JPH0561582B2 - - Google Patents

Info

Publication number
JPH0561582B2
JPH0561582B2 JP62310640A JP31064087A JPH0561582B2 JP H0561582 B2 JPH0561582 B2 JP H0561582B2 JP 62310640 A JP62310640 A JP 62310640A JP 31064087 A JP31064087 A JP 31064087A JP H0561582 B2 JPH0561582 B2 JP H0561582B2
Authority
JP
Japan
Prior art keywords
liquid
solution
test
reagent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62310640A
Other languages
Japanese (ja)
Other versions
JPH01150851A (en
Inventor
Shingo Tokuda
Shigeo Asada
Hiroshi Takatomi
Juji Kenmochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP62310640A priority Critical patent/JPH01150851A/en
Publication of JPH01150851A publication Critical patent/JPH01150851A/en
Publication of JPH0561582B2 publication Critical patent/JPH0561582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は溶液濃度の電気的測定法、すなわち
検液中に電極を挿入して電解電流を計測すること
により溶液濃度を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for electrically measuring solution concentration, that is, a method for measuring solution concentration by inserting an electrode into a test solution and measuring electrolytic current.

(従来の技術) 検液中の残留塩素を測定する方法としては電極
反応を利用した電解電流法がよく知られている。
低濃度の塩素水中では、塩素は大部分が水と反応
し次亜塩素酸となつて溶存している。この様な液
中に異なる2種の金属の先端を浸すと、これによ
り1種の電池が形成され、金属の他端を導線で結
べば電位の高い方から低い方に向つて電流が流れ
る。この方法では異なる2種の電極として白金と
銀とが使用され、白金電極から銀電極に向つて、
液中の遊離塩素に比例した大きさの電流が流れる
のでこの電流を測定することにより遊離塩素濃度
を知ることができる。
(Prior Art) As a method for measuring residual chlorine in a test solution, an electrolytic current method using an electrode reaction is well known.
In low-concentration chlorinated water, most of the chlorine reacts with water and dissolves as hypochlorous acid. When the tips of two different metals are immersed in such a liquid, a type of battery is formed, and when the other ends of the metals are connected with a conductive wire, current flows from the one with higher potential to the one with lower potential. In this method, platinum and silver are used as two different types of electrodes, and from the platinum electrode to the silver electrode,
Since a current proportional to the free chlorine in the liquid flows, the free chlorine concentration can be determined by measuring this current.

また検液中にヨウ化カリ、あるいは臭化カリ等
を溶解させて電解液とし、これを正負電極間に通
液しながら、一定の直流電流を印加すると、負極
の表面に水素が生成し、次に酸化性物質の存在に
より遊離したヨウ素あるいは臭素が水素と反応し
てヨウ化水素酸、臭化水素酸に変り、この結果負
極側から水素が除かれるので、再び分極するまで
電流が流れることにより、この電流値の計測によ
り、酸化性物質濃度を測定する方法も一般に用い
られている。
In addition, by dissolving potassium iodide or potassium bromide in the test solution to make an electrolytic solution, and applying a constant DC current while passing this solution between the positive and negative electrodes, hydrogen is generated on the surface of the negative electrode. Next, iodine or bromine liberated due to the presence of oxidizing substances reacts with hydrogen and turns into hydroiodic acid and hydrobromic acid, and as a result, hydrogen is removed from the negative electrode side, so a current flows until polarization occurs again. Therefore, a method of measuring the oxidizing substance concentration by measuring this current value is also commonly used.

(発明が解決しようとする問題点) しかしながら上記の方法により、例えば浄水場
の残留塩素濃度(塩素処理の結果、水中に残留し
た有効塩素の濃度)を測定する場合には次のよう
な問題点がある。
(Problems to be Solved by the Invention) However, when measuring the residual chlorine concentration (concentration of available chlorine remaining in water as a result of chlorination) in a water treatment plant using the above method, the following problems arise. There is.

すなわち、このような処理水中には次亜塩素
酸、次亜塩素酸イオン等の遊離塩素と、NH2Cl
やNHCl2等のほか有機物質中の窒素と塩素が結
合してできる結合型塩素との2種類の残留塩素が
含まれている。この2種類の残留塩素の合計は全
残留塩素と呼ばれているが、この結合型塩素が存
在すると上記の電極反応が速やかに進行せず安定
な測定ができない。特にヨウ化カリと酢酸、PH3
〜4の液を用て全残留塩素の測定を行う場合、結
合型塩素が存在すると問題点が大きい。また亜塩
素酸ソーダ溶液を用いて悪臭空気の脱臭を行う場
合、使用される亜塩素酸塩の有効塩素濃度は5〜
20ppmであり、これを連続的に測定するのには上
記のような電極反応が利用するが、この際におい
ても亜塩素酸イオンとヨウ化カリ等との反応が円
滑ぴ進行しないという問題点がある。
In other words, such treated water contains free chlorine such as hypochlorous acid and hypochlorite ions, and NH 2 Cl.
In addition to NHCl 2 and NHCl2, it contains two types of residual chlorine: combined chlorine, which is formed by combining nitrogen and chlorine in organic substances. The sum of these two types of residual chlorine is called total residual chlorine, but if this combined chlorine exists, the electrode reaction described above will not proceed quickly and stable measurement will not be possible. Especially potassium iodide and acetic acid, PH3
When measuring the total residual chlorine using the solutions of 4 to 4, the presence of combined chlorine poses a major problem. In addition, when deodorizing foul-smelling air using a sodium chlorite solution, the effective chlorine concentration of the chlorite used is 5 to 5.
20 ppm, and the electrode reaction described above is used to continuously measure this, but even in this case, there is a problem that the reaction between chlorite ion and potassium iodide does not proceed smoothly. be.

(問題点を解決するための手段) 本発明は以上の問題点を解決し、結合型塩素又
は分解し難い有効塩素が存在する場合において
も、良好な測定精度が得られる方法を提供するも
のである。
(Means for Solving the Problems) The present invention solves the above problems and provides a method that can obtain good measurement accuracy even when combined chlorine or available chlorine that is difficult to decompose is present. be.

すなわちその第1発明は、有効塩素を含む検液
にヨウ化アルカリ又は臭化アルカリの試薬を加え
て電解し、その電解電流を計測することにより検
液中の有効塩素濃度を測定する方法において、予
め検液あるいは上記試薬を加えた検液を40℃以上
に加熱することを特徴とする溶液濃度測定方法で
ある。
That is, the first invention is a method for measuring the concentration of available chlorine in a test solution by adding an alkali iodide or alkali bromide reagent to a test solution containing available chlorine, electrolyzing the solution, and measuring the electrolytic current. This is a solution concentration measurement method characterized by heating a test solution or a test solution to which the above-mentioned reagents have been added in advance to 40°C or higher.

またその第2発明は作動電極及びその対極を有
する液電解用容器、サンプリング槽、試薬液槽及
び液加熱装置を備え、サンプリング槽より取出さ
れた検液又は該検液と試薬液槽より取出された試
薬液との混合液を液加熱装置に導く導管、液加熱
装置より取出された検液に試薬液を添加した溶液
又は液加熱装置より取出された上記混合液を冷却
後、液電解用容器に導く導管、及び液電解用容器
より電解後液を排出する装置を設けたことを特徴
とする溶液濃度測定用装置である。
Further, the second invention includes a liquid electrolytic container having a working electrode and a counter electrode thereof, a sampling tank, a reagent liquid tank, and a liquid heating device, and the test liquid taken out from the sampling tank or the test liquid and the reagent liquid taken out from the reagent liquid tank. A conduit that guides the mixed liquid with the reagent liquid taken out from the liquid heating device to the liquid heating device, a solution obtained by adding the reagent liquid to the test liquid taken out from the liquid heating device, or a container for liquid electrolysis after cooling the mixed liquid taken out from the liquid heating device. This is a solution concentration measuring device characterized by being provided with a conduit leading to the solution and a device for discharging the electrolyzed solution from the solution electrolysis container.

以下図面により本発明方法を説明すると、第1
図において容器1は囲い2で囲まれており、下部
モーター(図示せず)に連結されているシヤフト
3に取り付けられている。液電解用の容器1内に
は蓋4に取り付けられた合成樹脂筒5に白金等の
金属線が貫通し、底面に露出して作動電極6をな
し、また合成樹脂筒5の周囲には白金線が巻かれ
て対極7をなしている。さらに容器1内には多数
のガラス粒等よりなる研磨材粒8が装填されてい
る。有効塩素を含む浄水は浄水槽(図示せず)よ
りポンプ等の移送手段によりサンプリング槽9に
受入れられ、溢流管10を通して浄水槽に戻され
る。このアンプリング槽9からポンプ11により
取出された検液は、試薬液槽12からポンプ13
により取出された沃化アルカリ又は臭化アルカリ
の試薬液と混合されて加熱器14に入る。加熱さ
れた検液は試薬と反応し、管15によりサンプリ
ング槽9内で熱交換冷却されて容器1に入る。な
お検液のみを直ちに加熱器14に導き加熱後、試
薬液を管20により添加して管15により同様に
して容器1に送つてもよい。16は温度センサ
ー、17は温度調節計である。容器1において検
液は電解液として作動電極6及び対極7と接触し
て電解され、上部より溢流して囲い2の底部の排
出口18より排出されるようになつている。下部
モーターの駆動により容器1を回転させると容器
内のヨウ素あるいは臭素を遊離した検液19は旋
回流を生じて混合均一化され、さらに研磨材流8
の浮動により攪拌効果が高められる。また研磨材
粒8は各電極の表面を摩擦して、その表面付着物
を除去することにより絶えず電極表面を更新し活
性に保つことができる。
The method of the present invention will be explained below with reference to the drawings.
In the figure, the container 1 is surrounded by an enclosure 2 and mounted on a shaft 3 which is connected to a lower motor (not shown). Inside the container 1 for liquid electrolysis, a metal wire made of platinum or the like passes through a synthetic resin tube 5 attached to a lid 4, and is exposed at the bottom to form a working electrode 6. The wire is wound to form the opposite electrode 7. Further, the container 1 is loaded with abrasive grains 8 made of a large number of glass grains or the like. Purified water containing available chlorine is received from a water purification tank (not shown) into a sampling tank 9 by a transfer means such as a pump, and is returned to the water purification tank through an overflow pipe 10. The test liquid taken out from this amping tank 9 by the pump 11 is transferred from the reagent liquid tank 12 to the pump 13.
The mixture is mixed with the alkali iodide or alkali bromide reagent solution taken out by the heater 14. The heated test solution reacts with the reagent, is cooled by heat exchange in the sampling tank 9 through the tube 15, and enters the container 1. Incidentally, only the test solution may be immediately led to the heater 14 and after heating, the reagent solution may be added through the tube 20 and sent to the container 1 through the tube 15 in the same manner. 16 is a temperature sensor, and 17 is a temperature controller. In the container 1, the test solution is electrolyzed as an electrolytic solution in contact with the working electrode 6 and the counter electrode 7, overflows from the upper part, and is discharged from the outlet 18 at the bottom of the enclosure 2. When the container 1 is rotated by the drive of the lower motor, the test liquid 19 in which iodine or bromine has been liberated in the container generates a swirling flow and is mixed uniformly, and further abrasive material flow 8
Floating enhances the stirring effect. Furthermore, the abrasive particles 8 rub the surface of each electrode to remove deposits on the surface, thereby constantly renewing the electrode surface and keeping it active.

第1図に示された装置は、本発明方法を実施す
るのに好ましい例であり、有効塩素を含む浄水等
を検液とし、検液自体又は検液と試薬との混合液
を40℃以上に加熱し電解しうる装置であれば、ど
のような型式のものでもよい。また本発明に使用
される検液は有効塩素として二酸化塩素イオンを
含む亜塩素酸アルカリ溶液であつても有効に適用
される。検液の加熱温度は40℃以上、好ましくは
70℃以上であることを要し、最適な温度は80〜85
℃程度である。40℃未満では結合型塩素等の遊離
が不完全で本発明の目的を達成することができな
い。なお予め加熱された検液を試薬と混合した液
あるいは検液と試薬との混合液を加熱後、電解用
の容器1に送液する際、加熱温度が高い場合は一
旦冷却することが好ましい。
The apparatus shown in Fig. 1 is a preferred example for carrying out the method of the present invention, and uses purified water containing available chlorine as the test liquid, and the test liquid itself or a mixture of the test liquid and reagent is heated at 40°C or above. Any type of device may be used as long as it is capable of heating and electrolyzing. Furthermore, the test solution used in the present invention can be effectively applied even if it is an alkaline chlorite solution containing chlorine dioxide ions as available chlorine. The heating temperature of the test solution is 40℃ or higher, preferably
Must be at least 70℃, optimal temperature is 80-85
It is about ℃. If the temperature is lower than 40°C, the release of bound chlorine, etc. is incomplete and the object of the present invention cannot be achieved. Note that when a preheated test solution mixed with a reagent or a mixed solution of a test solution and a reagent is heated and then transferred to the electrolysis container 1, if the heating temperature is high, it is preferable to cool it once.

(作用) 本発明において浄水等のように水中にアンモニ
ア、アミノ酸、アミン類等が次亜塩素酸と反応し
てクロルアミン等が生成されてヨウ化アルカリ、
臭化アルカリと反応し難い結合型塩素が含まれる
場合、あるいは亜塩素酸ソーダ水溶液のようにヨ
ウ化アルカリ、臭化アルカリと反応し難い二酸化
塩素イオンが含まれる場合、予め加熱することに
よりその反応が促進され電解電流による測定が容
易になるものと思われる。
(Function) In the present invention, ammonia, amino acids, amines, etc. in water, such as purified water, react with hypochlorous acid to generate chloramine, etc., and alkali iodide, etc.
If it contains bound chlorine that does not easily react with alkali bromide, or if it contains chlorine dioxide ions that do not easily react with alkali iodide or bromide, such as in an aqueous solution of sodium chlorite, the reaction can be prevented by heating in advance. It is believed that this facilitates measurement using electrolytic current.

実施例1、比較例1 第1図に示す装置を用いて測定を行つた。液電
解用溶器1(径50mm、高さ70mm、ポリプロピレン
製)に、作動電極として先端に白金電極(作用面
積0.3cm2)、対極として直径10mm芯体に白金線0.5
mm径を10回巻いて使用し、ガラス粒(径約1mm)
を50ml装填し、検量線を得るためにJISK0106−
1968に従つて製造した有効塩素濃度0.1ppmより、
2ppmまで段階的に変化させた溶液を検水流量10
ml/min、試薬溶液(ヨウ化カリウム5g/、
氷錯酸43ml/、酢酸ソーダ1.5g/の混合液)
を2.2ml/minの割合で容器内に通液した。容器
の回転速度は300rpmである。なお作動電極と対
極との間には0.35Vの電圧を印加し、有効塩素
0.3ppm、0.5ppm、1.0ppm、1.5ppm、2.0ppmに
おける電流値を測定したところ第2図のような結
果を得た。そこで検水として約20℃の水道水を採
取して連続的に有効塩素濃度を測定したところ
0.65〜0.82ppmであり、ドリフトが大であつた。
Example 1, Comparative Example 1 Measurements were carried out using the apparatus shown in FIG. A liquid electrolysis vessel 1 (diameter 50 mm, height 70 mm, made of polypropylene) is equipped with a platinum electrode (action area 0.3 cm 2 ) at the tip as the working electrode, and a platinum wire 0.5 mm in diameter 10 mm core as the counter electrode.
Use glass particles (approximately 1 mm in diameter) by winding them 10 times.
Load 50ml of JISK0106− to obtain the calibration curve.
From the available chlorine concentration of 0.1 ppm manufactured in accordance with 1968,
Test water flow rate 10 for solution that has been changed stepwise up to 2ppm.
ml/min, reagent solution (potassium iodide 5g/,
(mixture of ice complex acid 43ml/, sodium acetate 1.5g/)
was passed into the container at a rate of 2.2 ml/min. The rotation speed of the container is 300 rpm. A voltage of 0.35V was applied between the working electrode and the counter electrode, and the effective chlorine
When the current values at 0.3ppm, 0.5ppm, 1.0ppm, 1.5ppm, and 2.0ppm were measured, the results shown in Figure 2 were obtained. Therefore, we sampled tap water at approximately 20℃ and continuously measured the available chlorine concentration.
It was 0.65 to 0.82 ppm, and the drift was large.

次に同じ検水に試薬溶液を加えて80℃に加熱反
応後、冷却し容器内に送入し有効塩素濃度を測定
したところ、1.08ppmであり安定な測定値が得ら
れた。
Next, a reagent solution was added to the same test water, heated to 80°C, and then cooled and sent into a container to measure the effective chlorine concentration, which was 1.08 ppm, a stable measurement value.

なお第2図の電圧表示は電流値をアンプにて増
幅し、電圧変換して表示した。
Note that the voltage display in FIG. 2 is displayed after amplifying the current value with an amplifier and converting it into voltage.

実施例2、比較例2 濃度32重量%の工業用亜塩素酸ソーダ水溶液を
脱イオン水にて稀釈して濃度1000ppmの水溶液を
つくり、これを稀釈して濃度1ppm、2ppm、
3ppm、4ppm、5ppmと段階的に変化させた検液
を80℃に加熱し実施例1と同じ装置により同じ条
件により測定したところ第3図Aのような結果を
得た。なお濃度1000ppmの測定は滴定法により行
つた。
Example 2, Comparative Example 2 An industrial sodium chlorite aqueous solution with a concentration of 32% by weight was diluted with deionized water to create an aqueous solution with a concentration of 1000 ppm, and this was diluted to give concentrations of 1 ppm, 2 ppm,
A test solution with a stepwise change of 3ppm, 4ppm, and 5ppm was heated to 80°C and measured using the same equipment as in Example 1 under the same conditions, and the results shown in Figure 3A were obtained. Note that the measurement at a concentration of 1000 ppm was performed by titration.

次に上記のように段階的に濃度を変化させた検
液を加熱せずに約20℃で上記と同様にして測定し
たところ第3図Bのような結果となり非常に不安
定であつた。
Next, when the test solution whose concentration was changed stepwise as described above was measured in the same manner as above at about 20° C. without heating, the results were as shown in Figure 3B, indicating that it was extremely unstable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の1例を示す説明図、第2
図は実施例1における液濃度と電圧との関係を示
す検量線のグラフ、第3図は実施例2、比較例2
における液濃度と電圧との関係を示すグラフであ
る。 1……液電解用の容器、6……作動電極、7…
…対極、8……研磨材粒、9……サンプリング
槽、12……試薬液槽、14……加熱器、18…
…排出口。
FIG. 1 is an explanatory diagram showing one example of the device of the present invention, and FIG.
The figure is a graph of a calibration curve showing the relationship between liquid concentration and voltage in Example 1, and Figure 3 is a graph of Example 2 and Comparative Example 2.
3 is a graph showing the relationship between liquid concentration and voltage in FIG. 1... Container for liquid electrolysis, 6... Working electrode, 7...
... Counter electrode, 8 ... Abrasive grains, 9 ... Sampling tank, 12 ... Reagent liquid tank, 14 ... Heater, 18 ...
…Vent.

Claims (1)

【特許請求の範囲】 1 有効塩素を含む検液にヨウ化アルカリ又は臭
化アルカリの試薬を加えて電解し、その電解電流
を計測することにより検液中の有効塩素濃度を測
定する方法において、予め検液あるいは上記試薬
を加えた検液を40℃以上に加熱することを特徴と
する溶液濃度測定方法。 2 作動電極及びその対極を有する液電解用容
器、サンプリング槽、試薬液槽及び液加熱装置を
備え、サンプリング槽より取出された検液又は該
検液と試薬液槽より取出された試薬液との混合液
を液加熱装置に導く導管、液加熱装置より取出さ
れた検液に試薬液を添加した溶液又は液加熱装置
より取出された上記混合液を冷却後、液電解用容
器に導く導管、及び液電解用容器より電解後液を
排出する装置を設けたことを特徴とする溶液濃度
想定用装置。
[Claims] 1. A method for measuring the concentration of available chlorine in a test solution by adding an alkali iodide or alkali bromide reagent to a test solution containing available chlorine, electrolyzing the solution, and measuring the electrolytic current. A solution concentration measuring method characterized by heating a test solution or a test solution to which the above-mentioned reagents have been added in advance to 40°C or higher. 2 Equipped with a liquid electrolytic container having a working electrode and its counter electrode, a sampling tank, a reagent liquid tank, and a liquid heating device, and a test liquid taken out from the sampling tank or a combination of the test liquid and the reagent liquid taken out from the reagent liquid tank. A conduit that leads the mixed liquid to the liquid heating device, a solution obtained by adding a reagent solution to the test liquid taken out from the liquid heating device, or a conduit that leads the above-mentioned mixed liquid taken out from the liquid heating device to a container for liquid electrolysis after cooling; A device for estimating solution concentration, comprising a device for discharging a solution after electrolysis from a container for solution electrolysis.
JP62310640A 1987-12-07 1987-12-07 Method and apparatus for measuring concentration of solution Granted JPH01150851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310640A JPH01150851A (en) 1987-12-07 1987-12-07 Method and apparatus for measuring concentration of solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310640A JPH01150851A (en) 1987-12-07 1987-12-07 Method and apparatus for measuring concentration of solution

Publications (2)

Publication Number Publication Date
JPH01150851A JPH01150851A (en) 1989-06-13
JPH0561582B2 true JPH0561582B2 (en) 1993-09-06

Family

ID=18007683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310640A Granted JPH01150851A (en) 1987-12-07 1987-12-07 Method and apparatus for measuring concentration of solution

Country Status (1)

Country Link
JP (1) JPH01150851A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748067B2 (en) * 1990-05-21 1995-05-24 ダイソー株式会社 Measuring method of free chlorine concentration in salt water

Also Published As

Publication number Publication date
JPH01150851A (en) 1989-06-13

Similar Documents

Publication Publication Date Title
US3956094A (en) Apparatus for monitoring available chlorine in swimming pools
Elder et al. Anodic behaviour of the borohydride ion
Schumb et al. The measurement of the molal ferric-ferrous electrode potential
Baker et al. Determination of microgram quantities of fluoride and cyanide by measurement of current from spontaneous electrolysis
MacInnes et al. The transference numbers of potassium chloride. New determinations by the Hittorf method and a comparison with results obtained by the moving boundary method
US20070207083A1 (en) Process and method for recovery of halogens
JPH0561582B2 (en)
Cain et al. An Electrolytic Resistance Method for Determining Carbon in Steel.
Maricle et al. Polarography in a Sodium Chloride-Potassium Chloride Melt Using Tungsten-in-Vycor Microelectrodes
JPS5923385B2 (en) Method for measuring the concentration of sodium in a mercury-sodium amalgam flow
Noyes et al. THE RELATIVE ELECTRODE POTENTIALS OF TIN AND LEAD DETERMINED BY EQUILIBRIUM MEASUREMENTS WITH THEIR PERCHLORATES.
GB1579110A (en) Device for the determination ofthe concentration of sodium in a flowing mercury-sodium amalgam
JPS55152180A (en) Method for regeneration of copper chloride etching solution
US3494838A (en) Method for the instantaneous quantitative analysis of ozone
JP2001250804A (en) Method of controlling nitrite ion with hydrogen peroxide
JPS6156465B2 (en)
Macleod et al. Polarographic procedures in anhydrous hydrogen fluoride: Oxidation and reduction of tin (II)
AU2001272231B2 (en) Process and method for recovery of halogens
JPH0746090B2 (en) Method for measuring dissolved chlorine dioxide
JPH0748067B2 (en) Measuring method of free chlorine concentration in salt water
Turrentine et al. ELECTROCHEMICAL OXIDATION OF HYDRAZINE SULFATE AND AMMONIUM HYDROXIDE.
JP2020003382A (en) Total effective chlorine measurement device, method for correction of the same, and method for measuring total effective chlorine
Hoyle et al. Rapid dissolution of sulphide ore for the determination of copper
JP4603782B2 (en) Residual chlorine measuring device
Partington et al. Oxidation-reduction potentials in non-aqueous solutions. Part I. The systems cuprous-cupric chlorides and ferrous-ferric chlorides in pyridine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 15