JPH0562565B2 - - Google Patents

Info

Publication number
JPH0562565B2
JPH0562565B2 JP14656286A JP14656286A JPH0562565B2 JP H0562565 B2 JPH0562565 B2 JP H0562565B2 JP 14656286 A JP14656286 A JP 14656286A JP 14656286 A JP14656286 A JP 14656286A JP H0562565 B2 JPH0562565 B2 JP H0562565B2
Authority
JP
Japan
Prior art keywords
component system
temperature
molding
polymerization
lactam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14656286A
Other languages
Japanese (ja)
Other versions
JPS633909A (en
Inventor
Tatsuya Kato
Hiroshi Isekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Kasei Polytec Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Polytec Co filed Critical Mitsubishi Kasei Polytec Co
Priority to JP14656286A priority Critical patent/JPS633909A/en
Publication of JPS633909A publication Critical patent/JPS633909A/en
Publication of JPH0562565B2 publication Critical patent/JPH0562565B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polyamides (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、アミド系樹脂成形品の製造方法に関
するものである。更に詳しくは、機械的物性が優
れ、かつ反応射出成形または注形成形によつて、
一定の良好な品質を備えた成形品の能率的な製造
方法に関するものである。 「従来の技術」 ラクタム類をアルカリ触媒および重合開始剤を
用い陰イオン重合法によつて重合することは既に
良く知られた技術である。近年、この重合方法を
利用して、液状原料を金型に射出または注入し、
重合および成形を金型内で同時に行つて、直接成
形品を製造する方法、いわゆる反応射出成形法、
注形成形法、回転成形法、遠心成形法が注目され
ている。 上の方法で得られるアミド系樹脂成形品は、強
靭性、高剛性、耐熱性、摩擦摩耗特性の良さを兼
ね備え、更に、原料組成物の流動性が良いこと、
および重合時の発熱が比較的少ないこと等から、
低射出圧力での成形が可能であり、金型面の転写
性が良く、かつ薄肉から肉厚の成形品まで随意に
得ることができるので、反応射出成形および注形
成形用素材として特に注目されている。 しかし、実際に成形品を製造すると、成形品の
耐衝撃性及び引つ張り伸び等の物性値の振れが大
きく、かつ、成形機の触媒を含む原料組成物が通
る配管の閉塞がしばしば起り、作業性を低下させ
る問題が発生する。特に小型の成形品を製造する
ための成形機においては、配管閉塞は頻繁であり
忌々しい問題である。従つて、これら問題点の改
良が望まれていた。 「発明が解決しようとした問題点」 本発明の目的は、陰イオン重合法によつて重合
させてω−ラクタムを主原料とするアミド系樹脂
成形品を製造する方法において、成形機の配管閉
塞を起さず、かつ、耐衝撃性および引つ張り物性
の振れの少ないアミド系樹脂成形品の能率的な製
造方法を提供することにある。 「問題点を解決するための手段」 しかして本発明の要旨とするところは、アルカ
リ金属またはアルカリ土類金属化合物を重合触媒
として用い陰イオン重合法によりω−ラクタムを
主原料とするアミド系樹脂成形品を製造するにあ
たり、重合触媒をあらかじめω−ラクタムに溶解
する際、初期溶解温度を100℃ないし130℃の温度
範囲で3時間以下の時間保持し、ついで100℃未
満に降温した原料組成物と、重合開始剤およびそ
の他の添加剤を含む原料組成物とを混合して重合
させ成形することを特徴とするアミド系樹脂成形
品の製造方法に存する。 以下、本発明を詳細に説明する。アミド系樹脂
の反応射出成形、注形成形、回転成形、遠心成形
においては、用いられる幾種類かの原料は2成分
系以上の組成物に分けて調製され、成形時に、こ
れら2成分系以上に分けられた原料組成物を衝突
混合、またはスタテイツクミキサー、ダイナミツ
クミキサー等により合一させて、金型内で重合と
成形とを同時に行うものである。 アミド系樹脂の上記成形法において、2成分系
からなる原料組成物の一方の成分系は重合触媒と
ω−ラクタムの溶融体(以後成分系(A)という)
と、もう一方の成分系は重合開始剤、各種の添加
物およびω−ラクタムの溶融体(以後成分系(B)と
いう)からなる。充填材を使用する場合は、これ
ら成分系(A)、成分系(B)のいずれか一方、または同
時に双方に添加することができる。 本発明で使用されるω−ラクタムの具体例とし
ては、γ−ブチロラクタム、δ−バレロラクタ
ム、ε−カプロラクタム、ω−エナントラクタ
ム、ω−カプリルラクタム、ω−ウンデカノラク
タム、ω−ラウリンラクタムなどが挙げられる。
これらのω−ラクタムは単独で使用しても良く、
2種類以上を併用しても良い。 成分系(A)に含有される重合触媒としては、ω−
ラクタムの陰イオン重合法において従来から使用
されているアルカリ金属、アルカリ土類金属およ
びそれらの化合物がすべて用いることができる。
その具体例としては、アルカリ金属、アルカリ土
類金属、これらの水素化物、アルキル化合物、ア
リール化合物、アマイド、グリニヤール化合物、
更には上記金属または金属化合物とω−ラクタム
との反応生成物、例えばω−ラクタムのナトリウ
ム塩、カリウム塩、マグネシウムハライド塩など
があげられる。 重合触媒の使用量は全ω−ラクタムに対し、
0.01〜20モル%が適当である。0.01モル%未満の
場合、重合速度が遅く、又微量の水分の影響を受
けて重合しない場合もあり、工業的利用価値が少
ない。他方、20モル%を超える場合には、非常に
速い速度を必要とする場合以外は非経済的であ
り、かつ最終的に得られるアミド系樹脂成形品の
耐候性を下げる結果になるので、好ましくない。 成分系(A)は、上記金属重合触媒をω−ラクタム
溶融体に混合後、この混合物の温度を100℃ない
し130℃の温度範囲内に3時間以下の時間保持し、
ついで100℃未満に降温して調製する。成分系(A)
を100℃以上の温度に昇温することなく調製した
場合には、この成分系(A)を用いて得られたアミド
系樹脂成形品の機械的物性の振れが大きく、かつ
耐衝撃性の低下をもたらす。また、成分系(A)が通
る成形機の配管、バルブなどでの閉塞も起こり易
く、成形作業性の低下をもたらす。成分系(A)を
130℃を超える温度にまで昇温して調製した場合、
または100℃ないし130℃の温度範囲であつても、
3時間を超えてその温度に保持した場合には、成
分系(A)内にω−ラクタムの重合物が副成し、この
成分系(A)を用いて最終的に得られるアミド系樹脂
成形品の機械的物性を低下させ、かつ副成した重
合物による成分系(A)の粘度増加または、不溶解性
副成重合物による成形機閉塞による作業性の低下
等をもたらす。 本発明方法を実施する場合、成分系(B)は、調製
直後にそのまま液温度を100℃未満に保持しなが
ら成分系(B)との混合、重合反応に使用することが
できるし、または一旦温度を充分に降下して固化
させて貯蔵しておき、成分系(B)と混合、重合させ
る際に昇温して溶融体として使用することができ
る。再溶解する際の温度は、100℃未満であつて
も良いし、100℃ないし130℃の温度範囲であつて
も良い。 成分系(B)としての重合開始剤は、ω−ラクタム
を陰イオン重合法によつて重合する再に従来から
使用されている化合物が、すべて使用可能であ
る。その具体例としては、例えば、トルエンジイ
ソシアネート、4,4′−ジフエニルメタンジイソ
シアネート、ヘキサメチレンジイソシアネート、
ポリメチレンポリフエニルポリイソシアネート、
カルボジイミドで変性されたジイソシアネート等
のイソシアネート類、ヘキサメチレン−1,6−
ビスカルバミドカプロラクタム、N,N′−ジフ
エニル−p−フエニレンビスカルバミドカプロラ
クタム、N,N′−ジフエニル−p−フエニレン
ビスカルバミドピロリド等のカルバミドカプロラ
クタム類、テレフタル酸クロリド、アジピン酸ク
ロリド、セバシン酸クロリド等の酸ハライド類、
アジポイルビスカプロラクタム、アジポイルビス
ピロリドン、テレフタロイルビスカプロラクタ
ム、テレフタロイルビスピロリドン、イソフタロ
イルビスカプロラクタム等のポリアシルラクタム
類、または式
"Industrial Application Field" The present invention relates to a method for producing an amide resin molded article. More specifically, it has excellent mechanical properties and can be processed by reaction injection molding or injection molding.
The present invention relates to an efficient method for manufacturing molded products with constant good quality. "Prior Art" It is already a well-known technique to polymerize lactams by anionic polymerization using an alkali catalyst and a polymerization initiator. In recent years, this polymerization method has been used to inject or inject liquid raw materials into molds,
A method of directly producing molded products by simultaneously performing polymerization and molding in a mold, the so-called reaction injection molding method.
Potting molding methods, rotational molding methods, and centrifugal molding methods are attracting attention. The amide resin molded product obtained by the above method has good toughness, high rigidity, heat resistance, and friction and wear properties, and also has good fluidity of the raw material composition.
and relatively little heat generation during polymerization, etc.
It is particularly attracting attention as a material for reaction injection molding and injection molding because it can be molded at low injection pressure, has good transferability on the mold surface, and can be used to produce thin to thick molded products. ing. However, when actually manufacturing molded products, physical properties such as impact resistance and tensile elongation of the molded products fluctuate widely, and the piping through which the raw material composition including the catalyst in the molding machine passes often gets clogged. Problems occur that reduce work efficiency. Particularly in molding machines for producing small molded products, pipe clogging is a frequent and troublesome problem. Therefore, it has been desired to improve these problems. "Problems to be Solved by the Invention" The purpose of the present invention is to solve the problem of pipe blockage in a molding machine in a method for producing an amide resin molded product whose main raw material is omega-lactam by polymerization using an anionic polymerization method. It is an object of the present invention to provide an efficient method for producing an amide resin molded product that does not cause any of the following problems and has less fluctuation in impact resistance and tensile properties. "Means for Solving the Problems" The gist of the present invention is to produce an amide resin containing ω-lactam as a main raw material by anionic polymerization using an alkali metal or alkaline earth metal compound as a polymerization catalyst. When producing a molded article, a raw material composition in which the polymerization catalyst is dissolved in ω-lactam in advance, the initial dissolution temperature is maintained in the temperature range of 100°C to 130°C for 3 hours or less, and then the temperature is lowered to less than 100°C. and a raw material composition containing a polymerization initiator and other additives are mixed, polymerized, and molded. The present invention will be explained in detail below. In reaction injection molding, injection molding, rotational molding, and centrifugal molding of amide resins, several types of raw materials used are prepared separately into two or more component systems, and during molding, these two or more component systems are mixed. The separated raw material compositions are combined by collision mixing, static mixer, dynamic mixer, etc., and polymerization and molding are performed simultaneously in a mold. In the above molding method for amide resin, one component system of the two-component raw material composition is a melt of a polymerization catalyst and an ω-lactam (hereinafter referred to as component system (A)).
The other component system consists of a polymerization initiator, various additives, and a melt of ω-lactam (hereinafter referred to as component system (B)). When a filler is used, it can be added to either one of component system (A) and component system (B), or both at the same time. Specific examples of the ω-lactam used in the present invention include γ-butyrolactam, δ-valerolactam, ε-caprolactam, ω-enantholactam, ω-capryllactam, ω-undecanolactam, and ω-laurinlactam. Can be mentioned.
These ω-lactams may be used alone,
Two or more types may be used together. The polymerization catalyst contained in component system (A) is ω-
All alkali metals, alkaline earth metals and their compounds conventionally used in anionic polymerization of lactams can be used.
Specific examples include alkali metals, alkaline earth metals, hydrides thereof, alkyl compounds, aryl compounds, amides, Grignard compounds,
Further examples include reaction products of the above metals or metal compounds and ω-lactams, such as sodium salts, potassium salts, and magnesium halide salts of ω-lactams. The amount of polymerization catalyst used is based on the total ω-lactam.
A suitable amount is 0.01 to 20 mol%. When the amount is less than 0.01 mol%, the polymerization rate is slow, and polymerization may not occur due to the influence of a trace amount of water, resulting in little industrial utility value. On the other hand, if it exceeds 20 mol%, it is uneconomical unless a very high speed is required, and the weather resistance of the amide resin molded product ultimately obtained is reduced, so it is preferable. do not have. In component system (A), after mixing the metal polymerization catalyst with the omega-lactam melt, the temperature of this mixture is maintained within a temperature range of 100°C to 130°C for 3 hours or less,
Then, the temperature is lowered to less than 100°C. Component system (A)
When prepared without raising the temperature to 100℃ or higher, the mechanical properties of the amide resin molded products obtained using this component system (A) fluctuate greatly and the impact resistance decreases. bring about. In addition, clogging of piping, valves, etc. of the molding machine through which the component system (A) passes is likely to occur, resulting in a decrease in molding workability. Component system (A)
When prepared by raising the temperature to over 130℃,
or even in the temperature range of 100℃ to 130℃,
If the temperature is kept at that temperature for more than 3 hours, a polymer of ω-lactam will form as a by-product in the component system (A), and the amide resin molding finally obtained using this component system (A) will This results in a decrease in the mechanical properties of the product, an increase in the viscosity of the component system (A) due to the by-product polymer, and a decrease in workability due to clogging of the molding machine due to the insoluble by-product polymer. When carrying out the method of the present invention, component system (B) can be mixed with component system (B) and used for polymerization reaction while maintaining the liquid temperature at less than 100°C immediately after preparation, or can be used for polymerization reaction once. The temperature can be lowered sufficiently to solidify and then stored, and when mixed with component system (B) and polymerized, the temperature can be raised and used as a melt. The temperature during remelting may be less than 100°C or may be in the temperature range of 100°C to 130°C. As the polymerization initiator as component system (B), all compounds conventionally used for polymerizing ω-lactam by anionic polymerization can be used. Specific examples include toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate,
polymethylene polyphenyl polyisocyanate,
Isocyanates such as diisocyanate modified with carbodiimide, hexamethylene-1,6-
Biscarbamide caprolactam, N,N'-diphenyl-p-phenylenebiscarbamide caprolactam, carbamide caprolactams such as N,N'-diphenyl-p-phenylenebiscarbamide pyrrolid, terephthalic acid chloride, adipic acid chloride, sebacic acid Acid halides such as chloride,
Polyacyllactams such as adipoyl biscaprolactam, adipoyl bispyrrolidone, terephthaloyl biscaprolactam, terephthaloyl bispyrrolidone, isophthaloyl biscaprolactam, or formulas

【式】【formula】

【式】【formula】

【式】【formula】

【式】 および【formula】 and

【式】 [式中、Aはハロゲンであるか、または【formula】 [wherein A is halogen, or

【式】(ここでYはC3〜C11アルキレン である)であり、aは1、2または3の整数であ
り、bは2またはそれ以上の整数であり、R1
アルキル基、アルアルキル基、アルキルオキシ
基、アリールオキシ基、ハロゲン基またはアルア
ルキルオキシ基であり、R2は炭化水素基および
エーテル結合を有する炭化水素から選択される2
価以上の基であり、Zは(1)最低分子量約2000を有
するポリエーテル、(2)最低分子量約2000を有する
ポリエーテルセグメントを含有するポリエステル
セグメント、または(3)最低分子量1000を有する炭
化水素〕を有するものからなる群より選択される
酸ハライド官能性物質またはラクタム官能性物質
などが挙げられる。 成分系(B)には、金型内で成分系(A)とともに反応
する際に重合体鎖中に入る架橋剤、変性剤(ソフ
トセグメント)等を配合することができる。これ
らの化合物としては、多価の水酸基、メルカプト
基、アミノ基またはエポキシ基を有する化合物が
挙げられる。 成分系(B)には更に、実質的に重合反応を阻害し
ない化合物、例えば可塑剤、発泡剤、染顔料、酸
化防止剤、内部離型剤等を配合することができ
る。 また、最終的に得られるアミド系樹脂成形品に
剛性、耐熱性等を付与したい場合には、充填剤を
用いることができ、その例としては、例えば炭酸
カルシウム、マイカ、タルク、ガラス繊維、ガラ
スフレーク、チタン酸カリウム、炭素繊維、ケブ
ラー繊維、針状結晶性メタリン酸カルシウム等が
挙げられる。 次に、本発明に従い、アミド系樹脂成形品を製
造する方法を述べる。 まずω−ラクタム溶融体に重合触媒を加え、
100℃ないし130℃の温度範囲内に3時間以下の時
間保持し、ついでω−ラクタムの融点以上100℃
未満に降温して成分系(A)の溶融状物を調製する。
同様に成分系(B)も、ω−ラクタム溶融体に重合開
始剤、添加剤等を加えω−ラクタムの融点以上に
加温し、140℃以下に保持した溶融状物を調製す
る。必要に応じ充填剤を成分系(A)または成分系(B)
のいずれか、または双方に混合しても良い。 上記のように調製した成形用組成物から、アミ
ド系樹脂成形品を製造するには、次のような手順
による。 すなわち、成分系(A)、および成分系(B)の溶融ス
ラリーを迅速に混合し、金型に射出または注入す
る。2成分の混合方法としては、例えば、ミキシ
ングヘツドと呼ばれる装置内で、衝突混合させる
か、またはスタテイツクミキサーもしくはダイナ
ミツクミキサー等で攪拌混合される。成分系(A)と
成分系(B)との混合比は、製造する成形品の用途、
具備させる性質に応じて変化させることができ
る。 成形に際しての金型温度は、100〜200℃、好ま
しくは120〜160℃の範囲に保持するのがよい。金
型内で、成分系(A)と成分系(B)とが化学反応をおこ
し、金型注入後短時間で成形品の大きさにもよる
が、4分以内、場合によつては2分以内で硬化ま
たは凝固し、化学反応を終了する。化学反応終了
後、金型から取り出したものは目的のアミド系樹
脂成形品である。 「発明の効果」 本発明は以上説明したとおりであり、次のよう
な特別に顕著な効果を奏し、その産業上の利用価
値は極めて大である。 (1) 本発明方法によるときは、使用する原料組成
物の溶解または分散状態が好ましく、成形機の
閉塞による作業性の低下が著しく改善される。 (2) 本発明方法によつて得られるアミド系樹脂成
形品は、機械的物性が優れ、かつ物性振れの少
ないものであり、ω−ラクタム重合体の特性を
損なわれることなく、充分に発揮するものとな
る。 「実施例」 次に、本発明を、実施例および比較例を掲げて
説明するが、本発明は、その要旨を超えない限
り、以下の例に限定されるものではない。 なお、以下の例において機械的物性の測定は次
のようにして行つた。 成形品の引張り強さおよび伸びの測定:− 厚さ3mmの平板成形品から乾燥状態の試験片を
切り出し、ASTM D−638に準拠して測定した。
試験片は同一配合処方の10枚の成形品より各1片
を切り出し、試験片数10とした。 成形品の耐衝撃性の測定:− 厚さ3mmの平板成形品から乾燥状態の試験片を
切り出し、−30℃においてデユポン衝撃試験機で
測定した。ダートの直径は12.7mm、試験片の受け
の穴の直径は12.7mm。 成形機の閉塞状態の判定は、以下のように行つ
た。 従来成形機において頻繁に閉塞を起す成分系(A)
は、これを静置しておくと非常に粘着性の強い沈
澱物が量多く生成し、成形機の閉塞と沈澱の多寡
とは密接な関係があることが判つた。従つて、成
形機の閉塞の判定に当つては、まず成分系(A)を
300ml採取し、それを500mlの広口瓶に入れ、90℃
の雰囲気下で2時間静置した後に、粘着性の沈澱
物を含む相の高さを測定、この高さの成分系(A)の
液面高さに対する百分率で表わし、その小さなも
のを良好とし、大きなものを不可とした。結果の
表示基準は、◎;最高(0%)、○;良(0を超
え5%以下)、△;可(5%を超え10%以下)、
×;不可(10%を超えるもの)をそれぞれ表わ
す。 実施例 1 下記の成分系(A)および成分系(B)を、それぞれ
2000c.c.のフラスコに調製した。 成分系(A) ε−カプロラクタム 1890g ブロモマグネシウムカプロラクタム 110g 成分系(B) ε−カプロラクタム 1110g 重合開始剤(A) 890g 成分系(B)に添加される重合開始剤(A)は、下記の
(但し、式中Zは分子量約6000のエチレンオキサ
イドとプロピレンオキサイドのブロツク共重合体
を表わす。)で示される化合物である。 成分系(A)は調製に際し、その液温はまず100℃
で1時間保持し、ついで90℃に降温してから成形
に用いた。 成分系(B)は90℃で調製し、その温度を保持して
成形に用いた。 まず、成分系(A)を充分攪拌した後、300mlを広
口ガラス瓶に採取し、90℃の恒温熱風炉中に静置
し、2時間後の沈澱状態を測定した。結果を第1
表に示す。 ついで、成分系(A)および成分系(B)各々100gを
ビーカーに取りプロペラタイプの攪拌機で混合
し、混合物を直ちに、電気ヒーターにより140℃
に温度制御された縦300mm、横200mm、深さ3mmの
キヤビテイーを有するシートモールドに注入し
て、4分間保持した。得られた成形品について機
械的物性を測定した。結果を第1表に示す。 実施例 2、3、4 実施例1に記載の例において、成分系(A)の調製
時に100℃の温度で1時間保持する代わりに、
夫々110℃(実施例2)、120℃(実施例3)、130
℃(実施例4)の温度で各1時間保持した他は、
同例におけると同様にして成分系(A)を調製して、
沈澱状態を測定した。更に同例におけると同様の
方法で成形品を得、得られた成形品について物性
を測定した。結果を第1表に示す。 比較例 1、2 実施例1に記載の例において、成分系(A)の調製
時に、100℃の温度で1時間保持した代わりに、
夫々90℃(比較例1)、140℃(比較例2)で1時
間保持した他は、同例におけると同様にして成分
系(A)を調製して、沈澱状態を測定した。更に同例
におけると同様の方法で成形品を得、得られた成
形品について物性を測定した。結果を第1表に示
す。 実施例 5、6、7 実施例3に記載の例において、成分系(A)の調製
時に、120℃の温度で1時間保持した代わりに、
夫々10分(実施例5)、2時間(実施例6)、3時
間(実施例7)保持した他は、同例におけると同
様にして成分系(A)を調製して、沈澱状態を測定し
た。更に同例におけると同様の方法で成形品を
得、得られた成形品について物性を測定した。結
果を第1表に示す。 比較例 3 実施例3に記載の例において、成分系(A)の調製
時に120℃の温度で1時間保持した代わりに、4
時間保持した他は、同例におけると同様にして成
分系(A)を調製して、沈澱状態を測定した。更に同
例におけると同様の方法で成形品を得、得られた
成形品について物性を測定した。結果を第1表に
示す。 実施例 8 実施例4に記載の例において、成分系(A)の調製
時に130℃の温度で1時間保持した代わりに、3
時間保持した他は、同例におけると同様にして、
成分系(A)を調製して沈澱状態を測定した。更に同
例におけると同様の方法で成形品を得、得られた
成形品について物性を測定した。結果を第1表に
示す。 比較例 4 実施例4に記載の例において、成分系(A)の調製
時に130℃で1時間保持した代わりに、4時間保
持した他は、同例におけると同様にして成分系(A)
を調製して沈澱状態を測定した。更に同例におけ
ると同様の方法で成形品を得、得られた成形品に
ついて物性を測定した。結果を第1表に示す。 実施例 9 実施例2に記載の例において、成分系(A)および
成分系(B)の組成を、 成分系(A) ε−カプロラクタム 1944g ソジウムカプロラクタム 56g 成分系(B) ε−カプロラクタム 1076g テレフタロイルビスカプロラクタム 154g ポリプロピレングリコール(MW=2000) 385g のように代えたほかは同例におけると同様にして
成分系(A)の沈澱状態を測定した。更に同例におけ
ると同様の方法で成形品を得、得られた成形品に
ついて物性を測定した。結果を第1表に示す。 比較例 5 実施例9に記載の例において、成分系(A)の調製
時に、110℃で1時間保持した代わりに、85℃で
1時間保持した他は、同例におけると同様にして
成分系(A)を調製して沈澱状態を測定した。更に同
例におけると同様の方法で成形品を得、得られた
成形品について物性を測定した。結果を第1表に
示す。
[Formula] (where Y is C 3 -C 11 alkylene), a is an integer of 1, 2 or 3, b is an integer of 2 or more, and R 1 is an alkyl group, an alkyl group, an alkyloxy group, an aryloxy group, a halogen group or an aralkyloxy group, and R 2 is 2 selected from a hydrocarbon group and a hydrocarbon having an ether bond.
Z is a group having a minimum molecular weight of about 2000, (2) a polyester segment containing a polyether segment having a minimum molecular weight of about 2000, or (3) a hydrocarbon having a minimum molecular weight of 1000. ] or lactam-functional materials selected from the group consisting of those having the following. The component system (B) can contain a crosslinking agent, a modifier (soft segment), etc. that enter the polymer chain when reacting with the component system (A) in the mold. These compounds include compounds having a polyvalent hydroxyl group, mercapto group, amino group or epoxy group. The component system (B) may further contain compounds that do not substantially inhibit the polymerization reaction, such as plasticizers, blowing agents, dyes and pigments, antioxidants, and internal mold release agents. In addition, if it is desired to impart rigidity, heat resistance, etc. to the final amide resin molded product, fillers can be used, such as calcium carbonate, mica, talc, glass fiber, glass Examples include flakes, potassium titanate, carbon fibers, Kevlar fibers, and acicular crystalline calcium metaphosphate. Next, a method for producing an amide resin molded article according to the present invention will be described. First, a polymerization catalyst is added to the omega-lactam melt,
Maintain the temperature within the temperature range of 100℃ to 130℃ for 3 hours or less, and then heat to 100℃ above the melting point of the ω-lactam.
A melt of component system (A) is prepared by lowering the temperature to below.
Similarly, component system (B) is prepared by adding a polymerization initiator, additives, etc. to an ω-lactam melt, heating it above the melting point of the ω-lactam, and maintaining the temperature at 140° C. or lower. Add filler as required to component type (A) or component type (B)
Either or both may be mixed. The following procedure is used to produce an amide resin molded article from the molding composition prepared as described above. That is, the molten slurries of component system (A) and component system (B) are rapidly mixed and injected or poured into a mold. The two components can be mixed, for example, by collision mixing in a device called a mixing head, or stirring and mixing by a static mixer or dynamic mixer. The mixing ratio of component system (A) and component system (B) depends on the use of the molded product to be manufactured,
It can be changed depending on the properties to be provided. The mold temperature during molding is preferably maintained in the range of 100 to 200°C, preferably 120 to 160°C. In the mold, a chemical reaction occurs between the component system (A) and the component system (B), and within a short time after injection into the mold, depending on the size of the molded product, it may take up to 4 minutes or even 2 minutes in some cases. It hardens or solidifies within minutes, completing the chemical reaction. After the chemical reaction is complete, what is removed from the mold is the desired amide resin molded product. "Effects of the Invention" The present invention has been described above, and has the following particularly remarkable effects, and its industrial utility value is extremely large. (1) When using the method of the present invention, the raw material composition used is preferably dissolved or dispersed, and the reduction in workability due to clogging of the molding machine is significantly improved. (2) The amide resin molded product obtained by the method of the present invention has excellent mechanical properties and less fluctuation in physical properties, and fully exhibits the properties of the ω-lactam polymer without impairing it. Become something. "Examples" Next, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. In the following examples, the mechanical properties were measured as follows. Measurement of tensile strength and elongation of molded product: - A dry test piece was cut out from a 3 mm thick flat plate molded product and measured in accordance with ASTM D-638.
One test piece was cut out from each of 10 molded products having the same formulation, giving a total of 10 test pieces. Measurement of impact resistance of molded product: - A dry test piece was cut out from a flat plate molded product with a thickness of 3 mm, and measured at -30°C using a DuPont impact tester. The diameter of the dart is 12.7 mm, and the diameter of the hole for receiving the specimen is 12.7 mm. The blockage state of the molding machine was determined as follows. Component system that frequently causes blockages in conventional molding machines (A)
It was found that if the molding machine was left to stand, a large amount of extremely sticky precipitate was formed, and that there was a close relationship between the clogging of the molding machine and the amount of precipitate. Therefore, when determining whether a molding machine is blocked, first consider the component system (A).
Collect 300ml, put it into a 500ml wide-mouthed bottle, and heat it at 90℃.
After standing for 2 hours in an atmosphere of , large items were not allowed. The display criteria for the results are: ◎: Best (0%), ○: Good (more than 0 and less than 5%), △: Fair (more than 5% and less than 10%),
×: Indicates not possible (more than 10%). Example 1 The following component system (A) and component system (B) were each
Prepared in a 2000 c.c. flask. Component system (A) ε-caprolactam 1890g Bromomagnesium caprolactam 110g Component system (B) ε-caprolactam 1110g Polymerization initiator (A) 890g The polymerization initiator (A) added to component system (B) has the following formula: (However, Z in the formula represents a block copolymer of ethylene oxide and propylene oxide having a molecular weight of about 6,000.) When preparing component system (A), the liquid temperature is first kept at 100℃.
The mixture was held for 1 hour and then cooled to 90°C before being used for molding. Component system (B) was prepared at 90°C and used for molding while maintaining that temperature. First, after sufficiently stirring the component system (A), 300 ml of the solution was taken into a wide-mouthed glass bottle, placed in a constant-temperature hot air oven at 90°C, and the state of precipitation was measured after 2 hours. Results first
Shown in the table. Next, 100g each of component system (A) and component system (B) were taken into a beaker, mixed with a propeller type stirrer, and the mixture was immediately heated to 140°C using an electric heater.
The mixture was poured into a temperature-controlled sheet mold having a cavity measuring 300 mm long, 200 mm wide, and 3 mm deep, and held for 4 minutes. The mechanical properties of the obtained molded article were measured. The results are shown in Table 1. Examples 2, 3, 4 In the example described in Example 1, instead of holding at a temperature of 100° C. for 1 hour during the preparation of component system (A),
110°C (Example 2), 120°C (Example 3), and 130°C, respectively.
℃ (Example 4) for 1 hour each.
Prepare the component system (A) as in the same example,
The precipitation state was measured. Furthermore, a molded article was obtained in the same manner as in the same example, and the physical properties of the obtained molded article were measured. The results are shown in Table 1. Comparative Examples 1 and 2 In the example described in Example 1, instead of holding the component system (A) at a temperature of 100°C for 1 hour,
Component system (A) was prepared in the same manner as in the same example, except that it was held at 90°C (Comparative Example 1) and 140°C (Comparative Example 2) for 1 hour, respectively, and the precipitation state was measured. Furthermore, a molded article was obtained in the same manner as in the same example, and the physical properties of the obtained molded article were measured. The results are shown in Table 1. Examples 5, 6, 7 In the example described in Example 3, instead of holding at a temperature of 120°C for 1 hour during the preparation of component system (A),
The component system (A) was prepared in the same manner as in the same example, except that it was held for 10 minutes (Example 5), 2 hours (Example 6), and 3 hours (Example 7), respectively, and the precipitation state was measured. did. Furthermore, a molded article was obtained in the same manner as in the same example, and the physical properties of the obtained molded article were measured. The results are shown in Table 1. Comparative Example 3 In the example described in Example 3, instead of holding the component system (A) at a temperature of 120°C for 1 hour,
Component system (A) was prepared in the same manner as in the same example except that the time was maintained, and the precipitation state was measured. Furthermore, a molded article was obtained in the same manner as in the same example, and the physical properties of the obtained molded article were measured. The results are shown in Table 1. Example 8 In the example described in Example 4, instead of holding at a temperature of 130° C. for 1 hour during the preparation of component system (A), 3
Same as in the same example except that the time was held,
Component system (A) was prepared and the precipitation state was measured. Furthermore, a molded article was obtained in the same manner as in the same example, and the physical properties of the obtained molded article were measured. The results are shown in Table 1. Comparative Example 4 In the example described in Example 4, component system (A) was prepared in the same manner as in the same example, except that instead of holding at 130°C for 1 hour during preparation of component system (A), it was held for 4 hours.
was prepared and the precipitation state was measured. Furthermore, a molded article was obtained in the same manner as in the same example, and the physical properties of the obtained molded article were measured. The results are shown in Table 1. Example 9 In the example described in Example 2, the compositions of component system (A) and component system (B) are as follows: component system (A) ε-caprolactam 1944 g sodium caprolactam 56 g component system (B) ε-caprolactam 1076 g The precipitation state of component system (A) was measured in the same manner as in the same example except that 154 g of phthaloyl biscaprolactam and 385 g of polypropylene glycol (MW=2000) were used. Furthermore, a molded article was obtained in the same manner as in the same example, and the physical properties of the obtained molded article were measured. The results are shown in Table 1. Comparative Example 5 In the example described in Example 9, the component system (A) was prepared in the same manner as in the same example, except that instead of holding it at 110 °C for 1 hour, it was held at 85 °C for 1 hour. (A) was prepared and the precipitation state was measured. Furthermore, a molded article was obtained in the same manner as in the same example, and the physical properties of the obtained molded article were measured. The results are shown in Table 1.

【表】 第1表から、次のことが明らかである。 (1) 本発明方法に準拠して調製された成分系(A)
は、比較例(本発明方法に準拠しない)で調製
された成分系(A)に較べて、粘着性のある沈澱物
が少ない。これは成形機での閉塞問題が起りに
くく、成形作業性が優れていることを示す。 (2) 本発明方法で得られるω−ラクタム成形品
は、比較例の方法で得られた成形品に較べ、引
張強度、伸びおよびデユポン衝撃値の振れが小
さく、品質が安定しているばかりでなく、優れ
た伸びおよびデユポン衝撃値を示す。
[Table] From Table 1, the following is clear. (1) Component system (A) prepared according to the method of the present invention
has less sticky precipitate than the component system (A) prepared in the comparative example (not according to the method of the invention). This shows that clogging problems in the molding machine are less likely to occur and molding workability is excellent. (2) The ω-lactam molded product obtained by the method of the present invention has smaller fluctuations in tensile strength, elongation, and Dupont impact value than the molded product obtained by the method of the comparative example, and has stable quality. with excellent elongation and DuPont impact values.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ金属またはアルカリ土類金属化合物
を重合触媒として用い陰イオン重合法によりω−
ラクタムを主原料とするアミド系樹脂成形品を製
造するにあたり、重合触媒をあらかじめω−ラク
タムに溶解する際、初期溶解温度を100℃ないし
130℃の温度範囲で、3時間以下の時間保持し、
ついで100℃未満に降温した原料組成物と、重合
開始剤およびその他の添加剤を含む原料組成物と
を混合して重合させ、成形することを特徴とする
アミド系樹脂成形品の製造方法。
1 ω- by anionic polymerization using an alkali metal or alkaline earth metal compound as a polymerization catalyst
When manufacturing amide resin molded products using lactam as the main raw material, when dissolving the polymerization catalyst in ω-lactam in advance, the initial dissolution temperature must be set at 100°C or higher.
Hold in a temperature range of 130℃ for a period of 3 hours or less,
A method for producing an amide resin molded article, which comprises: then mixing and polymerizing a raw material composition whose temperature has been lowered to less than 100°C with a raw material composition containing a polymerization initiator and other additives, and molding the mixture.
JP14656286A 1986-06-23 1986-06-23 Manufacture of amide based resin molded form Granted JPS633909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14656286A JPS633909A (en) 1986-06-23 1986-06-23 Manufacture of amide based resin molded form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14656286A JPS633909A (en) 1986-06-23 1986-06-23 Manufacture of amide based resin molded form

Publications (2)

Publication Number Publication Date
JPS633909A JPS633909A (en) 1988-01-08
JPH0562565B2 true JPH0562565B2 (en) 1993-09-08

Family

ID=15410482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14656286A Granted JPS633909A (en) 1986-06-23 1986-06-23 Manufacture of amide based resin molded form

Country Status (1)

Country Link
JP (1) JPS633909A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377935A (en) * 1986-09-22 1988-04-08 Toyota Motor Corp Production of polyamide reaction injection molding material

Also Published As

Publication number Publication date
JPS633909A (en) 1988-01-08

Similar Documents

Publication Publication Date Title
US6294618B1 (en) Low viscosity liquid crystalline polymer compositions
US3729527A (en) Thermoplastic polymer blends of polyamides and polyarylsulfones
JPH05310925A (en) Novel polyamide and objects obtained therefrom
CS208710B2 (en) Method of preparation of the block aliphatic linear copolyesteramides
JP2010196074A6 (en) Low viscosity liquid crystal polymer composition
US5444120A (en) Thermoplastically processable elastomeric block copolyetheresteretheramides and processes for the production and use thereof
CN113121817A (en) Polyamide copolymer 56TI with low water absorption rate, and preparation method and application thereof
US4749744A (en) Resin composition of saponified ethylenic copolymer
JPH0562565B2 (en)
US5369171A (en) In situ polymer alloys and microcompounds, process for their manufacture, and use thereof
JPS5853652B2 (en) Manufacturing method for polyamide that can be molded at lower temperatures
EP0258506A1 (en) Resin composition of saponified ethylenic copolymer
JP2534220B2 (en) Novel high melting point crystalline polyamide
JPH11226946A (en) Polyamide resin composition pellet for molding
JPS6213449A (en) Saponified ethylene copolymer resin composition
TWI795339B (en) Polyamide foam molded body and method for manufacturing the same
JP3106658B2 (en) Method for producing polyamide resin
JPH0473368B2 (en)
JPS59197428A (en) Production of modified polyamide
JPH0376340B2 (en)
JPH04202527A (en) Production of blow-molded article
JPS61258828A (en) Production of polyamide based polymer
JPH0680115B2 (en) Method for producing amide resin molded product
RU2110531C1 (en) Method for preparing impact-resistant block copolyetheramide
JPS6337124A (en) Molded amide based resin article