JPH0562546A - Manufacture of thick film of oxide type superconductor - Google Patents

Manufacture of thick film of oxide type superconductor

Info

Publication number
JPH0562546A
JPH0562546A JP3250199A JP25019991A JPH0562546A JP H0562546 A JPH0562546 A JP H0562546A JP 3250199 A JP3250199 A JP 3250199A JP 25019991 A JP25019991 A JP 25019991A JP H0562546 A JPH0562546 A JP H0562546A
Authority
JP
Japan
Prior art keywords
laser light
laser beam
oxide superconductor
slow cooling
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3250199A
Other languages
Japanese (ja)
Inventor
Eiji Yanagisawa
栄治 柳沢
Toshiya Matsubara
俊哉 松原
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3250199A priority Critical patent/JPH0562546A/en
Publication of JPH0562546A publication Critical patent/JPH0562546A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce solidification distortions, generate stable crystal growth, and orient the crystal growing direction unidirectionally by radiating an oxide superconductor after solidification with a laser beam for slow cooling different from one for forming a molten part. CONSTITUTION:A laser beam 1 as a light source is diverged by a laser beam adjusting machine 2 into a laser beam 3 for forming a molten part and a laser beam 4 for slow cooling, and upon adjustment of intensity distribution, an irradiation process takes place. Therein the laser beam itself is left unmoved while a flexible base board tape 6 on which an oxide superconductor thick film 5 is put, is moved, and melting and solidification are performed continuously. The region for slow cooling with a temp. 10-100 deg.C lower than the melting point of superconductor shall have a length of 0.1-5mm, and thereby the solid/liquid interface is held perpendicular to the beam advancing direction, and the crystal growing direction is aligned unidirectionally, and further a stable crystal growth is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体厚膜の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick oxide superconductor film.

【0002】[0002]

【従来の技術】従来、酸化物超電導体において磁場下に
おける臨界電流を向上させることを目的として、方向凝
固法を応用して、配向成長した超電導相(例えば:YBa2
Cu3Oy)のバルク体を製造する方法が知られている。こ
のとき、超電導相中に非超電導相(例えば:Y2BaCuO5
が分散した微細組織が得られるが、非超電導層はピン止
中心として機能するので、高い臨界電流密度が得られる
こと(特開平2−204322号公報)が報告されてれ
ている。
2. Description of the Related Art Conventionally, for the purpose of improving a critical current in an oxide superconductor under a magnetic field, a directionally solidified method is applied to form an orientationally grown superconducting phase (for example: YBa 2
A method for producing a bulk body of Cu 3 O y ) is known. At this time, a non-superconducting phase (for example: Y 2 BaCuO 5 ) in the superconducting phase
It is reported that a non-superconducting layer functions as a pinning center, so that a high critical current density can be obtained (JP-A-2-204322).

【0003】このような一方向凝固法を、可撓性金属基
板と複合化した酸化物超電導体の厚膜テープ線材試料を
作製するために適用すると、酸化物超電導体の溶融温度
が1000℃以上と高い上に、アルカリ土類金属元素等
の反応性の高い構成金属元素を有するため、殆ど全ての
金属及びセラミックス基板と反応して超電導特性を劣化
させる。また、通常の加熱方法では、熱伝導性の良好な
金属基板と複合した場合に、温度勾配を大きくすること
ができず、溶融凝固帯の長さが数mm以上に広がってし
まう。このため、融液量が多くなり液相が流失して組成
ずれを起こすという問題点もあった。
When this unidirectional solidification method is applied to prepare a thick film tape wire sample of an oxide superconductor composited with a flexible metal substrate, the melting temperature of the oxide superconductor is 1000 ° C. or more. In addition to being high, it has a highly reactive constituent metal element such as an alkaline earth metal element, so that it reacts with almost all metals and ceramics substrates to deteriorate the superconducting characteristics. In addition, in the usual heating method, the temperature gradient cannot be increased when it is combined with a metal substrate having good thermal conductivity, and the length of the melting and solidifying zone is expanded to several mm or more. For this reason, there is a problem that the amount of melt increases and the liquid phase is washed away to cause compositional deviation.

【0004】このようなけ問題点を避けるため、セルフ
フラックス法を応用し、金属基板と酸化物超電導体との
間に銅あるいは酸化銅の層を設けることにより、酸化物
超電導体の溶融凝固温度を低下させて、基板面に平行に
酸化物超電導体のc面が配向した凝固組織を形成する方
法(特開平3−62421号公報)が提案されている。
しかし、フラックスは融点を下げc面配向組織を容易に
形成させる一方、酸化物超電導体の結晶粒界に残存した
場合には弱結合を形成する要因となる。さらに、この場
合のc軸配向組織は、主に融液の表面張力に起因するも
のであるので、a,b軸の配向は不十分で臨界電流密度
は小さく、大電流を輸送する複合体を作製するには不十
分であった。
In order to avoid such a problem, the self-flux method is applied and a layer of copper or copper oxide is provided between the metal substrate and the oxide superconductor, so that the melting and solidifying temperature of the oxide superconductor can be increased. There has been proposed a method (Japanese Patent Application Laid-Open No. 3-62421) in which a solidified structure is formed in which the c-plane of an oxide superconductor is oriented parallel to the substrate surface.
However, while the flux lowers the melting point and easily forms the c-plane oriented structure, when it remains in the crystal grain boundaries of the oxide superconductor, it becomes a factor of forming a weak bond. Furthermore, the c-axis oriented structure in this case is mainly due to the surface tension of the melt, so the orientation of the a and b axes is insufficient, the critical current density is small, and a complex that transports a large current is formed. It was insufficient to make.

【0005】また、YAG、あるいはCO2 レーザ光を
用いて局所加熱を行い、非平衡状態の溶融凝固反応によ
り液相から直接超電導体結晶の連続した凝固組織を得よ
うとする試み(長屋,ISTECジャーナル,Vol.
4,No.2(1991)22)もある。しかし、単純
な点集光あるいは柱状集光レンズを用いているため、温
度分布が同心円状に広がり易く固液界面が曲線状とな
り、放射状に結晶成長し易い、さらには凝固の際の歪が
大きく連続した凝固組織が得られないという問題点があ
った。
An attempt to locally obtain a solidified structure of a superconductor crystal directly from a liquid phase by a melt-solidification reaction in a non-equilibrium state by locally heating using YAG or CO 2 laser light (Nagaya, ISTEC Journal, Vol.
4, No. 2 (1991) 22). However, since a simple point condensing or columnar condensing lens is used, the temperature distribution tends to spread concentrically, the solid-liquid interface has a curved shape, crystal growth tends to occur radially, and strain during solidification is large. There is a problem that a continuous solidified structure cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、基板上に作
成した厚膜状の酸化物超電導体について、レーザー光に
よる一方向性の溶融凝固を行うにあたり、より好適な温
度分布を達成することにより、酸化物超電導体の配向性
が高く、臨界電流密度等の物性の良好な超電導体を製造
する方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention aims to achieve a more suitable temperature distribution for unidirectional melting and solidification of a thick film oxide superconductor formed on a substrate by laser light. Accordingly, it is an object of the present invention to provide a method for producing a superconductor having a high orientation of the oxide superconductor and having good physical properties such as critical current density.

【0007】[0007]

【課題を解決するための手段】本発明は、基板上に積層
した酸化物超電導体組成の酸化物の厚膜を、レーザー光
により加熱して局所的に溶融しながらレーザー光の照射
部を厚膜に対して移動させることにより、連続的に溶融
凝固して酸化物超電導体厚膜を得る方法において、溶融
部分を形成するためのレーザー光とは別に徐冷のための
レーザー光を、凝固後の酸化物超電導体に照射すること
を特徴とする酸化物超電導体厚膜の製造方法を提供する
ものである。
According to the present invention, a thick film of an oxide having an oxide superconducting composition laminated on a substrate is heated by laser light to locally melt it, and a portion irradiated with laser light is thickened. In the method for obtaining a thick oxide superconductor film by continuously melting and solidifying by moving with respect to the film, laser light for slow cooling is separated from the laser light for forming the molten portion after solidification. The present invention provides a method for producing an oxide superconductor thick film, which comprises irradiating the oxide superconductor of 1.

【0008】本発明の加熱源であるレーザー光として
は、紫外光領域から赤外光領域までの波長のレーザーを
用いることができる。特に、酸化物超電導体層の表面近
傍の局所加熱を行って溶融体の長さを短くし、熱伝導特
性の良好な金属基板と複合化しても温度勾配を大きくと
るため、酸化物超電導体の吸収係数が大きい赤外領域の
YAGレーザーあるいはCO,CO2 レーザーを用いる
ことが望ましい。
As the laser light which is the heating source of the present invention, a laser having a wavelength from the ultraviolet light region to the infrared light region can be used. In particular, local heating near the surface of the oxide superconductor layer shortens the length of the melt, and even if it is combined with a metal substrate with good heat conduction characteristics, the temperature gradient becomes large, so It is desirable to use a YAG laser or CO, CO 2 laser in the infrared region having a large absorption coefficient.

【0009】本発明の製造方法を実施するための装置の
一例を図1に示す。図1の装置では、光源としてのレー
ザー光1を、レーザー光調整機2で溶融部分を形成する
ためのレーザー光3とに徐冷のためのレーザー光4とに
分岐し、さらに光の強度分布を調整して照射される。こ
の装置では、レーザー光自体は移動せず、例えば酸化物
超電導体厚膜5が積層された可撓性基板テープ6を移動
させて、連続的に溶融凝固を行う。
An example of an apparatus for carrying out the manufacturing method of the present invention is shown in FIG. In the apparatus shown in FIG. 1, a laser light 1 as a light source is split into a laser light 3 for forming a molten portion by a laser light adjusting device 2 and a laser light 4 for slow cooling, and further the intensity distribution of the light is distributed. Is adjusted and irradiated. In this apparatus, the laser light itself does not move, and for example, the flexible substrate tape 6 on which the oxide superconductor thick film 5 is laminated is moved to continuously melt and solidify.

【0010】溶融部分を形成するためのレーザー光は、
照射部分の移動方向の広がりが狭いほど、凝固時の温度
勾配が大きくなり、基材の温度を必要以上に上昇させな
いので好ましい。移動方向のレーザー光の強度分布が、
正規分布に近い場合、ピーク強度に対して50%以上の
強度を有する部分の幅が、0.5mm以下であることが
好ましい。テープの幅方向には、レーザー光の強度分布
がないことが好ましい。このため、テープの幅に対して
十分広い幅のレーザー光を照射するのが好ましい。
The laser light for forming the fused portion is
The narrower the spread of the irradiation portion in the moving direction is, the larger the temperature gradient at the time of solidification and the more preferable the temperature of the substrate is not increased. The intensity distribution of the laser light in the moving direction is
When the distribution is close to the normal distribution, the width of the portion having 50% or more of the peak intensity is preferably 0.5 mm or less. It is preferable that there is no laser light intensity distribution in the width direction of the tape. Therefore, it is preferable to irradiate a laser beam having a width sufficiently wider than the width of the tape.

【0011】徐冷のためのレーザー光の強度は、溶融部
分を形成するためのレーザー光の強度の20〜80%、
より好ましくは50〜80%であることが好ましい。徐
冷のためのレーザー光の照射位置と溶融部分を形成する
ためのレーザー光の照射位置との距離は、0.1〜5m
mが好ましい。特に、好ましい範囲は、0.3〜1.0
mmである。この場合も、テープ線材の幅方向には温度
勾配が生じないように、レーザー光は、幅方向に強度が
変化しないことが好ましい。
The intensity of the laser beam for slow cooling is 20 to 80% of the intensity of the laser beam for forming the molten portion,
It is more preferably 50 to 80%. The distance between the irradiation position of the laser light for slow cooling and the irradiation position of the laser light for forming the molten portion is 0.1 to 5 m.
m is preferred. Particularly, the preferable range is 0.3 to 1.0.
mm. Also in this case, it is preferable that the intensity of the laser light does not change in the width direction so that the temperature gradient does not occur in the width direction of the tape wire.

【0012】上記のようなレーザー光の強度分布は、適
正な温度分布を達成するために必要である。好ましい温
度分布の例を図2に示す。溶融部分近傍の温度分布は、
形成する酸化物超電導体の溶融温度以上で移動方向には
正規分布に近く、凝固点以上の部分の長さは、0.5m
m以内とすることが望ましい。これにより、酸化物超電
導体の凝固界面近傍での温度勾配を500℃/cm以上
とし、融液を表面張力と周囲の超電導体の空隙率から決
まる局所部分に保持し、液相が溶融凝固系内から流出し
て組成ずれを起こさぬようにすることができる。移動方
向に垂直な方向には、少なくともテープの幅にわたって
温度分布がないことが好ましい。
The intensity distribution of the laser light as described above is necessary to achieve an appropriate temperature distribution. An example of a preferable temperature distribution is shown in FIG. The temperature distribution near the melting part is
Above the melting temperature of the oxide superconductor to be formed, it is close to the normal distribution in the moving direction, and the length above the freezing point is 0.5 m.
It is desirable to be within m. As a result, the temperature gradient in the vicinity of the solidification interface of the oxide superconductor is set to 500 ° C./cm or more, the melt is held at the local portion determined by the surface tension and the porosity of the surrounding superconductor, and the liquid phase is melted and solidified. The composition can be prevented from flowing out from the inside and causing compositional deviation. It is preferable that there is no temperature distribution in at least the width of the tape in the direction perpendicular to the moving direction.

【0013】また、徐冷のための領域では、酸化物超電
導体の溶融温度から10〜100℃低い温度の領域が、
0.1〜5mmの長さで存在するのが好ましい。このよ
うな徐冷領域を設けることにより、固液界面をビ−ムの
進行方向に対して垂直に保ち、結晶の成長方向を一方向
に揃え、かつ、凝固歪を低減して安定な結晶成長を起こ
させることができる。溶融部分と同様に、移動方向に垂
直な方向には、少なくともテープの幅にわたって温度分
布がないことが好ましい。
In the region for slow cooling, a region of a temperature 10 to 100 ° C. lower than the melting temperature of the oxide superconductor,
It is preferably present in a length of 0.1 to 5 mm. By providing such a slow cooling region, the solid-liquid interface is kept perpendicular to the beam traveling direction, the crystal growth direction is aligned in one direction, and solidification strain is reduced to achieve stable crystal growth. Can be caused. Like the melted portion, there is preferably no temperature distribution at least across the width of the tape in the direction perpendicular to the direction of travel.

【0014】レーザー光の照射部分の移動速度は、レー
ザー光の強度および酸化物超電導体組成厚膜の熱伝導度
等により厳密には決定されるが、0.01〜10m/s
ec程度の速度が好ましく採用される。
The moving speed of the portion irradiated with the laser light is strictly determined by the intensity of the laser light, the thermal conductivity of the oxide superconductor composition thick film, etc., but is 0.01 to 10 m / s.
A speed of about ec is preferably adopted.

【0015】これまでの説明では、溶融部分の固液界面
が移動方向に対して垂直である場合の説明を行ってきた
が、本発明においては、固液界面を溶融部分の移動方向
に対し、斜めにすることもできる。例えば、図1の装置
において、テープの位置をそのままにして、レーザー光
の照射装置を垂直軸を中心にして所定の角度だけ回転さ
せることもできる。連続的に処理するためには、溶融体
を線材の長手方向に移動させる必要があるが、これによ
り、配向の異なる酸化物超電導体厚膜を成長させること
ができる。
In the above description, the case where the solid-liquid interface of the melted portion is perpendicular to the moving direction has been described, but in the present invention, the solid-liquid interface is set to the moving direction of the molten portion. It can also be slanted. For example, in the apparatus shown in FIG. 1, the laser beam irradiation apparatus can be rotated by a predetermined angle about the vertical axis with the tape position kept unchanged. For continuous treatment, it is necessary to move the melt in the longitudinal direction of the wire, which allows growth of oxide superconductor thick films having different orientations.

【0016】本発明の場合には、溶融部分を含む領域を
あらかじめ補助的に抵抗加熱、赤外線集光加熱等の方法
で加熱を施しておいても良い。
In the case of the present invention, the region including the melted portion may be preliminarily supplementarily heated by a method such as resistance heating or infrared focusing heating.

【0017】本発明の製造方法は、酸化物超電導体の組
成には特に限定されず、希土類系、ビスマス系、タリウ
ム系など種々の酸化物超電導体の製造に使用できる。特
に希土類系REBa2Cu3Oyの製造の場合には、配向性が良好
で特性の良い超電導体が得られるので好ましい。このと
き、超電導を示す層だけでなく、REBa2Cu3Oyの場合には
RE2BaCuO5 や、これらと反応しないBaSnO3の微粒子を含
む場合には、ピン止め中心として作用し、臨界電流密度
の向上に寄与するので好ましい。
The manufacturing method of the present invention is not particularly limited to the composition of the oxide superconductor, and can be used for manufacturing various oxide superconductors such as rare earth type, bismuth type and thallium type. In particular, the production of rare earth REBa 2 Cu 3 O y is preferable because a superconductor having good orientation and good characteristics can be obtained. At this time, not only the layer showing superconductivity but also REBa 2 Cu 3 O y
RE 2 BaCuO 5 and BaSnO 3 fine particles that do not react with these are preferable because they act as pinning centers and contribute to the improvement of the critical current density.

【0018】実際、本発明において酸化物超電導体を製
造する際には、まず、基板上に酸化物超電導体組成の酸
化物の厚膜を形成する。レーザーを照射して、溶融する
わけであるから、この段階で酸化物超電導体結晶になっ
ている必要はなく、溶融して凝固したときに酸化物超電
導体結晶が析出するものであればよい。また、溶融部分
は完全な液相である必要はなく、分解溶融の結果できる
固相を含む部分溶融状態であっても構わない。
In fact, when manufacturing an oxide superconductor in the present invention, first, a thick film of an oxide having an oxide superconductor composition is formed on a substrate. Since it is melted by irradiating with a laser, it does not need to be an oxide superconductor crystal at this stage, and any oxide superconductor crystal may be deposited when melted and solidified. Further, the melted portion does not have to be a complete liquid phase, and may be in a partially melted state including a solid phase resulting from decomposition and melting.

【0019】厚膜の形成には、ドクターブレード法、デ
ィップコート法などが利用できる。レーザーで処理する
際には、これらの厚膜を熱処理して、成形時に用いたバ
インダー等を取り除いておくことが好ましい。また、こ
の厚膜には、上記のごとく酸化物超電導体以外の成分を
配合することもできる。
A doctor blade method, a dip coating method or the like can be used for forming the thick film. When processing with a laser, it is preferable to heat-treat these thick films to remove the binder and the like used during molding. Further, components other than the oxide superconductor can be blended in the thick film as described above.

【0020】基板の材質としては、酸化物超電導体の融
液と反応せず、処理温度で耐熱性があるものであれば特
に限定されないが、銀、金等の金属が好ましく、この場
合、可撓性のある超電導線材を得ることができる。ま
た、金属上に酸化ジルコニウム等のバッファー層を設け
ることもできる。
The material of the substrate is not particularly limited as long as it does not react with the melt of the oxide superconductor and has heat resistance at the processing temperature, but metals such as silver and gold are preferable, and in this case, it is possible. A flexible superconducting wire can be obtained. Also, a buffer layer of zirconium oxide or the like can be provided on the metal.

【0021】また、本発明の場合には基板あるいはバッ
ファー層を施した基板が加熱により溶融することを防ぐ
ため、または加熱により酸化物超電導体とバッファー層
あるいは基板が化学的に反応することを防ぐため基板と
接触しレーザビーム光の照射されない側から強制冷却を
施しても良い。そのままあるいは強制冷却機構を基板側
に付帯させることにより酸化物超電導体より融点の低い
材料も基板として用いることができる。
In the case of the present invention, in order to prevent the substrate or the substrate provided with the buffer layer from being melted by heating, or to prevent the oxide superconductor from chemically reacting with the buffer layer or the substrate by heating. Therefore, forced cooling may be performed from the side that is in contact with the substrate and is not irradiated with the laser beam light. As it is or by attaching a forced cooling mechanism to the substrate side, a material having a lower melting point than the oxide superconductor can be used as the substrate.

【0022】[0022]

【実施例】【Example】

実施例1 厚さ50μm、幅4mmの銀テープからなる基板上に、
YBa2Cu3Oy が80重量%およびBaSnO3が20重量%の混
合物をドクターブレード法で厚さ40μmの厚膜を形成
した後、焼成してバインダーを除去した。このテープに
ついて、図1に示す装置を用いて一方向に溶融凝固し
た。
Example 1 On a substrate made of silver tape having a thickness of 50 μm and a width of 4 mm,
A mixture of 80% by weight of YBa 2 Cu 3 O y and 20% by weight of BaSnO 3 was formed into a thick film having a thickness of 40 μm by the doctor blade method and then baked to remove the binder. This tape was melted and solidified in one direction using the apparatus shown in FIG.

【0023】レーザー光源としては、最大出力150W
のYAGレーザーを用いた。溶融部を形成するためのレ
ーザー光の強度分布は、テープの幅方向には、5mmの
幅にわたって一定の強度を示し、テープの長手方向には
正規分布に近い強度分布を有した。この結果、溶融部分
の固液界面がテープの長手方向に垂直で、溶融部分のテ
ープ長手方向の長さは0.2mmになった。徐冷のため
のレーザー光は、溶融部分を形成するためのレーザー光
とピ−ク位置で0.5mm離した場所に、強度分布が相
似形でピーク強度が60%で照射した。テープの移動速
度は、長手方向に20cm/secであった。
As a laser light source, the maximum output is 150 W
YAG laser of. The intensity distribution of the laser beam for forming the fused portion showed a constant intensity over the width of 5 mm in the width direction of the tape, and the intensity distribution was close to the normal distribution in the longitudinal direction of the tape. As a result, the solid-liquid interface of the melted portion was perpendicular to the longitudinal direction of the tape, and the length of the melted portion in the tape longitudinal direction was 0.2 mm. The laser light for gradual cooling was irradiated at a position 0.5 mm away from the laser light for forming the melted portion at the peak position with a similar intensity distribution and a peak intensity of 60%. The moving speed of the tape was 20 cm / sec in the longitudinal direction.

【0024】得られた線材は、c軸が基材表面に対して
垂直に配向したYBa2Cu3Oy 結晶中にBaSnO3の微細な結晶
粒子が分散した組織をしていた。この線材の、液体窒素
温度における臨界電流密度は、0テスラで12万A/c
2 ,1テスラで3万A/cm2 であった。
The obtained wire had a structure in which fine crystal grains of BaSnO 3 were dispersed in YBa 2 Cu 3 O y crystals in which the c-axis was oriented perpendicular to the substrate surface. The critical current density of this wire at liquid nitrogen temperature is 120,000 A / c at 0 Tesla.
It was 30,000 A / cm 2 at m 2 and 1 Tesla.

【0025】実施例2 厚さ50μm、幅4mmのテープ状耐熱合金に、c軸配
向した単結晶状YSZバッファー層0.2μmを付与し
た基板上に、HoBa2Cu3Oy、Y2BaCuO5、BaSnO3がモル比で
6:4:2含まれる厚さ30μmの酸化物厚膜をディッ
プコート法により積層した。
Example 2 HoBa 2 Cu 3 O y , Y 2 BaCuO 5 was formed on a substrate in which a c-axis oriented single crystal YSZ buffer layer 0.2 μm was applied to a tape-shaped heat-resistant alloy having a thickness of 50 μm and a width of 4 mm. , BaSnO 3 was included in a molar ratio of 6: 4: 2 to form a thick oxide film having a thickness of 30 μm by a dip coating method.

【0026】これを実施例1と同様にして連続的に溶融
凝固した。徐冷のためのにレーザー光が、溶融部分を形
成するためのレーザー光がピ−ク位置で0.4mm離
れ、ピーク強度が50%であることを除けば、条件は実
施例1と同じであった。
This was continuously melt-solidified in the same manner as in Example 1. The conditions were the same as in Example 1 except that the laser light for slow cooling was 0.4 mm apart at the peak position for the laser light for forming the melted portion, and the peak intensity was 50%. there were.

【0027】得られた線材は、c軸が基材表面に対して
垂直に配向したYBa2Cu3Oy 結晶中にY2BaCuO5およびBaSn
O3の微細な結晶粒子が分散した組織をしていた。この線
材の、液体窒素温度における臨界電流密度は、0テスラ
で30万A/cm2 ,1テスラで10万A/cm2 であ
った。
The wire thus obtained has Y 2 BaCuO 5 and BaSn in YBa 2 Cu 3 O y crystals in which the c-axis is oriented perpendicular to the substrate surface.
It had a structure in which fine crystal grains of O 3 were dispersed. Of this wire, the critical current density at liquid nitrogen temperature was at 300,000 A / cm 2, 1 tesla at 0 Tesla 100,000 A / cm 2.

【0028】[0028]

【発明の効果】本発明の製造方法は、レーザ光を所定の
強度分布にして用いることにより、凝固歪を低減して安
定な結晶成長を起こさせることができ、かつ、固液界面
をビ−ムの進行方向に対して垂直に保ち、結晶の成長方
向を一方向に揃えることができる。
According to the manufacturing method of the present invention, by using a laser beam with a predetermined intensity distribution, solidification strain can be reduced and stable crystal growth can be caused, and a solid-liquid interface can be exposed. It is possible to keep the crystal growth direction in one direction by keeping the crystal growth direction perpendicular to the moving direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を実施するため装置の1例を
示す模式図
FIG. 1 is a schematic view showing an example of an apparatus for carrying out the manufacturing method of the present invention.

【図2】超電導体の温度の分布図[Fig.2] Temperature distribution of superconductor

【符号の説明】[Explanation of symbols]

1 光源用レーザー光 2 レーザー光調整機 3 溶融部分を形成するためのレーザー光 4 徐冷のためのレーザー光 5 酸化物超電導体厚膜テープ 6 可撓性基板テープ 1 Laser Light for Light Source 2 Laser Light Adjusting Machine 3 Laser Light for Forming Melt Part 4 Laser Light for Gradual Cooling 5 Oxide Superconductor Thick Film Tape 6 Flexible Substrate Tape

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に積層した酸化物超電導体組成の酸
化物の厚膜を、レーザー光により加熱して局所的に溶融
しながらレーザー光の照射部を厚膜に対して移動させる
ことにより、連続的に溶融凝固して酸化物超電導体厚膜
を得る方法において、溶融部分を形成するためのレーザ
ー光とは別に徐冷のためのレーザー光を、凝固後の酸化
物超電導体に照射することを特徴とする酸化物超電導体
厚膜の製造方法。
1. A thick film of an oxide having an oxide superconducting composition laminated on a substrate is heated by laser light and locally melted to move an irradiated portion of the laser light with respect to the thick film. In the method of continuously melting and solidifying to obtain a thick oxide superconductor film, laser light for slow cooling is irradiated to the solidified oxide superconductor separately from the laser light for forming the molten portion. A method for producing a thick oxide superconductor film, comprising:
【請求項2】溶融部分の固液界面がレーザー光の照射部
の移動方向に対して垂直な直線状であり、溶融部分の移
動方向の長さが0.5mm以下であって、かつ、徐冷の
ためのレーザー光の照射位置と溶融部分を形成するため
のレーザー光の照射位置とが、0.3〜5mm離れてい
る請求項1の酸化物超電導体厚膜の製造方法。
2. The solid-liquid interface of the molten portion is a straight line perpendicular to the moving direction of the laser light irradiation portion, the length of the molten portion in the moving direction is 0.5 mm or less, and The method for producing a thick oxide superconductor film according to claim 1, wherein the irradiation position of the laser light for cooling and the irradiation position of the laser light for forming the molten portion are separated by 0.3 to 5 mm.
【請求項3】徐冷のためのレーザー光の強度が、溶融部
分を形成するためのレーザー光の強度の20〜80%で
ある請求項1または請求項2の酸化物超電導体厚膜の製
造方法。
3. The method for producing a thick oxide superconductor film according to claim 1, wherein the intensity of the laser beam for slow cooling is 20 to 80% of the intensity of the laser beam for forming the molten portion. Method.
JP3250199A 1991-09-04 1991-09-04 Manufacture of thick film of oxide type superconductor Withdrawn JPH0562546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3250199A JPH0562546A (en) 1991-09-04 1991-09-04 Manufacture of thick film of oxide type superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3250199A JPH0562546A (en) 1991-09-04 1991-09-04 Manufacture of thick film of oxide type superconductor

Publications (1)

Publication Number Publication Date
JPH0562546A true JPH0562546A (en) 1993-03-12

Family

ID=17204300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3250199A Withdrawn JPH0562546A (en) 1991-09-04 1991-09-04 Manufacture of thick film of oxide type superconductor

Country Status (1)

Country Link
JP (1) JPH0562546A (en)

Similar Documents

Publication Publication Date Title
US5015618A (en) Laser zone melted Bi--Sr--Ca--Cu--O thick films
US5149681A (en) Melt texturing of long superconductor fibers
JP2672334B2 (en) Superconductor manufacturing method
Emmen et al. Crystal growth and annealing experiments of the high Tc superconductor Bi2Sr2CaCu2O8+ δ
JP2866265B2 (en) Method for producing high critical temperature superconducting flexible conductor
EP0498306B1 (en) Method of preparing oxide superconducting material
US5187149A (en) Method of making a ribbon-like or sheet-like superconducting oxide composite body
EP1107324A2 (en) Method of joining oxide superconductors and superconductor members produced by same
JPH0562546A (en) Manufacture of thick film of oxide type superconductor
Levinson et al. Laser zone‐melted Bi‐Sr‐Ca‐Cu‐O thick films
Nagaya et al. Rapid solidification of high-T/sub c/oxide superconductors by a laser zone melting method
Ozkan et al. Infrared zone melting process for YBa2Cu3O7− δ wires
JPH02258698A (en) Production of oxide superconductor
JPH02239102A (en) Production of oxide superconductor
JP2501281B2 (en) Method for producing superconductor with high critical current density
JP4593300B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
JP3121864B2 (en) Method for producing Bi-based oxide superconducting conductor by melting method
JP2637080B2 (en) Method for manufacturing compound superconductor
JPH02258694A (en) Production of oxide superconductor
RU2105390C1 (en) Method for manufacturing of high-temperature superconducting josephson junction
JPH02279507A (en) Production of oxide superconductor
Ma et al. Biaxially aligned template films fabricated by inclined-substrate deposition for YBCO-coated conductor applications
JPH02258693A (en) Production of oxide superconductor
JPH02258669A (en) Production of oxide superconductor
JP3000137B2 (en) Method for producing superconductor PrBa2Cu3Oy single crystal

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203