization of the converter and improvement of engine performance. In the cited publication, yttrium (x) was added as an oxidation-resistant stainless steel foil.
Fe-Cr-Al alloy (Cr: 15-25% by weight, Al: 3
~6% by weight, Y: 0.3~1.0% by weight), but since Y is a rare metal, it is very expensive, and there are concerns about the supply amount, making it uneconomical to use in general automobiles. It was difficult in terms of sexuality. On the other hand, in Japanese Patent Application Laid-Open No. 58-177437,
Cr: 8-25% by weight, Al: 3-8% by weight, total rare earth elements up to 0.06% by weight, 0.002-0.05% by weight
Alloys with additions of Ce, La, Nd, etc. (hereinafter referred to as
We propose the use of Fe-Cr-Al-REM alloy). This is an Fe-Cr-Al alloy that prevents scale exfoliation by adding rare earth elements, and has been used for a long time in heating wires. Such Fe-Cr-Al-REM alloys have sufficient oxidation scale peeling resistance for general purposes, but they are difficult to remove when starting, starting, and stopping, such as in catalytic converters for purifying automobile exhaust gas. When exposed to severe high temperature repeated oxidation and intense vibration, the oxide scale will peel off. Furthermore, since it is a foil, it is thin, and since the catalyst is coated on the foil, if the oxide scale peels off, the exhaust gas purification ability will be reduced. Fe with scale peeling prevented by REM addition
In -Cr-Al-REM alloys, it is impossible to add rare earth elements other than Y in an amount of 0.05% by weight or more because they reduce hot workability. [Problems to be Solved by the Invention] In view of the above-mentioned circumstances, the present invention has obtained new findings as a result of research into materials that have extremely high resistance to peeling of oxide scales under repeated high-temperature oxidation and severe vibration environments, and based on this knowledge. It is an object of the present invention to complete the present invention based on the above, and to provide such a material.
In other words, according to the research conducted by the present inventors, the drawbacks due to the addition of rare earth elements mentioned above are mainly caused by Ce.
It was newly discovered that adding Nd alone at 0.03% by weight or more enables rolling processing without cracking during hot working, and significantly improves oxidation resistance and peeling resistance of oxide scale. However, in the above-mentioned Japanese Patent Application Laid-Open No. 58-177437, "the total amount of rare earths is up to 0.06%, which is at least 0.002%".
% and up to 0.05% cerium and lanthanum,
As an additive from the group consisting of neodymium and praseodymium, Ce is essential, while La, Nd, etc. are not distinguished, and there are no examples in which Nd is added alone. [Means for solving the problem] The first aspect of the present invention is as follows: C: 0.02% by weight or less Si: 1.5% by weight or less Cr: 13% by weight or more and 27% by weight or less Al: More than 3.5% by weight and less than 8% by weight Fe-Cr-Al-Nd system with excellent peeling resistance of oxide scale, characterized by containing Nd: 0.03% by weight or more and 0.20% by weight or less, does not contain Ce, and the remainder consists of Fe and inevitable impurities. It is an alloy. The second invention of the present invention is obtained by adding Ti:C at least 5 times the weight % and 0.10 weight % or less to the first invention. The third invention of the present invention is the same as the first invention, with lanthanoids other than Ce and Nd being 0.001% by weight or more and 0.1% by weight or less, and the total amount of lanthanoids being 0.20% by weight. Further, the fourth invention of the present invention is the third invention in which Ti:C is added in an amount of 5 times or more and 0.10% by weight or less. [Function] The alloy of the present invention has the effect of extremely high oxidation resistance and oxidized scale removability depending on the content of each component, and the reason for limiting each component will be described below. Nd: If it is less than 0.03% by weight, it will not be possible to ensure oxidation resistance and peeling resistance of oxide scale in a foil with a thickness of about 50 μm, and if it is more than 0.20% by weight, hot rolling will not be possible. less than %. Lanthanoids excluding Ce and Nd: Lanthanoids include La, Ce, Nd and other atomic numbers
There are 15 metal elements numbered from 57 to 71. Ce,
Lanthanoids other than Nd have almost the same effect as Nd in improving oxidation resistance and peeling resistance of oxide scale, and when refining Nd from raw ore, other lanthanoids such as La are more effective than pure Nd. Since it may be easier to use the form of Nd containing
It can be contained in an amount of 0.001 to 0.10% by weight. However, since hot workability decreases, the total amount of lanthanoids should be 0.20% by weight or less. Cr: If it is less than 13% by weight, oxidation resistance cannot be ensured, and 27
If it exceeds 13% to 27% by weight, the toughness decreases and cold working becomes difficult. Al: If it is less than 3.5% by weight, oxidation resistance cannot be ensured,
If it exceeds 8% by weight, hot rolling becomes difficult.
The content was set to be more than 3.5% by weight and less than 8% by weight. Si: Effective for improving oxidation resistance, but if it exceeds 1.5% by weight, processability will be reduced, so the content was set to 1.5% by weight or less. C: If it is excessive, it will reduce toughness and reduce hot rollability.
Since it deteriorates processability, it needs to be kept at 0.02% by weight or less. Ti: If you add Ti in addition to the above
Ti turns into carbide and fixes C, improving toughness. Ti must be added at least 5 times the C concentration for the improvement effect to appear, but if added in an amount exceeding 0.1% by weight, the oxidation resistance is reduced, so the range is set to 5×wt% C to 0.10 wt%. [Example] Table 1 shows the chemical components of alloys of Examples of the present invention, and Table 2 shows chemical components of alloys of Comparative Examples. In the examples and comparative examples, each ingot was made into a 10 kg ingot and then hot rolled at 1200°C to a thickness of 3 mm. At this stage, the total concentration of Ce, La, and Nd is
B-3 with 0.058% by weight, B with Ce concentration of 0.085% by weight
-6, B-17 with a Nd concentration of 0.24% by weight, B-19 with a sum of Nd and La of 0.23% by weight, B- with an Al content of 8.5% by weight
In No. 25, the steel ingot cracked during hot rolling, so no further tests were conducted. The above B-3, 6, 17 of Examples and Comparative Examples,
Comparative examples other than Nos. 19 and 25 were then annealed at 900°C and then subjected to a Charpy test to examine their toughness. A part of the results are shown in FIG. C-1 has a low C concentration of 0.002% by weight, and Ti has a high C concentration of 0.018% by weight.
C-2 added at 0.09% by weight had good toughness with a ductile-brittle transition temperature of 60 to 80°C and was easy to cold-roll. On the other hand, B-21, which has a high C content of 0.028% by weight, has a transition temperature of 150°C and poor toughness, making cold rolling difficult and requiring warm rolling. Similarly, B-24 contains 27.5% by weight of Cr and B-24 contains 1.7% by weight of Si.
-23 also had a transition temperature exceeding 100°C, making hot rolling difficult. Thereafter, descaling, cold rolling, and annealing were repeated to obtain a foil with a thickness of 50 μm. From now on, the plate thickness will be 50μm and the width will be 20mm.
A test piece with a length of 30 mm and a length of 30 mm was taken, and an oxidation test was conducted in an air atmosphere at 1150°C. A part of the results are shown in FIG. B-15 contains 0.035% by weight of Ce and 0.031% by weight of Nd, but Ce
B-16 added at 0.042% by weight was completely oxidized in 100 to 120 hours and did not retain its original shape. On the other hand, C-1 with 0.032 wt% Nd and C-8 with 0.051 wt% Nd and 0.02 wt% La are expensive Fe-Cr-Al-Y alloys with almost the same Cr and Al concentrations. As with B-1, the oxidation weight increase was 1.2 mg/cm 2 even after 200 hours.
It shows very good oxidation resistance. like this
Ce reduces oxidation resistance, but Nd, La, and Y significantly improve oxidation resistance. As
B-22 with 0.31 wt% Ti, B-22 with 11.8 wt% Cr
26, B-27 containing 3.1% by weight of Al also had insufficient oxidation resistance. Finally, a test piece of the same shape was oxidized for 30 minutes at 1150°C in the air, and then oxidized 200 times, each time being rapidly cooled for 12 minutes, and then inspected for oxide scale using an electron microscope. . B-3, B-16 containing Ce, B-18 with a low Nd concentration of 0.018% by weight, B-20 which also contains 0.024% La but with a low Nd concentration of 0.013% by weight,
About half of the oxide scale was peeled off in B-26 and B-27, which had low Cr and Al concentrations, but no peeling was observed in B-1, which had Y added among the Examples and Comparative Examples. The above results were evaluated by combining them in Tables 1 and 2, and the results of Table 1, which are within the scope of the present invention, were evaluated.
It is clear that the Fe-Cr-Al-Nd(-Ti) alloy is superior in both manufacturability and properties. It is clear that Nd and La do not significantly reduce hot workability and significantly improve oxidation resistance and peeling resistance, but Ce significantly reduces hot workability and oxidation resistance. The classification of evaluation in Tables 1 and 2 is based on the following criteria. Hot rolling properties: 〇: Hot rolling was possible after heating to 1200°C. ×: After heating to 1200°C, hot rolling was not possible. Toughness: 〇: Brittle-ductile transition temperature in hot rolled annealed plate is 100
Anything below ℃. ×: Brittle-ductile transition temperature of hot rolled annealed plate is 100
Anything over ℃. Oxidation resistance: 〇: Weight increase is less than 1.5 mg/cm 2 after heating in air at 1150°C for 144 hours with 50 μm thick foil. ×: Weight increase of 1.5 mg/cm 2 or more after heating 50 μm thick foil in air at 1150°C for 144 hours. Peeling resistance: ○: After heating with 50μm thick foil in air at 1150℃ for 30 minutes
No peeling of oxide scale after 12 minute rapid cooling is repeated 200 times. ×: After heating with 50μm thick foil at 1150℃ in air for 30 minutes
Oxidized scale peels off after 200 times of 12 minute quenching. Furthermore, in the above-mentioned Japanese Patent Application Laid-Open No. 56-96726, Al 2 O 3 whiskers several μm in length are formed on the surface by a special heat treatment, and then a catalyst is coated. When the steel of the present invention is subjected to the same heat treatment, good Al 2 O 3 whiskers are produced, so it is also suitable for catalytic converters produced by this manufacturing method.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明鋼は熱間圧延性、冷間圧延性、耐酸化性
および酸化スケールの耐剥離性に優れており、か
つ安価である。 本発明鋼は、自動車の触媒コンバータ用ステン
レス箔として好適であり、自動車の公害対策に寄
与するところ大がである。またこれに限ることな
く他の過酷な酸化作用を受ける用途に用いること
ができる。
The steel of the present invention has excellent hot rollability, cold rollability, oxidation resistance, and peeling resistance of oxide scale, and is inexpensive. The steel of the present invention is suitable as a stainless steel foil for automobile catalytic converters, and greatly contributes to automobile pollution control. Furthermore, the present invention is not limited to this, and can be used in other applications that are subject to severe oxidation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱延板の焼鈍後のシヤルピー試験結果
を示すグラフ、第2図は50μm箔での耐酸化試験
結果を示すグラフである。
FIG. 1 is a graph showing the results of the Charpy test after annealing the hot-rolled sheet, and FIG. 2 is a graph showing the results of the oxidation resistance test on 50 μm foil.

Claims (1)

【特許請求の範囲】 1 C:0.02重量%以下 Si:1.5重量%以下 Cr:13重量%以上27重量%以下 Al:3.5重量%を超え8重量%未満 Nd:0.03重量%以上0.20重量%以下 を含み、かつCeを含まず、残分がFeと不可避不
純物よりなることを特徴とする酸化スケールの耐
剥離性に優れたFe−Cr−Al−Nd系合金。 2 C:0.02重量%以下 Si:1.5重量%以下 Cr:13重量%以上27重量%以下 Al:3.5重量%を超え8重量%未満 Nd:0.03重量%以上0.20重量%以下 Ti:C重量%の5倍以上0.10重量%以下 を含み、かつCeを含まず、残分がFeと不可避不
純物よりなることを特徴とする酸化スケールの耐
剥離性に優れたFe−Cr−Al−Nd系合金。 3 C:0.02重量%以下 Si:1.5重量%以下 Cr:13重量%以上27重量%以下 Al:3.5重量%を超え8重量%未満 Nd:0.03重量%以上0.20重量%未満 Ce、Ndを除くランタノイド:合計0.001重量%
以上0.10重量%以下 を含み、かつCeを含まず、ランタノイドの合計
が0.20重量%以下で残分がFeと不可避不純物より
なることを特徴とする酸化スケールの耐剥離性に
優れたFe−Cr−Al−Nd系合金。 4 C:0.02重量%以下 Si:1.5重量%以下 Cr:13重量%以上27重量%以下 Al:3.5重量%を超え8重量%未満 Nd:0.03重量%以上0.20重量%未満 Ce、Ndを除くランタノイド:合計0.001重量%
以上 Ti:C重量%の5倍以上0.10重量%以下 を含み、かつCeを含まず、ランタノイドの合計
が0.20重量%以下で残分がFeと不可避不純物より
なることを特徴とする酸化スケールの耐剥離性に
優れたFe−Cr−Al−Nd系合金。
[Claims] 1 C: 0.02 wt% or less Si: 1.5 wt% or less Cr: 13 wt% or more and 27 wt% or less Al: More than 3.5 wt% and less than 8 wt% Nd: 0.03 wt% or more and 0.20 wt% or less An Fe-Cr-Al-Nd alloy with excellent peeling resistance of oxide scale, characterized in that it contains Fe, does not contain Ce, and the remainder consists of Fe and unavoidable impurities. 2 C: 0.02 wt% or less Si: 1.5 wt% or less Cr: 13 wt% or more and 27 wt% or less Al: More than 3.5 wt% and less than 8 wt% Nd: 0.03 wt% or more and 0.20 wt% or less Ti: C weight% An Fe-Cr-Al-Nd alloy having excellent peeling resistance of oxide scale, characterized in that it contains 5 times or more and 0.10% by weight or less, does not contain Ce, and the remainder consists of Fe and unavoidable impurities. 3 C: 0.02 weight% or less Si: 1.5 weight% or less Cr: 13 weight% or more and 27 weight% or less Al: More than 3.5 weight% and less than 8 weight% Nd: 0.03 weight% or more and less than 0.20 weight% Lanthanoids excluding Ce and Nd :Total 0.001% by weight
Fe-Cr- with excellent peeling resistance of oxide scale, characterized by containing 0.10% by weight or less and not containing Ce, with a total lanthanide content of 0.20% by weight or less, and the remainder consisting of Fe and inevitable impurities. Al-Nd alloy. 4 C: 0.02 weight% or less Si: 1.5 weight% or less Cr: 13 weight% or more and 27 weight% or less Al: More than 3.5 weight% and less than 8 weight% Nd: 0.03 weight% or more and less than 0.20 weight% Lanthanoids excluding Ce and Nd :Total 0.001% by weight
The resistance of oxide scale characterized by containing 5 times or more of Ti:C and not more than 0.10% by weight, not including Ce, and having a total lanthanoid content of not more than 0.20% by weight, with the remainder consisting of Fe and unavoidable impurities. Fe-Cr-Al-Nd alloy with excellent peelability.
JP21877586A 1986-09-17 1986-09-17 Fe-cr-al-nd alloy having superior resistance to peeling of oxide scale Granted JPS6376850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21877586A JPS6376850A (en) 1986-09-17 1986-09-17 Fe-cr-al-nd alloy having superior resistance to peeling of oxide scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21877586A JPS6376850A (en) 1986-09-17 1986-09-17 Fe-cr-al-nd alloy having superior resistance to peeling of oxide scale

Publications (2)

Publication Number Publication Date
JPS6376850A JPS6376850A (en) 1988-04-07
JPH0563543B2 true JPH0563543B2 (en) 1993-09-10

Family

ID=16725187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21877586A Granted JPS6376850A (en) 1986-09-17 1986-09-17 Fe-cr-al-nd alloy having superior resistance to peeling of oxide scale

Country Status (1)

Country Link
JP (1) JPS6376850A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068486B2 (en) * 1989-03-27 1994-02-02 新日本製鐵株式会社 Heat- and oxidation-resistant Fe-Cr-A (1) type alloy with excellent manufacturability
JP4949862B2 (en) * 2007-01-10 2012-06-13 株式会社リコー Image forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531824A (en) * 1978-08-25 1980-03-06 Taiyo Oil & Fat Mfg Oil and fat purifying method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531824A (en) * 1978-08-25 1980-03-06 Taiyo Oil & Fat Mfg Oil and fat purifying method

Also Published As

Publication number Publication date
JPS6376850A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
EP0091526B1 (en) Iron-chromium-aluminium alloy and article and method therefor
EP0516097B1 (en) Iron-chromium-aluminium alloy, catalytic substrate comprising the same and method of preparation
EP0246939B1 (en) Fe-cr-al stainless steel having high oxidation resistance and spalling resistance and fe-cr-al steel foil for catalyst substrate of catalytic converter
EP2554700B1 (en) Stainless steel foil and catalyst carrier for exhaust gas purification device using the foil
JPS63266044A (en) High al rolled metallic foil for catalyst carrier
EP2695962B1 (en) Stainless steel foil and catalyst carrier for exhaust emission control system using said foil
EP3527683B1 (en) Stainless steel sheet and stainless steel foil
JPH048502B2 (en)
JPH0563543B2 (en)
EP0625585B1 (en) Fe-Cr-Al alloy foil having high oxidation resistance for a substrate of a catalytic converter and method of manufacturing same
US6905651B2 (en) Ferritic stainless steel alloy and its use as a substrate for catalytic converters
JPS6342356A (en) Fe-cr-high al alloy excellent in oxidation resistance and its production
JP2991296B2 (en) Fe-Cr-Al alloy foil for catalytic converter for purifying exhaust gas of automobiles with excellent oxidation resistance
JP2002105606A (en) Fe-Cr-Al BASED ALLOY
JP2587413B2 (en) Fe-Cr-Al alloy foil for catalyst converter for automobile exhaust gas purification with excellent oxidation resistance
JP3320831B2 (en) Fe-Cr-Al alloy with excellent high temperature strength and oxidation resistance
JP2006009119A (en) STAINLESS STEEL SHEET SUPERIOR IN POTASSIUM-CORROSION RESISTANCE, MANUFACTURING METHOD THEREFOR, AND CARRIER FOR NOx-OCCLUDING CATALYST
JP3491334B2 (en) Fe-Cr-Al alloy for catalytic converter carrier excellent in oxidation resistance and method for producing alloy foil using the same
JPH01255648A (en) Fe-cr-al alloy excellent in oxidation resistance and resistance to high temperature embrittlement
JPS6342347A (en) Manufacture of fe-cr-al alloy excellent in peeling resistance of oxide scale
JP3351837B2 (en) Al-containing ferritic stainless steel with excellent manufacturability and high-temperature oxidation resistance
JPH0199647A (en) Foil for catalytic carrier for exhaust gas of automobile, carrier and production thereof
JP2885497B2 (en) High-temperature, high-strength, high-heat-resistant Fe-Cr-Al engaging gold with excellent manufacturability
JP3142884B2 (en) Fe-Cr-Al alloy that has excellent catalyst peeling resistance and suppresses whisker formation that reduces the adhesion of γAl2O3
JP3351836B2 (en) High Al content ferritic stainless steel with excellent high temperature oxidation resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees