JPH0562523A - Thin photo-organic film element - Google Patents

Thin photo-organic film element

Info

Publication number
JPH0562523A
JPH0562523A JP22144491A JP22144491A JPH0562523A JP H0562523 A JPH0562523 A JP H0562523A JP 22144491 A JP22144491 A JP 22144491A JP 22144491 A JP22144491 A JP 22144491A JP H0562523 A JPH0562523 A JP H0562523A
Authority
JP
Japan
Prior art keywords
organic
thin film
film
transparent electrode
brightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22144491A
Other languages
Japanese (ja)
Other versions
JP3115040B2 (en
Inventor
Katsuyuki Naito
勝之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22144491A priority Critical patent/JP3115040B2/en
Publication of JPH0562523A publication Critical patent/JPH0562523A/en
Application granted granted Critical
Publication of JP3115040B2 publication Critical patent/JP3115040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To provide a stable photo-organic element of thin film type, with which the thin organic substance film formed over a clear electrode is free of exfoliation and/or structural change. CONSTITUTION:A thin organic substance film having functional property is formed over a clear electrode made of ITO or SnO2, and thereby a photo- organic element of thin film type is constructed. Therein an organic substance film consisting of Cr complex of carboxylic acid, organic phosphoric acid compound, organic phosphorous acid compound, or organic hypophosphorous acid compound is chemically bonded to the surface of the clear electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電圧や電流で駆動する光
有機薄膜素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photo-organic thin film element driven by voltage or current.

【0002】[0002]

【従来の技術】近年、有機薄膜を用いた各種電子デバイ
スの研究が盛んに行われている。そのなかでも、光が関
与する素子は実用上特に重要である。例えば、液晶表示
素子、有機感光体薄膜を用いた電子写真、有機光電池、
光化学ホールバーニング(PHB)記録素子、積層型有
機エレクトロルミネッセンス(EL)素子(例えば、特
開昭57−51781号、特開昭59−194393
号、特開昭63−295695号)、ラングミュア・ブ
ロジェット(LB)膜を用いた各種光機能素子(例え
ば、特開昭62−74688号、特開昭62−2215
93号)などがある。これらの素子のうち電圧や電流で
駆動するものは、電子写真を除いて、透明電極が必要で
ある。透明電極としては種々のものが知られているが、
光の透過性、導電率、作製の簡便さ、安定性などの観点
から、ITO薄膜電極またはSnO2 薄膜電極を用いる
場合が最も多い。
2. Description of the Related Art In recent years, various electronic devices using organic thin films have been actively researched. Among them, the element in which light is involved is particularly important for practical use. For example, liquid crystal display elements, electrophotography using organic photoconductor thin film, organic photovoltaic cells,
Photochemical hole burning (PHB) recording element, laminated organic electroluminescence (EL) element (for example, JP-A-57-51781 and JP-A-59-194393).
No. 63-295695), various optical functional elements using a Langmuir-Blodgett (LB) film (for example, JP-A-62-74688, JP-A-62-2215).
No. 93) and so on. Among these elements, those driven by voltage or current require a transparent electrode except for electrophotography. Various types of transparent electrodes are known,
The ITO thin film electrode or the SnO 2 thin film electrode is most often used from the viewpoints of light transmittance, conductivity, ease of production, stability, and the like.

【0003】ところで、素子を作製する際に、ITO電
極やSnO2 電極は酸またはアルカリ洗浄、溶剤洗浄、
プラズマ洗浄などにより表面クリーニングされた後、使
用される。これらの処理がなされたITO電極やSnO
2電極の表面には水酸基が形成され、表面は親水性にな
る。
By the way, when manufacturing an element, the ITO electrode and the SnO 2 electrode are washed with an acid or an alkali, washed with a solvent,
It is used after the surface is cleaned by plasma cleaning or the like. ITO electrodes and SnO that have been subjected to these treatments
2 Hydroxyl groups are formed on the surface of the electrode and the surface becomes hydrophilic.

【0004】液晶表示素子のように透明電極表面にさら
に親水性のSiO2やポリイミドなどを被覆する場合に
は特に問題はない。しかし、積層有機EL素子のように
親水性の透明電極上に疎水性の機能性有機分子から構成
される膜を直接成膜する場合には、両者の界面で膜の剥
離が生じたり、当初アモルファスで均一な膜であっても
時間の経過とともに結晶化が起こり不均一になる場合が
ある。また、このような現象は水分の存在により加速さ
れるため、湿気のある通常の空気雰囲気中では素子が安
定に動作しなくなる場合が多い。
There is no particular problem when the surface of the transparent electrode is further coated with hydrophilic SiO 2 or polyimide as in a liquid crystal display device. However, when a film composed of hydrophobic functional organic molecules is directly formed on a hydrophilic transparent electrode as in a laminated organic EL element, the film may peel off at the interface between the two and may be initially amorphous. However, even with a uniform film, crystallization may occur over time and the film may become non-uniform. Further, since such a phenomenon is accelerated by the presence of moisture, the element often does not operate stably in a normal humid air atmosphere.

【0005】これを防止するためには、透明電極の表面
を疎水性の単分子膜で被覆することが好ましい。しか
し、よく行われるLB法による被覆は操作が煩雑である
うえ、LB単分子膜は透明電極表面に吸着しているだけ
であり機械的・熱的耐性に欠けるという欠点がある。一
方、化学結合性の表面処理剤として最もよく知られてい
るシランカップリング剤は、ガラス、Si基板、紙など
の表面の水酸基とは容易に化学反応して結合を生成する
ため極めて機械的・熱的耐性に優れた単分子被覆膜を得
ることができる。しかし、透明電極表面の水酸基はシラ
ンカップリング剤と反応しないため、シランカップリン
グ剤を透明電極の表面処理剤として用いることはできな
い。
In order to prevent this, it is preferable to coat the surface of the transparent electrode with a hydrophobic monomolecular film. However, the coating by the LB method, which is often performed, has a drawback that the operation is complicated and the LB monomolecular film is only adsorbed on the surface of the transparent electrode and lacks mechanical and thermal resistance. On the other hand, the silane coupling agent, which is the most well-known chemical-bonding surface treatment agent, is extremely mechanically reactive because it easily chemically reacts with hydroxyl groups on the surface of glass, Si substrate, paper, etc. A monomolecular coating film having excellent thermal resistance can be obtained. However, since the hydroxyl groups on the transparent electrode surface do not react with the silane coupling agent, the silane coupling agent cannot be used as a surface treatment agent for the transparent electrode.

【0006】以上の場合とは逆に、透明電極上に非常に
親水性の高い有機薄膜が形成される素子では、透明電極
の表面の親水性をSiO2 やポリイミドよりもさらに高
めることが好ましい場合もある。この場合にも、従来は
透明電極の表面処理剤として適当なものは知られていな
かった。
Contrary to the above case, in an element in which a highly hydrophilic organic thin film is formed on a transparent electrode, it is preferable to further increase the hydrophilicity of the surface of the transparent electrode as compared with SiO 2 or polyimide. There is also. Also in this case, conventionally, no suitable one has been known as a surface treatment agent for transparent electrodes.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上述
したような問題を解決して、透明電極上に形成される有
機薄膜に剥離や構造変化が生じることがなく、安定性の
よい光有機薄膜素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an organic thin film formed on a transparent electrode with good stability without peeling or structural change. It is to provide an organic thin film element.

【0008】[0008]

【課題を解決するための手段と作用】本発明の光有機薄
膜素子は、無機酸化物からなる透明電極と、前記透明電
極上に形成された有機薄膜とを具備した光有機薄膜素子
において、前記透明電極の表面に、カルボン酸のクロム
錯体または有機リン酸化合物、有機亜リン酸化合物もし
くは有機次亜リン酸化合物からなる有機膜を化学的に結
合させたことを特徴とするものである。本発明におい
て、無機酸化物からなる透明電極としてはITO電極や
SnO2電極などが挙げられる。
A photo-organic thin film element of the present invention is a photo-organic thin film element comprising a transparent electrode made of an inorganic oxide and an organic thin film formed on the transparent electrode, wherein It is characterized in that a chromium complex of carboxylic acid or an organic film made of an organic phosphoric acid compound, an organic phosphorous acid compound or an organic hypophosphorous acid compound is chemically bonded to the surface of the transparent electrode. In the present invention, examples of the transparent electrode made of an inorganic oxide include an ITO electrode and a SnO 2 electrode.

【0009】本発明において、透明電極の表面に形成さ
れる有機膜は、下記一般式(I)で表されるカルボン酸
のクロム錯体または下記一般式(II−1)〜(II−4)
で表される有機リン酸化合物、有機亜リン酸化合物もし
くは有機次亜リン酸化合物の単分子から構成される。よ
り具体的には、上記カルボン酸のクロム錯体または有機
リン酸化合物、有機亜リン酸化合物もしくは有機次亜リ
ン酸化合物を修飾分子として透明電極表面の水酸基と化
学的に反応させることにより、前記有機膜が形成され
る。
In the present invention, the organic film formed on the surface of the transparent electrode is a chromium complex of a carboxylic acid represented by the following general formula (I) or the following general formulas (II-1) to (II-4).
It is composed of a single molecule of an organic phosphoric acid compound, an organic phosphorous acid compound, or an organic hypophosphite compound represented by More specifically, by chemically reacting the chromium complex of the carboxylic acid or the organic phosphoric acid compound, the organic phosphorous acid compound or the organic hypophosphite compound with the hydroxyl group on the transparent electrode surface as a modifying molecule, the organic compound A film is formed.

【0010】[0010]

【化1】 [Chemical 1]

【0011】[0011]

【化2】 [Chemical 2]

【0012】これらの修飾分子には、透明電極表面に存
在する水酸基と化学結合する官能部位と、表面の性質を
例えば疎水性にする修飾部位とを有する。修飾分子の修
飾部位としては、種々の構造が考えられる。表面を疎水
化するためには、修飾部位としては長鎖アルキル基、ス
テロイド基などが有効である。修飾部位にドナー性また
はアクセプタ性の色素骨格を導入すれば、その上部に形
成される有機薄膜中の別の有機色素分子との電子的な相
互作用が期待できるだけでなく、透明電極表面に形成さ
れた有機膜自体が光電的機能を果たすことが期待でき
る。修飾部位の酸化還元電位を適当に設定すれば、その
上部に形成される有機薄膜への電荷の注入などを制御す
ることも可能である。修飾部位にアルコール性水酸基、
アミノ基、カルボキシル基などを導入すれば、表面を親
水性にすることができ、しかも通常のシランカップリン
グ剤などとの反応によりさらに表面を修飾する有機膜を
形成できる。このように透明電極表面に化学的に結合し
た有機膜を有機積層膜とすることもできる。これらの修
飾分子からなる有機膜の厚さは、透明電極が電極として
機能するように、5nm以下が好ましく、2nm以下が
より好ましい。
These modifying molecules have a functional site that chemically bonds with a hydroxyl group present on the transparent electrode surface, and a modifying site that makes the surface property hydrophobic, for example. Various structures can be considered as the modification site of the modification molecule. In order to make the surface hydrophobic, a long-chain alkyl group, a steroid group, etc. are effective as the modification site. If a donor or acceptor dye skeleton is introduced at the modification site, not only electronic interaction with another organic dye molecule in the organic thin film formed on top of it can be expected, but also it is formed on the transparent electrode surface. It can be expected that the organic film itself fulfills the photoelectric function. By appropriately setting the redox potential of the modification site, it is possible to control the injection of charges into the organic thin film formed on the modification site. Alcoholic hydroxyl group at the modification site,
By introducing an amino group, a carboxyl group or the like, the surface can be made hydrophilic, and an organic film which further modifies the surface can be formed by a reaction with an ordinary silane coupling agent or the like. The organic film chemically bonded to the surface of the transparent electrode in this way can also be used as an organic laminated film. The thickness of the organic film made of these modifying molecules is preferably 5 nm or less, more preferably 2 nm or less so that the transparent electrode functions as an electrode.

【0013】本発明において、透明電極上に修飾分子か
らなる有機膜を形成するには以下のような方法が用いら
れる。基板上に形成されたITO電極またはSnO2
極を洗浄して乾燥した後、前記修飾分子を0.001〜
1wt%程度の濃度で含む有機溶媒溶液中に室温下で1
時間〜1日程度放置し、その後基板を取り出し、有機溶
媒、水などの溶媒で洗浄後、大気中において約80〜1
20℃の温度で30分〜1時間程度加熱する。次に、有
機溶媒、水など種々の溶媒でよく洗浄して乾燥する。溶
媒の種類、濃度、溶液中での放置時間、加熱温度、加熱
時間などの最適条件は、修飾分子の種類によって変化す
るので、それぞれの分子に応じて適宜設定する。
In the present invention, the following method is used to form an organic film composed of a modifying molecule on the transparent electrode. After cleaning and drying the ITO electrode or the SnO 2 electrode formed on the substrate, 0.001 to 0.001 of the modifying molecule is added.
1 at room temperature in an organic solvent solution containing 1 wt%
After leaving for about 1 day to about 1 day, the substrate is taken out, washed with a solvent such as an organic solvent or water, and then about 80 to 1 in the atmosphere.
Heat at a temperature of 20 ° C. for about 30 minutes to 1 hour. Next, it is thoroughly washed with various solvents such as an organic solvent and water and dried. Optimum conditions such as the type of solvent, concentration, leaving time in a solution, heating temperature, and heating time vary depending on the type of modifying molecule, and are thus set appropriately for each molecule.

【0014】なお、修飾分子が気化しやすい場合には、
気相で反応させる方法を用いてもよい。この場合、加熱
処理だけですみ溶媒洗浄などが必要なくなるので、操作
が簡単になる。ただし、このような分子は限られる。ま
た、修飾分子が水面上で単分子膜を形成するような分子
であれば、LB法により透明電極上に修飾分子の単分子
膜を累積した後、加熱処理して化学結合を生成させる方
法を用いてもよい。ただし、このような分子も限られる
うえ、操作がかなり煩雑になる。
When the modifying molecule is easily vaporized,
You may use the method of making it react in a gas phase. In this case, only the heat treatment is needed, and the solvent washing is not necessary, so the operation becomes simple. However, such molecules are limited. If the modifying molecule is a molecule that forms a monomolecular film on the water surface, a method of accumulating the monomolecular film of the modifying molecule on the transparent electrode by the LB method and then performing heat treatment to generate a chemical bond is described. You may use. However, such molecules are also limited and the operation is considerably complicated.

【0015】修飾分子からなる有機膜が透明電極表面に
化学結合しているかどうかは、透明電極を修飾分子によ
り処理した直後と、この透明電極を修飾分子およびその
反応生成物が溶解する溶媒を用いてよく洗浄した後と
で、透明電極表面と水との接触角などの表面物性や有機
膜の吸収スペクトルに変化が生じるかいなかにより簡便
に判定できる。
Whether or not the organic film composed of the modifying molecule is chemically bonded to the surface of the transparent electrode depends on whether or not the transparent electrode is treated with the modifying molecule and the transparent electrode is used in a solvent in which the modifying molecule and its reaction product are dissolved. It can be easily determined by whether or not the surface properties such as the contact angle between the surface of the transparent electrode and water change or the absorption spectrum of the organic film changes after thoroughly washing well.

【0016】本発明は種々の光有機薄膜素子に適用で
き、所望の素子特性に応じて各種の機能性の有機薄膜を
用いることができる。以下、これらの素子の構造および
動作原理を例示して簡単に説明する。 (有機EL素子)
The present invention can be applied to various photo-organic thin film devices, and various functional organic thin films can be used according to desired device characteristics. Hereinafter, the structure and operation principle of these elements will be illustrated and briefly described. (Organic EL element)

【0017】少なくとも一方が発光性を有する正孔輸送
層および電子輸送層の二層構造からなる有機薄膜、また
は正孔輸送層と電子輸送層との間に発光層を有する三層
構造からなる有機薄膜を、少なくとも一方が無機酸化物
からなる透明電極である二つの電極で挟んだ構造を有す
る。いずれの構造でも電子および正孔が発光層に注入さ
れて再結合する結果、発光する。電子輸送層および正孔
輸送層は注入確率を増大させる作用を有する。 (光電池)
An organic thin film having a two-layer structure of a hole transporting layer and an electron transporting layer, at least one of which has a light emitting property, or an organic thin film having a three-layered structure having a light emitting layer between the hole transporting layer and the electron transporting layer. It has a structure in which a thin film is sandwiched between two electrodes, at least one of which is a transparent electrode made of an inorganic oxide. In both structures, electrons and holes are injected into the light emitting layer and recombine with each other to emit light. The electron transport layer and the hole transport layer have a function of increasing the injection probability. (Photocell)

【0018】光を吸収して電子と正孔とを生じる色素を
含む電荷発生層と正孔輸送層もしくは電子輸送層との二
層構造からなる有機薄膜、または正孔輸送層と電子輸送
層との間に電荷発生層を有する三層構造からなる有機薄
膜を、少なくとも一方が無機酸化物からなる透明電極で
ある二つの電極で挟んだ構造を有する。いずれの構造で
も発生した電子および正孔が再結合するのを防止し、電
荷分離を効率よく行わせ、光電変換効率を増大させる。 (有機光記憶素子)
An organic thin film having a two-layer structure of a charge generating layer containing a dye that absorbs light to generate electrons and holes and a hole transport layer or an electron transport layer, or a hole transport layer and an electron transport layer. It has a structure in which an organic thin film having a three-layer structure having a charge generation layer in between is sandwiched between two electrodes, at least one of which is a transparent electrode made of an inorganic oxide. In any structure, recombination of generated electrons and holes is prevented, charge separation is efficiently performed, and photoelectric conversion efficiency is increased. (Organic optical storage element)

【0019】光を吸収して電子と正孔とを生じる色素を
含む感光性分子膜とドナー性分子膜もしくはアクセプタ
性分子膜との二層構造からなる有機薄膜、またはドナー
性分子膜とアクセプタ性分子膜との間に感光性分子膜を
有する三層構造からなる有機薄膜を、少なくとも一方が
無機酸化物からなる透明電極である二つの電極で挟み、
かつ少なくとも一方の電極と有機薄膜との間に絶縁性薄
膜を介在せしめた構造を有する。いずれの構造でも発生
した電子および正孔が再結合するのを防止し、電荷分離
を効率よく行わせるとともに、電荷分離状態を保持して
記憶する。
An organic thin film having a two-layer structure of a photosensitive molecular film containing a dye that absorbs light to generate electrons and holes and a donor molecular film or an acceptor molecular film, or a donor molecular film and an acceptor property An organic thin film having a three-layer structure having a photosensitive molecular film between the molecular film and at least one is sandwiched by two electrodes which are transparent electrodes made of an inorganic oxide,
Further, it has a structure in which an insulating thin film is interposed between at least one of the electrodes and the organic thin film. In any structure, the generated electrons and holes are prevented from recombining, charge separation is efficiently performed, and the charge separation state is held and stored.

【0020】本発明の光有機薄膜素子では、ITO、S
nO2 などの無機酸化物からなる透明電極の表面に、化
学的に結合した有機膜を形成しているので、この有機膜
自体の機械的・熱的耐性が強い。しかも、この有機膜の
分子構造を適当に設計することにより、その上に形成さ
れる機能性の有機薄膜との親和性を改善でき、例えば湿
気などがあっても有機薄膜の剥離や構造変化を起こしに
くい。
In the photo-organic thin film element of the present invention, ITO, S
Since a chemically bonded organic film is formed on the surface of the transparent electrode made of an inorganic oxide such as nO 2 , the organic film itself has a strong mechanical and thermal resistance. Moreover, by appropriately designing the molecular structure of this organic film, it is possible to improve the affinity with the functional organic thin film formed thereon, and for example, peeling or structural change of the organic thin film can be achieved even in the presence of moisture. Hard to wake up.

【0021】[0021]

【実施例】以下、本発明の実施例を説明する。 実施例1(有機EL素子)EXAMPLES Examples of the present invention will be described below. Example 1 (organic EL device)

【0022】ガラス基板上にスパッタ法によりITO薄
膜を形成して、25mm×25mm×0.2mm、表面
抵抗約10Ω/cm2 の透明電極を形成した。この透明
電極をアセトン、クロロホルム、アセトン、水の順で洗
浄し、加熱乾燥した。続いて、構造式(1)で示される
デカン酸のクロム錯体のイソプロピルアルコール溶液
(濃度1wt%)中にガラス基板/ITO薄膜を浸漬
し、室温下で3時間放置した。次いで、基板を取り出
し、イソプロピルアルコールで洗浄して大気中において
100℃で1時間放置した後、クロロホルム、アセト
ン、水の順でよく洗浄し、大気中において100℃で1
時間加熱乾燥した。基板を取り出し、室温に戻した後、
ITO薄膜を形成した主面上の数個所に純水を滴下して
接触角を測定したところ、接触角は70〜90°であ
り、高い疎水性を有することがわかった。
An ITO thin film is formed on a glass substrate by a sputtering method and has a surface resistance of about 10 Ω / cm 2 and a size of 25 mm × 25 mm × 0.2 mm. Transparent electrodes were formed. The transparent electrode was washed with acetone, chloroform, acetone, and water in this order, and dried by heating. Then, the glass substrate / ITO thin film was immersed in an isopropyl alcohol solution (concentration 1 wt%) of a chromium complex of decanoic acid represented by the structural formula (1), and left at room temperature for 3 hours. Then, the substrate was taken out, washed with isopropyl alcohol and left in the atmosphere at 100 ° C. for 1 hour, then thoroughly washed with chloroform, acetone, and water in this order, and then in the atmosphere at 100 ° C. for 1 hour.
Heat dried for hours. After taking out the substrate and returning it to room temperature,
When pure water was dropped onto several places on the main surface on which the ITO thin film was formed and the contact angle was measured, the contact angle was 70 to 90 °, and it was found to have high hydrophobicity.

【0023】次に、この基板を真空蒸着装置にセット
し、構造式(2)で示されるトリフェニルアミン誘導体
(正孔輸送層)を50nmの厚さに蒸着した。その上
に、構造式(3)で示される8−ヒドロキシキノリンア
ルミニウム(発光層)を30nmの厚さに蒸着し、二層
構造の有機薄膜を形成した。最後に、有機薄膜上に面積
0.2cm2 のアルミニウム電極6個を形成した。
Next, this substrate was set in a vacuum vapor deposition apparatus, and the triphenylamine derivative (hole transport layer) represented by the structural formula (2) was vapor deposited to a thickness of 50 nm. 8-hydroxyquinoline aluminum (light-emitting layer) represented by Structural Formula (3) was vapor-deposited thereon to a thickness of 30 nm to form a two-layer organic thin film. Finally, an area of 0.2 cm 2 on the organic thin film. 6 aluminum electrodes were formed.

【0024】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
800〜1000cd/m2 の輝度を示した。この素子
を大気中において室温で1か月放置した後、前記と同様
に輝度を測定したところ、6電極とも700〜1000
cd/m2 の輝度を示し、保存による素子特性の劣化は
ほとんど認められなかった。
Immediately after the production of this device, the luminance was measured under a vacuum with a direct current of 10 V. As a result, all 6 electrodes had a brightness of 800 to 1000 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above.
cd / m 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed.

【0025】[0025]

【化3】 [Chemical 3]

【0026】[0026]

【化4】 [Chemical 4]

【0027】[0027]

【化5】 実施例2(有機EL素子)[Chemical 5] Example 2 (organic EL device)

【0028】構造式(1)で示されるデカン酸のクロム
錯体の代わりに、構造式(4)で示されるコラン酸のク
ロム錯体を用いたことを除いては、実施例1と同様の方
法で有機EL素子を作製した。
By the same method as in Example 1 except that the chromium complex of colanic acid represented by the structural formula (4) was used in place of the chromium complex of decanoic acid represented by the structural formula (1). An organic EL device was produced.

【0029】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
800〜1000cd/m2 の輝度を示した。この素子
を大気中において室温で1か月放置した後、前記と同様
に輝度を測定したところ、6電極とも700〜1000
cd/m2 の輝度を示し、保存による素子特性の劣化は
ほとんど認められなかった。
Immediately after the production of this device, the brightness was measured under a vacuum with a direct current of 10 V. As a result, all 6 electrodes had a brightness of 800 to 1000 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above.
cd / m 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed.

【0030】[0030]

【化6】 実施例3(有機EL素子)[Chemical 6] Example 3 (organic EL device)

【0031】構造式(1)で示されるデカン酸のクロム
錯体の代わりに、構造式(5)で示されるテレフタル酸
のクロム錯体を用いたことを除いては、実施例1と同様
の方法で有機EL素子を作製した。
By the same method as in Example 1 except that the chromium complex of terephthalic acid represented by the structural formula (5) was used in place of the chromium complex of decanoic acid represented by the structural formula (1). An organic EL device was produced.

【0032】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
1000〜1200cd/m2 の輝度を示した。この素
子を大気中において室温で1か月放置した後、前記と同
様に輝度を測定したところ、6電極とも1000〜12
00cd/m2 の輝度を示し、保存による素子特性の劣
化はほとんど認められなかった。
Immediately after the production of this element, the luminance was measured under a vacuum with a direct current of 10 V, and 1000 electrodes to 1200 cd / m 2 were measured for all 6 electrodes. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above.
00 cd / m 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed.

【0033】[0033]

【化7】 実施例4(有機EL素子)[Chemical 7] Example 4 (organic EL device)

【0034】構造式(1)で示されるデカン酸のクロム
錯体の代わりに、構造式(6)で示されるドデシルホス
フェートを用いたことを除いては、実施例1と同様の方
法で有機EL素子を作製した。
An organic EL device was manufactured in the same manner as in Example 1, except that the dodecyl phosphate represented by the structural formula (6) was used in place of the decanoic acid chromium complex represented by the structural formula (1). Was produced.

【0035】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
800〜900cd/m2 の輝度を示した。この素子を
大気中において室温で1か月放置した後、前記と同様に
輝度を測定したところ、6電極とも700〜900cd
/m2 の輝度を示し、保存による素子特性の劣化はほと
んど認められなかった。
Immediately after the production of this device, the luminance was measured under a vacuum with a direct current of 10 V, and all six electrodes had a luminance of 800 to 900 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above, and it was 700 to 900 cd for all 6 electrodes.
/ M 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed.

【0036】[0036]

【化8】 実施例5(有機EL素子) 透明電極としてITO薄膜の代わりに、SnO2 薄膜
(ネサ膜)を用いたことを除いては、実施例1と同様の
方法で有機EL素子を作製した。
[Chemical 8] Example 5 (Organic EL element) An organic EL element was produced in the same manner as in Example 1 except that a SnO 2 thin film (nesa film) was used as the transparent electrode instead of the ITO thin film.

【0037】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
800〜900cd/m2 の輝度を示した。この素子を
大気中において室温で1か月放置した後、前記と同様に
輝度を測定したところ、6電極とも700〜900cd
/m2 の輝度を示し、保存による素子特性の劣化はほと
んど認められなかった。 実施例6(有機EL素子) 透明電極としてITO薄膜の代わりに、SnO2 薄膜
(ネサ膜)を用いたことを除いては、実施例4と同様の
方法で有機EL素子を作製した。
Immediately after the production of this device, the luminance was measured under a vacuum with a direct current of 10 V, and all six electrodes had a luminance of 800 to 900 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above, and it was 700 to 900 cd for all 6 electrodes.
/ M 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed. Example 6 (Organic EL element) An organic EL element was produced in the same manner as in Example 4 except that a SnO 2 thin film (nesa film) was used as the transparent electrode instead of the ITO thin film.

【0038】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
700〜1000cd/m2 の輝度を示した。この素子
を大気中において室温で1か月放置した後、前記と同様
に輝度を測定したところ、6電極とも700〜900c
d/m2 の輝度を示し、保存による素子特性の劣化はほ
とんど認められなかった。 実施例7(光電池)
Immediately after the production of this device, the luminance was measured under a vacuum with a direct current of 10 V. As a result, the six electrodes were 700 to 1000 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above.
d / m 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed. Example 7 (photocell)

【0039】実施例1と同様に構造式(1)で示される
デカン酸のクロム錯体で処理したガラス基板/ITO薄
膜上に、構造式(2)で示されるトルフェニルアミン
(正孔輸送層)を50nmの厚さに蒸着した。その上に
銅フタロシアミン(電荷発生層)を50nmの厚さに蒸
着した。さらに、その上に構造式(7)で示されるp−
ジフェノキノン誘導体(電子輸送層)を50nmの厚さ
に蒸着し、三層構造の有機薄膜を形成した。最後に、有
機薄膜上に面積0.2cm2 のアルミニウム電極6個を
形成した。
As in Example 1, on the glass substrate / ITO thin film treated with the decanoic acid chromium complex represented by the structural formula (1), the toluphenylamine represented by the structural formula (2) (hole transport layer) was formed. Was evaporated to a thickness of 50 nm. Copper phthalocyanine (charge generation layer) was vapor-deposited thereon to a thickness of 50 nm. Furthermore, p− represented by the structural formula (7) is
A diphenoquinone derivative (electron transport layer) was vapor-deposited to a thickness of 50 nm to form an organic thin film having a three-layer structure. Finally, an area of 0.2 cm 2 on the organic thin film. 6 aluminum electrodes were formed.

【0040】この素子を作製後直ちに、基板側から50
0nm以下の光をカットしたタングステンランプ光を照
射し、光電変換効率を測定したところ、6電極とも1.
2〜1.5%の光電変換効率を示した。この素子を大気
中において室温で1か月放置した後、前記と同様に光電
変換効率を測定したところ、6電極とも1.2〜1.5
%の光電変換効率を示し、保存による素子特性の劣化は
ほとんど認められなかった。
Immediately after manufacturing this device, 50 from the substrate side.
When the photoelectric conversion efficiency was measured by irradiating the light of a tungsten lamp with light of 0 nm or less cut off, it was found that all six electrodes were 1.
It showed a photoelectric conversion efficiency of 2 to 1.5%. After leaving this element in the air at room temperature for 1 month, the photoelectric conversion efficiency was measured in the same manner as above.
The photoelectric conversion efficiency was%, and deterioration of the device characteristics due to storage was hardly recognized.

【0041】[0041]

【化9】 実施例8(有機整流素子)[Chemical 9] Example 8 (organic rectifier)

【0042】実施例3と同様に構造式(5)で示される
テレフタル酸のクロム錯体で処理したガラス基板/IT
O薄膜上に、構造式(2)で示されるトルフェニルアミ
ン(正孔輸送層)を20nmの厚さに蒸着した。その上
に構造式(7)で示されるp−ジフェノキノン誘導体
(電子輸送層)を20nmの厚さに蒸着し、二層構造の
有機薄膜を形成した。最後に、有機薄膜上に面積0.2
cm2 のアルミニウム電極6個を形成した。
Similar to Example 3, a glass substrate / IT treated with a chromium complex of terephthalic acid represented by the structural formula (5).
On the O thin film, toluphenylamine (hole transport layer) represented by the structural formula (2) was vapor-deposited to a thickness of 20 nm. A p-diphenoquinone derivative (electron transport layer) represented by Structural Formula (7) was vapor-deposited thereon to a thickness of 20 nm to form a two-layer organic thin film. Finally, an area of 0.2 on the organic thin film
cm 2 6 aluminum electrodes were formed.

【0043】この素子を作製後直ちに、光を遮断して電
流−電圧特性を測定したところ、6電極とも上部電極を
負にした場合に電流が流れる整流特性を示し、ほぼ同一
の電流−電圧特性が得られた。この素子を大気中におい
て室温で1か月放置した後、前記と同様に電流−電圧特
性を測定したところ、6電極とも変化はみられず、保存
による素子特性の劣化は認められなかった。 実施例9(有機光記憶素子)
Immediately after manufacturing this element, the current-voltage characteristics were measured by cutting off the light. As a result, all six electrodes showed rectification characteristics in which a current flows when the upper electrode was made negative, and almost the same current-voltage characteristics. was gotten. When this device was left in the air at room temperature for 1 month and the current-voltage characteristics were measured in the same manner as above, no change was observed in all 6 electrodes, and deterioration of the device characteristics due to storage was not observed. Example 9 (organic optical storage element)

【0044】構造式(8)で示されるドナー性のp−フ
ェニレンジアミン骨格を有する有機リン酸化合物をイソ
プロピルアルコールに濃度1wt%で溶解させた溶液を
調製した。次いで、実施例1と同様のガラス基板/IT
O薄膜をこの溶液中に浸漬し、室温で3時間放置した。
次いで、基板を取り出し、窒素中において50℃で1時
間放置した後、イソプロピルアルコール、アセトンの順
でよく洗浄し、窒素気流中で1時間乾燥した。
A solution was prepared by dissolving an organic phosphoric acid compound having a donor-type p-phenylenediamine skeleton represented by the structural formula (8) in isopropyl alcohol at a concentration of 1 wt%. Then, the same glass substrate / IT as in Example 1
The O thin film was dipped in this solution and left at room temperature for 3 hours.
Then, the substrate was taken out, left in nitrogen at 50 ° C. for 1 hour, then thoroughly washed with isopropyl alcohol and acetone in that order, and dried in a nitrogen stream for 1 hour.

【0045】次に、この基板上に、LB法により感光性
分子膜として構造式(9)で示される銅フタロシアニン
誘導体からなる単分子膜およびアクセプタ性分子膜とし
て構造式(10)で示されるTCNQ誘導体からなる単
分子膜を2層ずつ累積して多層構造の有機薄膜を形成
し、さらに構造式(11)で示される絶縁性のポリメタ
クリル酸ブチルからなる単分子膜を30層累積した。こ
のようにして形成された超格子膜を窒素気流下で一晩乾
燥させた後、基板を真空蒸着装置にセットし、3×10
-6Torrの真空下でAl電極を約50nmの厚さに蒸
着した。
Next, on this substrate, a monomolecular film made of the copper phthalocyanine derivative represented by the structural formula (9) as the photosensitive molecular film and a TCNQ represented by the structural formula (10) as the acceptor molecular film are formed on the substrate by the LB method. Two monolayers of the derivative were accumulated to form an organic thin film having a multilayer structure, and 30 monolayers of the insulating polybutyl methacrylate represented by the structural formula (11) were accumulated. The superlattice film thus formed was dried under a nitrogen stream overnight, and then the substrate was set in a vacuum vapor deposition apparatus and 3 × 10 3
An Al electrode was evaporated to a thickness of about 50 nm under a vacuum of -6 Torr.

【0046】[0046]

【化10】 [Chemical 10]

【0047】[0047]

【化11】 [Chemical 11]

【0048】[0048]

【化12】 [Chemical formula 12]

【0049】[0049]

【化13】 [Chemical 13]

【0050】なお、上述したような有機薄膜および絶縁
性薄膜は、具体的には以下のようにして形成された。ま
ず、銅フタロシアニン誘導体をクロロホルムに溶解して
0.2mg/mlのLB膜展開溶液を調製した。表面圧
−分子占有面積曲線から、この分子は13dyn/cm
で固体凝縮膜となることがわかった。この分子の固体凝
縮膜を通して、基板を2mm/minの速度で気相から
水中へ引き下げ、次に引き上げて二層膜からなる感光性
分子膜を形成した。次に、TCNQ誘導体をトルエンに
溶解して0.5mg/mlのLB膜展開溶液を調製し
た。表面圧−分子占有面積曲線から、この分子は12d
yn/cmで固体凝縮膜となることがわかった。前記と
同様の方法で感光性分子膜の上に二層膜からなるアクセ
プタ性分子膜を形成した。さらに絶縁性分子としてポリ
メタクリル酸ブチルを用い、前記と同様の方法でアクセ
プタ性分子膜の上に30層膜からなる絶縁性薄膜を形成
した。
The above organic thin film and insulating thin film were specifically formed as follows. First, a copper phthalocyanine derivative was dissolved in chloroform to prepare a 0.2 mg / ml LB film developing solution. From the surface pressure-molecule occupied area curve, this molecule is 13 dyn / cm
It was found that a solid condensed film was formed. The substrate was pulled down from the gas phase into water at a rate of 2 mm / min through the solid condensed film of the molecules, and then pulled up to form a photosensitive molecular film consisting of a bilayer film. Next, the TCNQ derivative was dissolved in toluene to prepare a 0.5 mg / ml LB film developing solution. From the surface pressure-molecule occupied area curve, this molecule is 12d
It was found that a solid condensed film was obtained at yn / cm. An acceptor molecular film consisting of a two-layer film was formed on the photosensitive molecular film by the same method as described above. Further, using polybutyl methacrylate as an insulating molecule, an insulating thin film consisting of a 30-layer film was formed on the acceptor molecular film by the same method as described above.

【0051】このような有機光記憶素子では、光照射に
より感光性分子の電子が励起され、電子はアクセプタ性
分子のLUMOへ、正孔はドナー性分子のHOMOへと
遷移する。この素子において、電荷分離が保たれた状態
と電荷分離が保たれていない状態とで光照射過渡電流を
比較すると、前者の状態では内部電界が存在するため光
照射過渡電流が小さい。したがって、過渡電流の大きさ
を測定すれば、電荷分離状態を検出できる。
In such an organic optical memory device, the electrons of the photosensitive molecule are excited by light irradiation, and the electrons transit to LUMO of the acceptor molecule and the holes transit to HOMO of the donor molecule. In this device, comparing the light irradiation transient currents in the state where the charge separation is maintained and the state where the charge separation is not maintained, the light irradiation transient current is small in the former state because the internal electric field exists. Therefore, the charge separation state can be detected by measuring the magnitude of the transient current.

【0052】具体的には、この素子に透明電極側を負と
するバイアス電圧を印加した状態で基板側からHe−N
eレーザー光パルス(波長633nm、5mW/c
2 、パルス幅10msec、スポット径1mm)を照
射し、書き込みを行った。感光性分子(9)は波長63
3nmに強い吸収を持つが、アクセプタ性分子(10)
およびドナー性分子(8)は吸収を持たない。室温下、
暗所で一定時間放置した後、弱いレーザー光パルス
(0.05mW/cm2 )を照射し、過渡電流ピーク値
(A)を測定した。ここで、電荷分離していない場合の
ピーク値をA0 とする。AはA0 と比較して小さく、光
照射を記憶できることがわかった。この素子を大気中に
おいて室温下で1か月放置した後、特性を測定したとこ
ろ、変化は見られず、保存による素子特性の劣化は認め
られなかった。 実施例10(有機EL素子)
Specifically, with a bias voltage having a negative value on the transparent electrode side applied to this element, He--N was applied from the substrate side.
e Laser light pulse (wavelength 633nm, 5mW / c
m 2 The pulse width was 10 msec and the spot diameter was 1 mm) for writing. Photosensitive molecule (9) has wavelength 63
Has strong absorption at 3 nm, but acceptor molecule (10)
And the donor molecule (8) has no absorption. At room temperature
After leaving it in the dark for a certain period of time, a weak laser light pulse (0.05 mW / cm 2 ) Was irradiated and the transient current peak value (A) was measured. Here, the peak value when charge separation is not performed is A 0 . It was found that A is smaller than A 0 and can store the light irradiation. The device was allowed to stand in the air at room temperature for 1 month and then its characteristics were measured. As a result, no change was observed and no deterioration of the device characteristics due to storage was observed. Example 10 (organic EL device)

【0053】構造式(1)で示されるデカン酸のクロム
錯体の代わりに、構造式(12)で示されるヒドロキシ
ブタン酸のクロム錯体を用いて実施例1と同様のガラス
基板/ITO薄膜を処理した。このガラス基板/ITO
薄膜上に純水を滴下して接触角を測定したところ、水と
の接触角はほぼ0°であり、ヒドロキシブタン酸の水酸
基に起因する高い親水性を有することがわかった。次
に、構造式(13)で示されるアントラセンのトリエチ
ルシリル化物(正孔輸送層)を同様の方法によりヒドロ
キシブタン酸の水酸基と化学的に反応させて単分子膜を
成膜し、さらに真空蒸着装置を用いて構造式(14)で
示されるオキサジアゾール誘導体(電子輸送層)を50
nmの厚さに蒸着し、二層構造の有機薄膜を形成した。
最後に、有機薄膜上に面積0.2cm2 のアルミニウム
電極6個を形成した。
The same glass substrate / ITO thin film as in Example 1 was treated with the hydroxybutanoic acid chromium complex represented by the structural formula (12) instead of the decanoic acid chromium complex represented by the structural formula (1). did. This glass substrate / ITO
When pure water was dropped on the thin film and the contact angle was measured, it was found that the contact angle with water was almost 0 °, and that it had high hydrophilicity due to the hydroxyl group of hydroxybutanoic acid. Next, the triethylsilylated product of anthracene represented by the structural formula (13) (hole transport layer) is chemically reacted with the hydroxyl group of hydroxybutanoic acid by the same method to form a monomolecular film, and further vacuum deposition is performed. The oxadiazole derivative (electron transporting layer) represented by the structural formula (14) was prepared by using an apparatus.
It vapor-deposited to a thickness of nm to form an organic thin film having a two-layer structure.
Finally, an area of 0.2 cm 2 on the organic thin film. 6 aluminum electrodes were formed.

【0054】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
500〜800cd/m2 の輝度を示した。この素子を
大気中において室温で1か月放置した後、前記と同様に
輝度を測定したところ、6電極とも500〜800cd
/m2 の輝度を示し、保存による素子特性の劣化はほと
んど認められなかった。
Immediately after the production of this device, the luminance was measured under a vacuum with a direct current of 10 V. As a result, all 6 electrodes had a luminance of 500 to 800 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above.
/ M 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed.

【0055】[0055]

【化14】 [Chemical 14]

【0056】[0056]

【化15】 [Chemical 15]

【0057】[0057]

【化16】 実施例11(有機EL素子)[Chemical 16] Example 11 (organic EL device)

【0058】構造式(1)で示されるデカン酸のクロム
錯体の代わりに、構造式(15)で示されるジエチル
ドデカンホスファイトを用いたことを除いては、実施例
1と同様の方法で有機EL素子を作製した。
Instead of the chromium complex of decanoic acid represented by the structural formula (1), diethyl represented by the structural formula (15) is used.
An organic EL device was produced in the same manner as in Example 1 except that dodecane phosphite was used.

【0059】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
800〜900cd/m2 の輝度を示した。この素子を
大気中において室温で1か月放置した後、前記と同様に
輝度を測定したところ、6電極とも700〜900cd
/m2 の輝度を示し、保存による素子特性の劣化はほと
んど認められなかった。
Immediately after the production of this device, the luminance was measured under a vacuum with a direct current of 10 V. As a result, all 6 electrodes had a luminance of 800 to 900 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above, and it was 700 to 900 cd for all 6 electrodes.
/ M 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed.

【0060】[0060]

【化17】 実施例12(有機EL素子)[Chemical 17] Example 12 (organic EL device)

【0061】構造式(1)で示されるデカン酸のクロム
錯体の代わりに、構造式(16)で示されるジドデカン
ハイドロホスホラスアシッドを用いたことを除いては、
実施例1と同様の方法で有機EL素子を作製した。
In place of the decanoic acid chromium complex represented by the structural formula (1), didodecane hydrophosphorus acid represented by the structural formula (16) was used,
An organic EL device was produced in the same manner as in Example 1.

【0062】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
800〜900cd/m2 の輝度を示した。この素子を
大気中において室温で1か月放置した後、前記と同様に
輝度を測定したところ、6電極とも700〜900cd
/m2 の輝度を示し、保存による素子特性の劣化はほと
んど認められなかった。
Immediately after the production of this device, the brightness was measured under a vacuum with a direct current of 10 V. As a result, all 6 electrodes had a brightness of 800 to 900 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above, and it was 700 to 900 cd for all 6 electrodes.
/ M 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed.

【0063】[0063]

【化18】 実施例13(有機EL素子)[Chemical 18] Example 13 (organic EL device)

【0064】構造式(1)で示されるデカン酸のクロム
錯体の代わりに、構造式(17)で示されるトリデシル
ホスファイトを用いたことを除いては、実施例1と同様
の方法で有機EL素子を作製した。
An organic compound was prepared in the same manner as in Example 1 except that tridecyl phosphite represented by the structural formula (17) was used in place of the chromium complex of decanoic acid represented by the structural formula (1). An EL device was produced.

【0065】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
800〜900cd/m2 の輝度を示した。この素子を
大気中において室温で1か月放置した後、前記と同様に
輝度を測定したところ、6電極とも700〜900cd
/m2 の輝度を示し、保存による素子特性の劣化はほと
んど認められなかった。
Immediately after the production of this device, the luminance was measured under a vacuum with a direct current of 10 V, and all six electrodes had a luminance of 800 to 900 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above, and it was 700 to 900 cd for all 6 electrodes.
/ M 2 The brightness of the device was shown, and deterioration of the device characteristics due to storage was hardly observed.

【0066】[0066]

【化19】 比較例1(有機EL素子) ITO薄膜の表面に修飾分子からなる有機膜を形成する
処理を行わなかった以外は実施例1と同様にして有機E
L素子を作製した。
[Chemical 19] Comparative Example 1 (Organic EL Element) Organic E was prepared in the same manner as in Example 1 except that the treatment for forming the organic film made of the modifying molecule was not performed on the surface of the ITO thin film.
An L element was produced.

【0067】この素子を作製後直ちに、真空下において
10Vの直流電流で輝度を測定したところ、6電極とも
1000〜1200cd/m2 の輝度を示した。この素
子を大気中において室温で1か月放置した後、前記と同
様に輝度を測定したところ、輝度は0〜300cd/m
2 と大幅に低下した。光学顕微鏡で素子を観察したとこ
ろ、部分的に有機薄膜のはがれや結晶化が生じているこ
とがわかった。 比較例2(光電池) ITO薄膜の表面に修飾分子からなる有機膜を形成する
処理を行わなかった以外は実施例7と同様にして光電池
を作製した。
Immediately after the production of this device, the luminance was measured under a vacuum with a direct current of 10 V, and it was found that all six electrodes had a luminance of 1000 to 1200 cd / m 2. The brightness of After leaving this element in the air at room temperature for 1 month, the brightness was measured in the same manner as above. The brightness was 0 to 300 cd / m.
2 And drastically decreased. When the device was observed with an optical microscope, it was found that the organic thin film was partially peeled off or crystallized. Comparative Example 2 (photovoltaic cell) A photovoltaic cell was prepared in the same manner as in Example 7 except that the treatment of forming the organic film made of the modifying molecule on the surface of the ITO thin film was not performed.

【0068】この素子を作製後直ちに、基板側から50
0nm以下の光をカットしたタングステンランプ光を照
射し、光電変換効率を測定したところ、6電極とも1.
2〜1.5%の光電変換効率を示した。この素子を大気
中において室温で1か月放置した後、前記と同様に光電
変換効率を測定したところ、0〜0.3%と大幅に低下
した。光学顕微鏡で素子を観察したところ、部分的に有
機薄膜のはがれや結晶化が生じていることがわかった。
Immediately after manufacturing this device, 50 from the substrate side.
When the photoelectric conversion efficiency was measured by irradiating the light of a tungsten lamp with light of 0 nm or less cut off, it was found that all six electrodes were 1.
It showed a photoelectric conversion efficiency of 2 to 1.5%. After leaving this element in the air at room temperature for 1 month, the photoelectric conversion efficiency was measured in the same manner as above, and it was significantly reduced to 0 to 0.3%. When the device was observed with an optical microscope, it was found that the organic thin film was partially peeled off or crystallized.

【0069】[0069]

【発明の効果】以上詳述したように本発明によれば、透
明電極上に形成される有機薄膜に剥離や構造変化が生じ
ることがなく、安定性のよい有機EL素子、有機光電
池、有機光記憶素子などの光有機薄膜素子を提供でき
る。
As described above in detail, according to the present invention, the organic thin film formed on the transparent electrode does not undergo peeling or structural change, and the organic EL device, the organic photocell, and the organic light are stable. A photo-organic thin film element such as a memory element can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05B 33/28 8815−3K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H05B 33/28 8815-3K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機酸化物からなる透明電極と、前記透
明電極上に形成された有機薄膜とを具備した光有機薄膜
素子において、前記透明電極の表面に、カルボン酸のク
ロム錯体または有機リン酸化合物、有機亜リン酸化合物
もしくは有機次亜リン酸化合物からなる有機膜を化学的
に結合させたことを特徴とする光有機薄膜素子。
1. A photo-organic thin film element comprising a transparent electrode made of an inorganic oxide and an organic thin film formed on the transparent electrode, wherein a chromium complex of a carboxylic acid or an organic phosphoric acid is formed on the surface of the transparent electrode. A photo-organic thin film element comprising a compound, an organic phosphite compound, or an organic film made of an organic hypophosphite compound chemically bonded.
JP22144491A 1991-09-02 1991-09-02 Optical organic thin film device Expired - Fee Related JP3115040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22144491A JP3115040B2 (en) 1991-09-02 1991-09-02 Optical organic thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22144491A JP3115040B2 (en) 1991-09-02 1991-09-02 Optical organic thin film device

Publications (2)

Publication Number Publication Date
JPH0562523A true JPH0562523A (en) 1993-03-12
JP3115040B2 JP3115040B2 (en) 2000-12-04

Family

ID=16766834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22144491A Expired - Fee Related JP3115040B2 (en) 1991-09-02 1991-09-02 Optical organic thin film device

Country Status (1)

Country Link
JP (1) JP3115040B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456003B1 (en) 1999-01-28 2002-09-24 Nec Corporation Organic electroluminescent devices and panels
JP2005353401A (en) * 2004-06-10 2005-12-22 Dainippon Printing Co Ltd Charge injection material for organic device, organic device and manufacturing method of the organic device
WO2007026703A1 (en) * 2005-08-30 2007-03-08 Kyoto University Method for organic material layer formation
EP2270897A3 (en) * 1998-12-09 2013-05-15 Global OLED Technology LLC Electroluminescent device with antracene derivatives hole transport layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270897A3 (en) * 1998-12-09 2013-05-15 Global OLED Technology LLC Electroluminescent device with antracene derivatives hole transport layer
US6456003B1 (en) 1999-01-28 2002-09-24 Nec Corporation Organic electroluminescent devices and panels
JP2005353401A (en) * 2004-06-10 2005-12-22 Dainippon Printing Co Ltd Charge injection material for organic device, organic device and manufacturing method of the organic device
WO2007026703A1 (en) * 2005-08-30 2007-03-08 Kyoto University Method for organic material layer formation
JP2007066626A (en) * 2005-08-30 2007-03-15 Kyoto Univ Method of forming organic material layer

Also Published As

Publication number Publication date
JP3115040B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
US6730416B1 (en) Ionic salt dyes as amorphous, thermally stable emitting and charge transport layers in organic light emitting diodes
JP4627528B2 (en) Novel compound and organic electronic device using the compound
JP3125777B2 (en) Organic electroluminescence device and panel
JPH0753953A (en) Organic electroluminescent element
JP2005063947A (en) Organic electroluminescent element using anode surface reforming layer
JPH04192376A (en) Tandem organic solar battery
JPH0693258A (en) Organic thin film element
JPH09279135A (en) Electroluminescent element
JPH08199161A (en) Organic electroluminescence element
JP2004047176A (en) Organic electroluminescent element
JP4030608B2 (en) Organic electroluminescent device and manufacturing method thereof
JP3115040B2 (en) Optical organic thin film device
JP2011124468A (en) Organic thin film solar cell and method of manufacturing the same
JP2006032689A (en) Organic device
GB2356738A (en) Ionic salt dyes as amorphous, thermally stable emitting and charge transport layers in organic light emitting diodes
JPH11135262A (en) Organic electroluminescent element
JP4054082B2 (en) Thin film light emitting device and manufacturing method thereof
JPH05271652A (en) Organic thin-film el element
JPH05182764A (en) Organic electroluminescent element and its manufacture
JPH11121172A (en) Organic el element
JP2005310469A (en) Organic light emitting element
JP2005216677A (en) Organic electroluminescent element
JP3479344B2 (en) Organic electroluminescence device
JPH07263145A (en) Method of driving el element
JPH101664A (en) Light-emitting element, display and backlight

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees