JPH0563535B2 - - Google Patents

Info

Publication number
JPH0563535B2
JPH0563535B2 JP62070683A JP7068387A JPH0563535B2 JP H0563535 B2 JPH0563535 B2 JP H0563535B2 JP 62070683 A JP62070683 A JP 62070683A JP 7068387 A JP7068387 A JP 7068387A JP H0563535 B2 JPH0563535 B2 JP H0563535B2
Authority
JP
Japan
Prior art keywords
metal
powder
electrical contact
particles
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62070683A
Other languages
Japanese (ja)
Other versions
JPS63238229A (en
Inventor
Shuji Yamada
Masayuki Tsuji
Yoshinobu Takegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP62070683A priority Critical patent/JPS63238229A/en
Priority to US07/171,700 priority patent/US4911769A/en
Priority to GB8806756A priority patent/GB2203167B/en
Priority to FR8803980A priority patent/FR2613117B1/en
Priority to DE3810218A priority patent/DE3810218C3/en
Priority to KR1019880003232A priority patent/KR910006038B1/en
Publication of JPS63238229A publication Critical patent/JPS63238229A/en
Priority to US07/468,210 priority patent/US5022932A/en
Publication of JPH0563535B2 publication Critical patent/JPH0563535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 この発明は、電気接点材料の製造方法に関す
る。 〔背景技術〕 リレー、ブレーカ、コンタクタ(パワータイプ
リレー)用の電気接点材料として、AgCdO,
AgSnO2などの内部酸化型接点材料、および、
AgNi,AgWなどの焼結型接点材料がある。内部
酸化型の接点材料を用いて作つた接点は、耐溶着
性に優れるが、接点開閉により接点表面に酸化物
が堆積し、接触抵抗が大きくなるという欠点があ
る。また、AgWも、酸化しやすいWが骨格を形
成していてその間にAgを充填した構造であるが、
AgWを用いて作つた接点は、接触抵抗が大きく
なり、高容量のブレーカなど用途が限られてい
る。一方、AgNiは、焼結タイプでありながら加
工性に優れ、線材化が容易であるため、リベツト
タイプの接点としてリレー、コンタクタなどに多
用されている。しかし、接触抵抗、耐消耗性に優
れているものの、耐溶着性に劣るという欠点があ
る。 AgとNiのような金属からなり、かつ、耐溶着
性の優れた接点材料が望まれている。耐溶着性を
向上させるためには、高温での硬度を大きくすれ
ばよい。そのためには、Ag中に別の金属を細か
く均一に分散し、分散強化により強度を向上させ
るようにすればよいことがわかつた。 従来のAgNiでは、50μm前後のAgとNiの粉末
を混合し、成形し、焼結したのち、熱間押出など
の方法で線材にし、所望の接点形状にしていた。
そのため、Niを1μm以下に細かく分散すること
が難しかつた。また、近年市販されている超微粉
末を用いても、粉末の凝集が起こり、1つ1つの
粉末を分散させることが難しかつた。 〔発明の目的〕 この発明は、以上のことに鑑みて、接触抵抗お
よび消耗が少なく、かつ、耐溶着性に優れた接点
を作ることができる電気接点材料の製造方法を提
供することを目的とする。 〔発明の開示〕 この発明は、上記の目的を達成するために、
Agマトリツクス中に、Agと二相分離する金属A
からなる粒径0.01〜1μmの粒子が1種以上分散さ
れており、かつ、Agと金属Aとの合計重量に対
し金属Aが0.5〜20%である導電性複合材料の粉
末を用い、この粉末を所望の形状に成形し、焼結
したのち、熱間で押出しにより線材にする電気接
点材料の製造方法を要旨とする。 以下に、この発明を詳しく説明する。 この発明の製造方法によれば、電気接点材料
は、通常のとおり、導電性複合材料の粉末を所望
の形状に成形して焼結することによりつくられ
る。前記導電性複合材料は、Agマトリツクス中
に、Agと二相分離する金属Aからなる粒径0.01
〜1μmの粒子が1種以上分散されており、かつ、
Agと金属Aとの合計重量に対し金属Aが0.5〜20
%である。 Agと二相分離する金属Aとは、Agと均一の固
相をつくらない、すなわち、固溶体をつくらない
もの(全くつくらないものに限定せず、固溶する
程度の低いものをも含める)を指す。Agと金属
Aとが溶融状態で均一の液相をつくるか否かは問
わないが、均一の液相をつくる方が、固相となつ
たときに、金属Aが微細な状態で均一にAg中に
分散されやすいので、好ましい。 金属Aとしては、特に限定はないが、たとえ
ば、Ni,Cr,Fe,Co,Si,Rh,Vからなる群の
中から選ばれた少なくとも1種が好ましい。金属
Aとして前記のものを用いれば、金属Aの分散を
より微細で均一にすることが容易である。 分散される金属Aの量は、Agおよび金属Aの
合計重量に対して0.5〜20%とする必要がある。
0.5%を下回ると、分散粒子の量が少ないため粒
子の間隔が大きくなり、分散強化の効果がなくな
る。20%を上回ると、Ag中に細かく分散しない
単独の大きな粒子の量が多くなり、接触抵抗増加
の原因となる。 金属Aは、粒径0.01〜1μmの粒子となつてAg
中に分散されていることが必要である。0.01μm
を下回ると、Agの導電性が低下するという問題
が生じる。1μmを上回ると、分散強化の効果が小
さいという問題が生じる。なお、現実には、粒径
1μmより大で5μm以下の金属A粒子が、Agマト
リツクス中の金属A粒子全体に対して約5wt%以
下入つていても差支えない。 この発明に用いる導電性複合材料は、種々の方
法で製造される。たとえば、急冷凝固法を用いる
ようにすると、金属Aが上記粒径範囲内の粒子と
なつてAgのマトリツクス中に分散されやすく、
このようにするために、厳密な条件設定を特に必
要としない。 急冷凝固法としては、特に限定はないが、たと
えば、回転液中噴霧法、高圧ガスアトマイズ法な
どが好ましい。これらの方法によれば、マトリツ
クス金属Ag中に金属Aが、より微細かつ均一に
分散した導電性粉末を得ることができる。 より具体的に説明すると、たとえば、Ag−
5wt%Ni合金粉末を作製するには、AgおよびNi
を95wt%Ag、5wt%Niの割合で黒鉛るつぼに入
れ、高周波溶解炉で溶融させる。この溶融物(溶
湯)を高周波溶解炉の底部の穴からガスの圧力に
より水中になどに噴出させ、急冷凝固させる。回
転液中噴霧法の場合には、この溶湯を直径0.1〜
0.2mmのノズル孔から、回転するドラム内壁に形
成された水膜中に噴出すればよい。また、高圧ガ
スアトマイズ法の場合、直径0.1〜5mmのノズル
から噴出した金属流を50〜100Kg/cm2の高圧不活
性ガスで噴霧すればよい。 このように、常温ではほとんど固溶しないAg
と金属Aを急冷凝固させることにより0.01〜1μm
の粒子(好ましくは、0.1〜0.7μmの粒子)が細か
く分散した導電性複合材料ができる。この場合、
導電性複合材料は粉末で得ることができ、そのほ
か、たとえば、帯状、繊維状等の形でも得ること
ができ、その形状は特に限定されない。粉末以外
の形状で得られた場合、必要に応じて粉末に加工
して成形に供してもよい。 この発明に用いる導電性複合材料を急冷凝固法
により製造する場合、冷却速度は、104〜105℃/
sec.程度以上とするのが好ましい。冷却速度が
104〜105℃/sec.程度を下回ると、金属A粒子の
分散性が悪くなるおそれがある。溶湯(溶融金
属)の温度は、金属Aの融点より100℃以上高い
ことが好ましく、200℃以上高いとより好ましい。
金属Aの融点より100℃以上高くないと、金属A
単相の大きな粒子が現れることがある。また、回
転液中噴霧法など、冷却水中で溶湯を急冷凝固さ
せる場合、冷却速度を上記のものとするために
は、溶湯を瞬時に冷却水中に噴出することが好ま
しく、ノズルなどの溶湯噴出口と冷却水の表面と
の距離を10mm以下にすることが好ましく、5mm以
下であることがより好ましい。その距離を10mmよ
り大きくした場合、できた導電性複合材料におい
て、金属A粒子の分散性が悪くなるおそれがあ
る。また、冷却水の速度Vは、噴出流の速度vよ
り充分に速いことが必要で、1.5≦V/v≦2.0で
あることが好ましい。冷却水の速度と噴出流の速
度が同程度の場合、冷却水の速度の方が遅い場
合、あるいは、冷却水の速度の方が極端に速い場
合、できた導電性複合材料において、金属A粒子
の分散性が悪くなるおそれがある。さらに、この
ようなおそれを防ぐためには、冷却水の温度は10
℃以下であることが好ましく、4℃以下であるこ
とがより好ましい。なお、冷却水は、冷却効果の
点から、静止しているよりも流れている方が好ま
しい。 つぎに、上記導電性複合材料を所望の形状に成
形し、焼結して電気接点材料を形成する。この発
明によれば、その導電性複合材料の粉末を熱間な
どで成形し、焼結したのち、熱間押出しにより伸
線する工程を経て、電気接点材料を作る。線材と
なつた電気接点材料は、ヘツダ加工などにより所
定の形状に形成され、電気接点となる。 この発明にかかる電気接点材料の製造方法によ
り作られた電気接点材料は、分散金属Aが非常に
細かくAgのマトリツクス中に分散しているので、
従来のものに比べて、接触抵抗および消耗が少な
く、かつ、耐溶着性に優れたものとなつている。
このため、この発明にかかる電気接点材料の製造
方法により作られた電気接点材料は、リレー、コ
ンタクタ、ブレーカなどに用いる接点材料として
優れている。 以下、実施例を示すが、この発明は実施例に限
定されない。 実施例 1 AgおよびNiをAg90wt%、Ni10wt%の割合で
黒鉛るつぼに入れ、高周波溶解によつて1650℃に
加熱し、溶融させた。つぎに、この溶融物(溶
湯)を直径120μmのルビー製ノズル孔からアルゴ
ン背圧3Kg/cm2で、300rpmで回転する直径500mm
のドラム内壁に形成された4℃の水膜中に噴出
し、50〜200μmの粉末を得た。 この粉末を400℃の金型に入れて10トン/cm2
熱間圧縮して成形し、さらにこの成形体をAr雰
囲気中で850℃、3時間焼結した。 こうして得られた焼結体を700℃の熱間で押出
して線材とし、伸線および焼鈍を繰り返したの
ち、Cuと接合させ、リベツト状の接点を得た。 実施例 3 AgとNiを、Ag80wt%、Ni20wt%の割合で黒
鉛るつぼに入れ、高周波溶解によつて1750℃の溶
湯温度とした。この溶湯を直径3mmのルビー製ノ
ズル孔からアルゴン背圧1Kg/cm2で噴出し、その
噴出流を70Kg/cm2の高圧アルゴンガスで噴霧して
急冷凝固粉末を作製した。 このようにして作製した粉末を用い、実施例1
と同様にして接点を作つた。 実施例 2,4〜10 実施例1において金属Aの種類、配合量を第1
表に示すようにした以外は、実施例1と同様にし
て接点を作つた。 比較例 1 350メツシユ以下のカーボニールNi粉末、およ
び、350メツシユ以下の電解銀粉を、Ni10wt%、
Ag90wt%の割合でボールミルで混合したのち、
実施例1と同様にして、成形および焼結をおこな
つた。得られた焼結体を700℃の熱間で押出して
線材とし、伸線および焼鈍を繰り返し、所定の太
さの線材とした。この線材をヘツダ加工し、Cu
と接合させ、リベツト状の接点を得た。 比較例 2〜5 実施例1において金属Aの種類、配合量を第1
表に示すようにした以外は、実施例1と同様にし
て接点を作つた。 上記実施例および比較例で得られた接点の溶着
回数および接触抵抗を調べた。各々サンプル数N
=3で、ASTM試験機を用いて測定を行つた。
接点開閉条件は、印加電圧AC100V、印加電流
40A、引きはずし力200g、接触力140gで、開閉
数5万回とした。
[Technical Field] The present invention relates to a method for manufacturing electrical contact materials. [Background technology] AgCdO,
internally oxidized contact materials such as AgSnO2 , and
There are sintered contact materials such as AgNi and AgW. Contacts made using internally oxidized contact materials have excellent welding resistance, but have the disadvantage that oxides accumulate on the contact surfaces when the contacts are opened and closed, increasing contact resistance. In addition, AgW also has a structure in which W, which is easily oxidized, forms a skeleton and Ag is filled in between.
Contacts made using AgW have high contact resistance, which limits their use in applications such as high-capacity breakers. On the other hand, although AgNi is a sintered type, it has excellent workability and is easy to make into wire rods, so it is often used as a rivet type contact in relays, contactors, etc. However, although it has excellent contact resistance and abrasion resistance, it has the disadvantage of poor welding resistance. A contact material made of metals such as Ag and Ni and with excellent welding resistance is desired. In order to improve the welding resistance, the hardness at high temperatures may be increased. It was found that in order to achieve this, the strength could be improved by finely and uniformly dispersing another metal in Ag and dispersion strengthening it. In conventional AgNi, Ag and Ni powders of around 50 μm were mixed, molded, and sintered, and then formed into wire rods using methods such as hot extrusion to create the desired contact shape.
Therefore, it was difficult to finely disperse Ni to 1 μm or less. Furthermore, even when ultrafine powders that have been commercially available in recent years are used, agglomeration of the powders occurs, making it difficult to disperse individual powders. [Object of the Invention] In view of the above, an object of the present invention is to provide a method for manufacturing an electrical contact material that can produce contacts with low contact resistance and wear and excellent welding resistance. do. [Disclosure of the invention] In order to achieve the above object, the present invention
Metal A that separates into two phases from Ag in the Ag matrix
Using a conductive composite material powder in which one or more types of particles with a particle size of 0.01 to 1 μm consisting of The gist of this invention is a method of manufacturing an electrical contact material, which is formed into a desired shape, sintered, and then hot extruded into a wire. This invention will be explained in detail below. According to the manufacturing method of the present invention, the electrical contact material is produced by molding a conductive composite material powder into a desired shape and sintering it, as usual. The conductive composite material has a particle size of 0.01 consisting of metal A that separates into two phases from Ag in an Ag matrix.
One or more types of particles of ~1 μm are dispersed, and
Metal A is 0.5 to 20% of the total weight of Ag and metal A
%. Metal A that separates into two phases from Ag refers to metals that do not form a uniform solid phase with Ag, that is, those that do not form a solid solution (not limited to those that do not form at all, but also include those that form a low degree of solid solution). Point. It doesn't matter whether Ag and metal A form a uniform liquid phase in the molten state, it is better to create a uniform liquid phase so that when the metal A becomes a solid phase, the metal A will be uniformly Ag in a fine state. It is preferable because it is easily dispersed in the liquid. The metal A is not particularly limited, but preferably at least one selected from the group consisting of Ni, Cr, Fe, Co, Si, Rh, and V, for example. If the metal A mentioned above is used, it is easy to make the dispersion of the metal A finer and more uniform. The amount of metal A dispersed should be between 0.5 and 20% based on the total weight of Ag and metal A.
If it is less than 0.5%, the amount of dispersed particles is small, so the spacing between the particles becomes large, and the dispersion strengthening effect is lost. If it exceeds 20%, the amount of individual large particles that are not finely dispersed in Ag increases, causing an increase in contact resistance. Metal A becomes Ag in the form of particles with a particle size of 0.01 to 1 μm.
need to be dispersed throughout the 0.01μm
If the value is less than 1, a problem arises in that the conductivity of Ag decreases. If it exceeds 1 μm, a problem arises in that the effect of dispersion strengthening is small. In reality, the particle size
Metal A particles larger than 1 μm and less than 5 μm may be contained in an amount of about 5 wt % or less based on the total metal A particles in the Ag matrix. The conductive composite material used in this invention can be manufactured by various methods. For example, when a rapid solidification method is used, metal A becomes particles within the above particle size range and is easily dispersed in the Ag matrix.
In order to do this, it is not particularly necessary to set strict conditions. The rapid solidification method is not particularly limited, but preferred examples include a spraying method in a rotating liquid and a high-pressure gas atomization method. According to these methods, it is possible to obtain conductive powder in which metal A is more finely and uniformly dispersed in matrix metal Ag. To explain more specifically, for example, Ag−
To make 5wt%Ni alloy powder, Ag and Ni
was placed in a graphite crucible at a ratio of 95wt%Ag and 5wt%Ni and melted in a high-frequency melting furnace. This molten material (molten metal) is ejected into water or the like by gas pressure from a hole at the bottom of the high-frequency melting furnace, and is rapidly solidified. In the case of the rotating liquid spray method, this molten metal is sprayed with a diameter of 0.1~
It is sufficient to eject it from a 0.2 mm nozzle hole into the water film formed on the inner wall of the rotating drum. In the case of high-pressure gas atomization, a metal stream ejected from a nozzle with a diameter of 0.1-5 mm may be atomized with high-pressure inert gas of 50-100 kg/cm 2 . In this way, Ag, which hardly dissolves in solid form at room temperature,
0.01 to 1μm by rapidly solidifying and metal A
A conductive composite material in which particles of (preferably particles of 0.1 to 0.7 μm) are finely dispersed is produced. in this case,
The conductive composite material can be obtained in the form of a powder, and can also be obtained in the form of a strip, fiber, etc., and the shape is not particularly limited. When obtained in a form other than powder, it may be processed into powder and subjected to molding, if necessary. When the conductive composite material used in this invention is manufactured by the rapid solidification method, the cooling rate is 10 4 - 10 5 °C/
It is preferable to set it to about sec. or more. cooling rate
When the temperature is less than about 10 4 to 10 5 ° C./sec., the dispersibility of the metal A particles may deteriorate. The temperature of the molten metal (molten metal) is preferably 100°C or more higher than the melting point of metal A, more preferably 200°C or more higher.
Metal A must be 100°C or more higher than the melting point of Metal A.
Single-phase large particles may appear. In addition, when molten metal is rapidly solidified in cooling water using a rotating liquid spray method, etc., in order to maintain the cooling rate above, it is preferable to jet the molten metal instantaneously into the cooling water, using a molten metal spout such as a nozzle. The distance between the cooling water and the surface of the cooling water is preferably 10 mm or less, more preferably 5 mm or less. If the distance is greater than 10 mm, there is a risk that the dispersibility of the metal A particles in the resulting conductive composite material may deteriorate. Further, the velocity V of the cooling water needs to be sufficiently faster than the velocity V of the jet flow, and it is preferable that 1.5≦V/v≦2.0. When the speed of the cooling water and the speed of the jet flow are similar, when the speed of the cooling water is slower, or when the speed of the cooling water is extremely faster, metal A particles may be present in the resulting conductive composite material. There is a risk that the dispersibility of Furthermore, to prevent this kind of fear, the temperature of the cooling water must be set to 10
The temperature is preferably below 4°C, more preferably below 4°C. In addition, from the point of view of the cooling effect, it is preferable that the cooling water is flowing rather than being stationary. Next, the conductive composite material is molded into a desired shape and sintered to form an electrical contact material. According to this invention, the electrical contact material is produced by hot-molding the conductive composite material powder, sintering it, and then drawing it by hot extrusion. The electrical contact material that has become a wire rod is formed into a predetermined shape by header processing, etc., and becomes an electrical contact. In the electrical contact material produced by the method for producing electrical contact material according to the present invention, the dispersed metal A is very finely dispersed in the Ag matrix.
Compared to conventional products, it has less contact resistance and less wear and tear, and has excellent welding resistance.
Therefore, the electrical contact material produced by the method for producing electrical contact material according to the present invention is excellent as a contact material for use in relays, contactors, breakers, and the like. Examples will be shown below, but the present invention is not limited to the examples. Example 1 Ag and Ni were placed in a graphite crucible at a ratio of 90 wt% Ag and 10 wt% Ni, and heated to 1650°C by high frequency melting to melt them. Next, this melt (molten metal) is passed through a ruby nozzle hole with a diameter of 120 μm and a diameter of 500 mm rotating at 300 rpm with an argon back pressure of 3 Kg/cm 2.
The powder was ejected into a 4°C water film formed on the inner wall of the drum to obtain a powder of 50 to 200 μm. This powder was placed in a mold at 400° C. and hot-pressed at 10 tons/cm 2 to form the powder, and this compact was further sintered at 850° C. for 3 hours in an Ar atmosphere. The thus obtained sintered body was hot extruded at 700°C to make a wire rod, and after repeated wire drawing and annealing, it was joined with Cu to obtain a rivet-like contact. Example 3 Ag and Ni were placed in a graphite crucible at a ratio of 80 wt% Ag and 20 wt% Ni, and the melt temperature was brought to 1750°C by high frequency melting. This molten metal was ejected from a ruby nozzle hole with a diameter of 3 mm at an argon back pressure of 1 Kg/cm 2 , and the ejected flow was atomized with high-pressure argon gas of 70 Kg/cm 2 to produce a rapidly solidified powder. Using the powder thus prepared, Example 1
I made a contact in the same way. Examples 2, 4 to 10 In Example 1, the type and amount of metal A were
Contacts were made in the same manner as in Example 1 except as shown in the table. Comparative Example 1 Carbonyl Ni powder of 350 mesh or less and electrolytic silver powder of 350 mesh or less were mixed with Ni10wt%,
After mixing in a ball mill at a ratio of Ag90wt%,
Molding and sintering were carried out in the same manner as in Example 1. The obtained sintered body was hot extruded at 700°C to form a wire rod, and wire drawing and annealing were repeated to obtain a wire rod of a predetermined thickness. This wire is processed into a header and Cu
A rivet-like contact was obtained. Comparative Examples 2 to 5 In Example 1, the type and amount of metal A were changed to
Contacts were made in the same manner as in Example 1 except as shown in the table. The number of times welded and the contact resistance of the contacts obtained in the above Examples and Comparative Examples were investigated. Number of samples each
= 3, and measurements were performed using an ASTM testing machine.
Contact opening/closing conditions are applied voltage AC100V, applied current
40A, tripping force 200g, contact force 140g, and was opened and closed 50,000 times.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる電気接点材料の製造方法は、
以上にみてきたように、Agマトリツクス中に、
Agと二相分離する金属Aからなる粒径0.01〜
1μmの粒子が1種以上分散されており、かつ、
Agと金属Aとの合計重量に対し金属Aが0.5〜20
%である導電性複合材料の粉末を用い、この粉末
を所望の形状に成形し、焼結したのち、熱間で押
出しにより線材にするので、この製造方法により
得られた電気接点材料を用いれば、接触抵抗およ
び消耗が少なく、かつ、耐溶着性の優れた接点を
作ることができる。
The method for manufacturing an electrical contact material according to the present invention includes:
As we have seen above, in the Ag matrix,
Particle size 0.01~ consisting of metal A that separates into two phases from Ag
One or more types of 1 μm particles are dispersed, and
Metal A is 0.5 to 20% of the total weight of Ag and metal A
% conductive composite material powder, this powder is molded into a desired shape, sintered, and then hot extruded into a wire rod. , it is possible to make contacts with low contact resistance and wear, and with excellent welding resistance.

Claims (1)

【特許請求の範囲】 1 Agマトリツクス中に、Agと二相分離する金
属Aからなる粒径0.01〜1μmの粒子が1種以上分
散されており、かつ、Agと金属Aとの合計重量
に対し金属Aが0.5〜20%である導電性複合材料
の粉末を用い、この粉末を所望の形状に成形し、
焼結したのち、熱間で押出しにより線材にする電
気接点材料の製造方法。 2 導電性複合材料は、Agおよび金属Aを含み、
かつ、Agおよび金属Aの合計重量に対して金属
Aが0.5〜20%である溶湯が急冷凝固されること
により得られたものである特許請求の範囲第1項
記載の電気接点材料の製造方法。 3 金属Aが、Ni,Cr,Fe,Co,Si,Rhおよび
Vからなる群の中から選ばれた少なくとも1種で
ある特許請求の範囲第1項または第2項記載の電
気接点材料の製造方法。
[Claims] 1. In the Ag matrix, one or more types of particles with a particle size of 0.01 to 1 μm made of metal A that separates into two phases from Ag are dispersed, and with respect to the total weight of Ag and metal A, Using a conductive composite material powder containing 0.5 to 20% of metal A, mold this powder into a desired shape,
A method of manufacturing electrical contact materials that is sintered and then hot extruded into wire rods. 2 The conductive composite material contains Ag and metal A,
The method for producing an electrical contact material according to claim 1, which is obtained by rapidly cooling and solidifying a molten metal containing 0.5 to 20% of metal A based on the total weight of Ag and metal A. . 3. Production of the electrical contact material according to claim 1 or 2, wherein the metal A is at least one selected from the group consisting of Ni, Cr, Fe, Co, Si, Rh, and V. Method.
JP62070683A 1987-03-25 1987-03-25 Electrical contact material Granted JPS63238229A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62070683A JPS63238229A (en) 1987-03-25 1987-03-25 Electrical contact material
US07/171,700 US4911769A (en) 1987-03-25 1988-03-22 Composite conductive material
GB8806756A GB2203167B (en) 1987-03-25 1988-03-22 Composite conductive material and method for manufacturing same
FR8803980A FR2613117B1 (en) 1987-03-25 1988-03-25 COMPOSITE CONDUCTIVE MATERIAL, METHOD FOR MANUFACTURING THE SAME, AND USE THEREOF IN A MATERIAL FOR ELECTRICAL CONTACTS
DE3810218A DE3810218C3 (en) 1987-03-25 1988-03-25 Process for producing a conductive composite material and electrical contact material obtainable therefrom
KR1019880003232A KR910006038B1 (en) 1987-03-25 1988-03-25 Composite conductive material
US07/468,210 US5022932A (en) 1987-03-25 1990-01-22 Rapid solidification of metal-metal composites having Ag, Au or Cu atrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070683A JPS63238229A (en) 1987-03-25 1987-03-25 Electrical contact material

Publications (2)

Publication Number Publication Date
JPS63238229A JPS63238229A (en) 1988-10-04
JPH0563535B2 true JPH0563535B2 (en) 1993-09-10

Family

ID=13438690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070683A Granted JPS63238229A (en) 1987-03-25 1987-03-25 Electrical contact material

Country Status (1)

Country Link
JP (1) JPS63238229A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821742B2 (en) * 1987-10-22 1998-11-05 株式会社徳力本店 Hard Ag alloy
JPH0791608B2 (en) * 1990-06-21 1995-10-04 松下電工株式会社 Contact material and manufacturing method thereof
JP5242868B2 (en) * 2001-07-17 2013-07-24 アイファイヤー アイピー コーポレイション Heat-resistant electrode, heat-resistant electrode target, heat-resistant electrode manufacturing method, and thin film EL device using the same
CN113724914B (en) * 2021-11-01 2022-02-25 西安宏星电子浆料科技股份有限公司 Silver-palladium slurry for sulfur-resistant oil level sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156743A (en) * 1980-05-06 1981-12-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of electrical contact material
JPS58221245A (en) * 1982-06-16 1983-12-22 Matsushita Electric Ind Co Ltd Manufacture of contact material
JPS61147827A (en) * 1984-12-21 1986-07-05 Tanaka Kikinzoku Kogyo Kk Ag-ni electrical contact material and its manufacture
JPS6270694A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Motor fan

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156743A (en) * 1980-05-06 1981-12-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of electrical contact material
JPS58221245A (en) * 1982-06-16 1983-12-22 Matsushita Electric Ind Co Ltd Manufacture of contact material
JPS61147827A (en) * 1984-12-21 1986-07-05 Tanaka Kikinzoku Kogyo Kk Ag-ni electrical contact material and its manufacture
JPS6270694A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Motor fan

Also Published As

Publication number Publication date
JPS63238229A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
KR910006038B1 (en) Composite conductive material
EP0469578A2 (en) Electrical contact material
CN108950257A (en) A method of improving reinforced phase distributing homogeneity in siluer metal oxide contact material
US5102620A (en) Copper alloys with dispersed metal nitrides and method of manufacture
CN112620640B (en) Preparation method of AgNi electrical contact material based on recycling of AgC scrap
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
US4452652A (en) Electrical contact materials and their production method
US4766274A (en) Vacuum circuit interrupter contacts containing chromium dispersions
US4961457A (en) Method to reduce porosity in a spray cast deposit
JPH0563535B2 (en)
JP4620071B2 (en) Contact materials for vacuum circuit breakers
JPH0514779B2 (en)
JPH0561334B2 (en)
JPH0651895B2 (en) Heat-resistant aluminum powder metallurgy alloy
JP3067318B2 (en) Manufacturing method of electrode material
CN1104260A (en) Silver-tase alloy electric probe material
Oguchi et al. Flaky amorphous powders in Fe-, Co-and Al-based systems prepared by a two-stage quenching technique
USH1146H (en) Plasma spraying tungsten heavy alloys
JPH01180901A (en) Silver nickel composite powder for electric contact material and manufacture thereof
JPS6244541A (en) Manufacture of silver-tin oxide-type electric contact point material
JPH04107232A (en) Contact material and its manufacture
JPH0475297B2 (en)
JPH0472896B2 (en)
JPH08127829A (en) Electric contact material and its production
JPH06100966A (en) Electrically conductive composite and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 14