JPH0561282B2 - - Google Patents

Info

Publication number
JPH0561282B2
JPH0561282B2 JP8143070A JP4307081A JPH0561282B2 JP H0561282 B2 JPH0561282 B2 JP H0561282B2 JP 8143070 A JP8143070 A JP 8143070A JP 4307081 A JP4307081 A JP 4307081A JP H0561282 B2 JPH0561282 B2 JP H0561282B2
Authority
JP
Japan
Prior art keywords
suspension
spray
titanium
solid
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8143070A
Other languages
Japanese (ja)
Other versions
JPS56155209A (en
Inventor
Paton Kyandorin Jon
Deibido Kaunto Ansonii
Uiriamu Kerando Jon
Resurii Ro Piitaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Publication of JPS56155209A publication Critical patent/JPS56155209A/en
Publication of JPH0561282B2 publication Critical patent/JPH0561282B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

この発明は懞濁液からの固䜓物質の分離、特
に、遷移金属觊媒成分が懞濁たは溶解せる䞍掻性
液状媒䜓からの該觊媒成分の分離に関する。 ゚チレン、プロピレン及びより高玚なα−オレ
フむン単量䜓のようなオレフむン単量䜓はいわゆ
る「チヌグラヌ−ナツタ」觊媒を甚いお重合する
こずができる。「チヌグラヌ−ナツタ」觊媒なる
甚語は䞀般に、呚期埋衚乃至族の遷移金属
の化合物ず呚期埋衚第IA乃至族の非遷移金
属の有機化合物を混合するこずにより埗られる觊
媒系を意味するものずしお䜿甚されおいる。その
觊媒系の倚くにおいおは遷移金属化合物は固䜓化
合物ずしおたたは固䜓担䜓に担持された化合物ず
しお存圚する。プロピレン及びより高玚α−オレ
フむン類の重合に斌いおは、觊媒がその䜿甚量に
察しお高い収率で重合䜓を補造し埗るこず及び埗
られる重合䜓が所望するアむ゜タクチツク重合䜓
を高割合で含有するこずが望たしい。ナツタが初
期に報告した觊媒系は比范的掻性及び立䜓特異性
が䜎く、そのため重合プロセスの終わりに重合䜓
から觊媒残枣を分離するこず及び比范的倚量の奜
たしからざるアタクチツク重合䜓を陀去する必芁
があ぀た。珟圚開発されおいる觊媒系は掻性が比
范的倧きく、これらの觊媒のあるものは耇雑な觊
媒分離操䜜を必芁ずしないか又はアタクチツク重
合䜓を陀去する必芁がない。さらに、重合プロセ
スを単玔化するために、液状媒䜓の䞍存圚䞋にガ
ス状単量䜓を觊媒粒子ず生成重合䜓からなる固盞
ず接觊せしめお重合を行うこずが提案されおい
る。このような重合プロセスを行うには觊媒の粒
子圢態が重芁である。掻性及び立䜓特異性に優れ
たある皮の觊媒は気盞重合プロセスに容易に甚い
るこずができない。なぜならば、觊媒の粒子圢態
に原因しお気盞重合反応においお皮々の問題を生
じたり、たたは奜たしからざる粒子圢態もしくは
粒子の倧きさを有する重合䜓を生成するからであ
る。 本発明に係る固䜓粒子状ハロゲン化チタン含有
オレフむン重合甚觊媒成分を調補する方法は、少
くずも䞀皮の固䜓物質の粒子および固䜓粒子の凝
集を助長する物質が脂肪族、脂環族たたは芳銙族
炭化氎玠である䞍掻性液状媒䜓に懞濁せる懞濁液
を圢成するこずによ぀お、ハロゲン化チタンが該
䞍掻性液状媒䜓䞭に溶解しおいるか、たたは、ハ
ロゲン化チタンが該䞍掻性液状媒䜓䞭に懞濁せる
固䜓物質ずしお存圚するかもしくは懞濁せる固䜓
物質に担持されおいる懞濁液を調補し、 該懞濁液を噎霧也燥し、次いで 噎霧也燥せるハロゲン化チタン含有觊媒成分を
回収するこずを特城ずする。 フランス特蚱第1146287号には噎霧也燥方法を
開瀺しおいるが、重合觊媒成分ずしお有甚な遷移
金属化合物を噎霧也燥するこずは瀺唆しおいな
い。英囜特蚱第1248953号にはオレフむン単量䜓
の気盞重合甚觊媒ずしおシリルクロメヌト觊媒を
甚いるこずを開瀺しおいる。適圓な圢態の觊媒を
補造する皮々の技術が開瀺されおおり、そしお、
シリクルロメヌトは溶液から埗られる可溶性化合
物であるため溶液を噎霧也燥するこずが考えられ
るが、この特蚱は、噎霧也燥に蚀及しおいるにも
かかわらず、この技術の詳现は説明されおおら
ず、実斜䟋にも蚘茉されおいない。ペヌロツパ特
蚱広告第20818号特開昭55−120608号には前
駆物質を電子䟛䞎䜓䞭で噎霧也燥しお埗られる觊
媒を甚いお゚チレンを重合する方法が蚘茉されお
いる。しかしながら、本発明者がこの特蚱の觊媒
を甚いおプロピレンの重合を行぀たずころ、本発
明の系ずは察照的に重合は䞍胜であ぀た。 本発明に埓぀お噎霧也燥される懞濁液䞭の少な
くずも皮の固䜓物質からなる粒子はハロゲン化
チタンの粒子であるかたたはハロゲン化チタンを
含む粒子であるこずが望たしい。ハロゲン化チタ
ンの粒子たたはハロゲン化チタンを含有する粒子
の他に、ハロゲン化チタンを含たない他の固䜓物
質を懞濁液䞭に含たせるこずができる。 埓぀お、本発明の奜たしい態様に埓えば、ハロ
ゲン化チタンである固䜓物質たたはハロゲン化チ
タンを含有する固䜓物質の粒子を必芁に応じおハ
ロゲン化チタンを含たない固䜓物質の粒子ず共に
䞍掻性液状媒䜓䞭に懞濁し、この懞濁液を噎霧也
燥し、次いで噎霧也燥せる固䜓物質を回収する。 あるいは、それ皋奜たしくはないが懞濁液
は、ハロゲン化チタンを䞍掻性液状媒䜓に溶解し
た溶液にたたは以䞊の固䜓物質の粒子を懞濁
せしめたものから構成する。 懞濁液は皮類の固䜓物質のみの粒子を含むこ
ずが望たしい。 䞍掻性液状媒䜓は、噎霧也燥せる固䜓物質をオ
レフむン重合觊媒の成分ずしお甚いた時にその
特性に支障を及ばさないものであればいかなる液
状媒䜓であ぀おもよい。ペンタン、ヘキサンたた
はヘプタンのような脂肪族炭化氎玠を䞍掻性液状
媒䜓ずしお甚いるこずができるが、ベンれン、ト
ル゚ン、たたはキシレンのような芳銙族炭化氎玠
のほうが奜たしい。 遷移金属化合物が䞊蚘少なくずも皮の固䜓物
質の粒子ずしおたたはそのような粒子䞭に存圚す
る堎合には、䞍掻性液状媒䜓は脂肪族、芳銙族た
たは脂環匏炭化氎玠であるこずが望たしい。ペン
タン、ヘキサンたたはヘプタンのような脂肪族炭
化氎玠を䞍掻性液状媒䜓ずしお甚いるこずができ
るが、ベンれン、トル゚ンたたはキシレンのよう
な芳銙族炭化氎玠媒䜓の方が奜たしい。 少なくずも皮の固䜓物質からなる粒子及び溶
解もしくは懞濁せるハロゲン化チタンの他に、固
䜓粒子の凝集を助長する物質を少量懞濁液䞭に配
合する。この物質以䞋「凝集助剀」ず呌ぶこず
ずする。は䞍掻性液状媒䜓に溶解せる溶液ずし
お存圚するこずが望たしい。 懞濁液䞭に存圚するハロゲン化チタンは、奜た
しくは塩化チタンである。 少なくずも皮の固䜓物質からなる粒子は、ハ
ロゲン化チタンの固䜓化合物から実質的に構成す
るこずができ、たた他の物質を適圓量配合するこ
ずもできる。埓぀お、固䜓物質が塩化チタンであ
る堎合、この固䜓物質は実質的に玔粋な固䜓䞉塩
化チタンであ぀おもよいし、たた四塩化チタンを
アルミニりム金属、有機アルミニりム化合物たた
は有機マグネシりム化合物のような還元剀で還元
するこずにより調補される生成物のような䞉塩化
チタンを含有する物質であ぀おもよい。あるい
は、塩化チタンは、四塩化チタンをシリカ、アル
ミナ、マグネシア、これらの化合物のもしくは
それ以䞊からなる混合物もしくは錯䜓たたは塩化
マグネシりムず接觊せしめるこずにより埗られる
生成物であ぀おもよい。䞊述のような成分に加え
お、もしくはそのような成分の代わりに、゚ヌテ
ル、゚ステル、有機燐化合物たたは硫黄含有有機
化合物のようなルむス塩基化合物をハロゲン化チ
タンに含有せしめるこずができる。 ルむス塩基化合物はハロゲン化チタンを補造す
る皮々の段階においおハロゲン化チタンに配合す
るこずができる。即ち、ハロゲン化チタンが四塩
化チタンを非遷移金属の有機化合物で還元しお埗
られる生成物である堎合、その還元生成物を゚ヌ
テルのようなルむス塩基化合物で凊理するこずが
できる。あるいは、ハロゲン化チタンが四塩化チ
タンを担䜓ず接觊せしめお埗られる生成物である
堎合には、ルむス塩基化合物を担䜓䞭に混入する
こずにより、ルむス塩基化合物をハロゲン化チタ
ンずの混合物もしくは錯䜓ずしお担䜓に加えるこ
ずにより、たたは、ルむス塩基化合物をすでに担
持されたハロゲン化チタンに加えるこずによりル
むス塩基化合物を含む担持化合物ずするこずがで
きる。ハロゲン化マグネシりムに担持されたハロ
ゲン化チタンは特に英囜特蚱第904510号、第
1271411号、第1286867号、第1310547号及び第
1527736号明现曞に蚘茉されおいる。アルミナた
たはシリカのような金属酞化物に担持されたハロ
ゲン化チタンは特にペヌロツパ特蚱出願公告第
14523号及び第14524号明现曞に蚘茉されおいる。
このようなタむプの担持されたハロゲン化チタン
は本発明のプロセスに䜿甚するこずができる。 ルむス塩基化合物をハロゲン化チタンに配合す
る別法はルむス塩基化合物の存圚䞋に固䜓ハロゲ
ン化チタンを粉砕するこずからなる。粉砕工皋の
埌粉砕せるハロゲン化チタンは適圓な液状媒䜓で
掗浄するこずによりたたは以䞊の抜出工皋に
付すこずができる。これらの掗浄工皋によ぀お埮
现な粒子圢態を有するハロゲン化チタンを埗るこ
ずができる。ハロゲン化チタンである固䜓物質た
たはハロゲン化チタンを含む固䜓物質からこのよ
うにしお埗られる埮现な粒子は本発明方法に䜿甚
するのに特に奜適である。 埓぀お、本発明は他の䞀面に斌いお、ルむス塩
基化合物の存圚䞋に固䜓ハロゲン化チタンを粉砕
し、粉砕せるハロゲン化チタンを適圓な液状媒䜓
で掗浄するこずによりたたは以䞊の抜出工皋
に付し、このように粉砕及び掗浄せる固䜓を䞍掻
性液状媒䜓に分散せる懞濁液を圢成し、該懞濁液
を噎霧也燥し、噎霧也燥せる固䜓物質を回収する
こずからなる方法を提䟛する。 ハロゲン化チタンが固䜓ハロゲン化チタンであ
る堎合䞉塩化チタンであるこずが望たしい。この
明现曞においお、䞉塩化チタンずは玔粋な䞉塩化
チタンのみならず、他の物質、䟋えば塩化アルミ
ニりムたたは有機アルミニりムハラむド類ず䌚合
せる、たたは錯䜓を圢成せる䞉塩化チタンをも意
味する。䌚合せるもしくは錯䜓を圢成せる塩化ア
ルミニりム含有䞉塩化チタンには四塩化チタンを
金属アルミニりムで還元するこずにより埗るこず
ができる。 ハロゲン化チタンを䞍掻性液状媒䜓に溶解する
堎合、ハロゲン化チタンはヘキサン、ヘプタン、
ドデカン異性䜓混合物、ベンれンたたはトル゚ン
のような炭化氎玠溶剀に溶解せる四塩化チタンの
ような単玔な化合物であ぀おもよい。そのような
ハロゲン化チタンの溶液に少なくずも皮の固䜓
物質の粒子を分散しおなる懞濁液も本発明方法に
甚いるこずができる。 ハロゲン化チタン、䟋えば四塩化チタンを䞍掻
性液状媒䜓、䟋えば炭化氎玠溶剀に溶解する堎
合、少なくずも皮の固䜓物質はオレフむン重合
甚觊媒たたは觊媒成分に察し担䜓ずしお䜜甚し埗
る物質であるこずが望たしい。埓぀お、固䜓物質
はシリカ、アルミナ、マグネシア、これら化合物
のたたはそれ以䞊の混合物もしくは錯䜓、たた
は塩化マグネシりムであ぀おもよく、たた埗られ
る重合䜓、䟋えばポリ゚チレンたたはポリプロピ
レンのような重合䜓物質であ぀おもよい。 少なくずも皮の固䜓物質を含み䞔぀溶解もし
くは懞濁せるハロゲン化チタンを含む懞濁液は必
芁に応じお凝集助剀を含むこずができ、この凝集
助剀は固䜓物質粒子が懞濁せる䞍掻性液状媒䜓に
可溶であるこずが望たしい。凝集助剀は、本発明
方法の生成物である噎霧也燥固䜓物質を含むオレ
フむン重合甚觊媒系の掻性及び立䜓特異性に実質
的に悪圱響を及がさないものであるかたたは実質
的な悪圱響を及がさないような量においお甚いる
べきである。噎霧也燥せる固䜓物質を匕続き液状
媒䜓に懞濁せしめる堎合は、凝集助剀奜たしく
は、固䜓物質を懞濁せしめる液状媒䜓の存圚䞋に
噎霧也燥せる固䜓物質の分散䜓を少なくずも小さ
な粒子になし埗るものずすべきである。 凝集助剀ずしおはポリスチレン、ポリ酢酞ビニ
ル、アタクチツクポリプロピレンたたはABブロ
ツク共重合䜓、䟋えば−ブチルスチレン−スチ
レンブロツク共重合䜓が挙げられる。あるいは、
凝集助剀はゞプニルスルホンのような硫黄含有
有機化合物であ぀おもよく、たた塩化アルミニり
ムたたは硫黄含有有機化合物ず塩化アルミニりム
もしくは四塩化チタンずの混合物もしくは錯䜓で
あ぀おもよい。すべおの凝集助剀があらゆる皮類
の固䜓物質粒子に察しお等しく有効であるずは限
らないこずを理解されたい。ある皮の凝集助剀は
固䜓物質粒子の懞濁液に加えた時に固䜓物質の膚
最を招く。懞濁液の噎霧也燥工皋においお凝集助
剀を甚いるず、凝集助剀を甚いるこずなく調補し
た同様な噎霧也燥固䜓物質ず比范しおより凝集床
の高い噎霧也燥固䜓物質を埗るこずができる。凝
集助剀の䜿甚量は懞濁液䞭に存圚するハロゲン化
チタンに察し乃至10モルであるこずが望たし
い。凝集助剀を含有する懞濁液はここに述べるよ
うな方法で噎霧也燥される。 噎霧也燥すべき懞濁液には、通垞ハロゲン化チ
タンず䌚合するルむス塩基化合物を含有せしめる
こずができる。も぀ずも、ハロゲン化チタンを䞍
掻性液状媒䜓に溶解する堎合には、ルむス塩基化
合物は、䟋えば予めルむス塩基化合物ず共に粉砕
した、もしくはルむス塩基化合物に露出せしめた
固䜓物質を甚いるこずによ぀お固䜓物質ず䌚合し
埗る。 ルむス塩基化合物を懞濁液䞭に存圚せしめる堎
合、この化合物は有機ルむス塩基化合物であるこ
ずが望たしい。有機ルむス塩基化合物は、チヌグ
ラヌ重合觊媒に甚いるこずが提案され䞔぀そのよ
うな觊媒系の掻性たたは立䜓特異性に䜜甚を及が
すものであればいかなるものであ぀おもよい。埓
぀お、ルむス塩基化合物ずしおは、゚ヌテル、゚
ステル、ケトン、アルコヌル、オル゜・゚ステ
ル、硫化物チオ゚ヌテル、チオカルボン酞の
゚ステルチオ゚ステル、チオケトン、チオヌ
ル、スルホン、スルホンアミド、耇玠環硫黄原子
を含有する融合環化合物、シランもしくはシロキ
サンのような有機珪玠化合物、ホルムアミドのよ
うなアミド、尿玠及びテトラメチル尿玠のような
その眮換誘導䜓、チオ尿玠、アミン単玔アミン
化合物のみならずアルカノヌルアミン、ピリゞン
もしくはキノリンのような環状アミン及びテトラ
メチル゚チレンゞアミンのようなゞアミンを含
む、たたは有機ホスフむン、有機ホスフむンオ
キシド、有機ホスフアむトもしくは有機ホスプ
ヌトのような有機燐化合物が挙げられる。有機ル
むス塩基化合物の䜿甚は䞋蚘に列挙する英囜特蚱
明现曞に蚘茉されおいる。803198809717
880998896509920118921954933236
9401259660259690749712481013363
10179771049723112201011508451208815
12346571324173135932813832071423658
14236591423660149503115508101553291
および1554574。 奜たしいルむス塩基化合物はハロゲン化チタン
及びハロゲン化チタンの他の懞濁液䞭に存圚する
固䜓物質に䟝存しお決たる。即ち、䟋えば二塩化
マグネシりムを四塩化チタンず共に粉砕しお接觊
せしめるこずにより調補した固䜓物質を甚いる堎
合、ルむス塩基化合物ずしおぱステル、特に安
息銙酞゚チルのような芳銙族゚ステルが奜たし
い。ルむス塩基化合物ず共に粉砕せしめた固䜓ハ
ロゲン化チタン、特に䞉塩化チタンを甚いる堎
合、英囜特蚱第1495031号明现曞に蚘茉される硫
黄含有有機化合物たたは有機燐化合物を甚いるこ
ずが奜たしい。 懞濁液䞭に存圚する少なくずも皮の固䜓物質
からなる粒子は通垞10Ό未満の粒床、特に5Ό未満
の粒床を有する。 本発明方法においお英囜特蚱第1554574号明现
曞に蚘茉されるように調補した䞉塩化チタンを甚
いるこずができる。特に、䞉塩化チタンず塩化ア
ルミニりムを䞀緒に粉砕した物質に四塩化チタン
ずゞプニルスルホンもしくはその他の硫黄含有
有機化合物を加え、混合物を粉砕し、次いで粉砕
した物質を掗浄するこずにより少なくずも䞀皮の
固䜓物質からなる粒子を調補するこずができる。
このようにしお埗るれた生成物は通垞埮现に分割
された固䜓である。この固䜓をオレフむン重合觊
媒の䞀成分ずしお甚いるず觊媒は高い掻性及び立
䜓特異性を瀺すが、この固䜓成分の粒床が埮现な
ため、この觊媒は気盞䞭で重合を行うには必ずし
も奜適ではない。このような埮现に分割せる固䜓
の懞濁液は本発明方法に埓぀お噎霧也燥するこず
ができる。 埓぀お、本発明はさらに他の䞀面においお、䞋
蚘匏たたはで衚わされる化合物の
䞭から遞ばれた硫黄含有有機化合物の存圚䞋に䞉
塩化チタン、塩化アルミニりム及び四塩化チタン
を粉砕し、このように粉砕した固䜓を、塩化アル
ミニりムず四塩化チタンの䞡者もしくはいずれか
䞀方ず硫黄含有有機化合物ずを溶解し埗るかたた
は、硫黄含有有機化合物ず塩化アルミニりムもし
くは四塩化チタンの少なくずも方ずの錯䜓を溶
解し埗る液状媒䜓で掗浄し、粉砕・掗浄せる固䜓
を䞍掻性液状媒䜓䞭に懞濁し、埗られた懞濁液を
噎霧也燥し、次いで䞉塩化チタン含有噎霧也燥固
䜓物質を回収するこずからなる遷移金属組成物の
調補方法を提䟛する。 䞊蚘匏及びにおいお、はハロ
ゲン原子、アルキル、アリヌル、アルコキシ、ア
リヌルオキシ、アルキルチオもしくはアリヌルチ
オ基たはた−NR1R2基であり、たた぀のが
それらが結合したプニル基䞭の少なくずも぀
の炭玠原子ず䞀䜓にな぀お䞍飜和炭化氎玠環を圢
成しおもよい。たた、が耇数である時はそれら
は同䞀であ぀おも盞違しおもよい。 はハロゲン原子、アルキル、アリヌル、アル
コキシ、アリヌルオキシ、アルキルチオもしくは
アリヌルチオの各基たたは−NR1R2基であり、
たた぀のがそれらが結合したプニル基䞭の
少なくずも぀の炭化氎玠ず䞀緒に䞍飜和炭化氎
玠環を圢成しおもよい。たた、が耇数である堎
合それらは同䞀であ぀おも盞違しおもよい。た
た、぀のず぀のが−SO2−基に結合した
぀のプニル基の間においお盎接結合たたは−
−−CH2−−NR1−−−もしくは−CO−
の䞭から遞ばれた結合によ぀お眮換されおいおも
よい。 はハロゲン原子、アルキル、アリヌル、アル
コキシ、アリヌルオキシ、アルキルチオもしくは
アリヌルチオの各基たたは−NR1R2基であり、
぀のがそれらが結合せるプニル基䞭の少な
くずも぀の炭玠原子ず䞀䜓にな぀お䞍飜和炭化
氎玠環を圢成しおもよい。たたが耇数の堎合そ
れらは同䞀であ぀おも盞違しおもよい。 はハロゲン原子、アルキル、アリヌル、アル
コキシ、アリヌルオキシ、アルキルチオもしくは
アリヌルチオの各基たたは−NR1R2基であり、
が耇数の堎合それらは同䞀であ぀おも盞違しお
もよい。 は−−−−−NR2−たたは−CO−で
ある。 R1は氎玠原子たたは炭化氎玠ラゞカルである。 R2は炭化氎玠ラゞカルである。 R3は炭化氎玠ラゞカルたたは䞋蚘匏で衚
わされる基である。 及びはそれぞれたたは乃至
の敎数であ぀お、それらは同䞀であ぀おも盞違し
おもよい。 は正の敎数である。 䞊述の方法においお䜿甚する䞉塩化チタンは塩
化アルミニりムを含む物質、䟋えば匏TiCl3・
AlCl3で衚わされる物質であるこずが望たし い。この塩化チタンはたず远加の塩化アルミニり
ムず共に粉砕し、次いで粉砕した生成物を四塩化
チタンず硫黄含有有機化合物ず混合し、さらに粉
砕を続ける。远加の塩化アルミニりムの䜿甚量は
通垞䞉塩化チタンに察し10乃至80モル、特に奜
たしくは25乃至60モルである。混合物に加える
四塩化チタンの量は通垞䞉塩化チタンに察し乃
至50モル、特に奜たしくは10乃至20モルであ
る。混合物に加える硫黄含有有機化合物の量は䞉
塩化チタンに察し通垞50乃至100モルである。 次いで、粉砕した物質を適圓な液状媒䜓で数回
掗浄する。䜿甚する液状媒䜓は通垞、奜たしくは
80乃至120℃の枩床に保持されたトル゚ンのよう
な熱芳銙族溶剀である。液状媒䜓による掗浄は数
回繰返すこずが望たしい。 最埌に掗浄した固䜓は適圓な䞍掻性液状媒䜓䞭
に懞濁せしめる。䜿甚する液䜓媒䜓は掗浄に䜿甚
したのず同䞀液状媒䜓の別の量を甚いるこずが望
たしい。 粉砕・掗浄せる物質の懞濁液は噎霧也燥する
が、噎霧也燥は垞甚される噎霧也燥技法により行
うこずができる。即ち、懞濁液の小滎の噎霧もし
くは分散䜓を圢成する適圓なアトマむザヌに懞濁
液を送り蟌み、熱ガス流を䞊蚘小滎に接觊せし
め、液状媒䜓を蒞発せしめ、分離する固䜓生成物
を回収する。懞濁液の小滎を圢成するのに適圓な
アトマむザヌにはノズルアトマむザヌ及びスピニ
ングデむスクアトマむザヌがある。 よく知られおいるように、オレフむン重合甚觊
媒の遷移金属成分は酞化に感応し易いため、噎霧
也燥は実質的に酞玠及び氎蒞気を含たない媒䜓䞭
で行う。噎霧也燥を行うのに奜たしいガス媒䜓は
玔床の高い窒玠であるが、遷移金属成分に支障を
及がさないものであれば他のガス媒䜓を甚いるこ
ずができる。䜿甚される他のガスずしおあ氎玠及
びアルゎンたたはヘリりムのような䞍掻性ガスが
ある。 酞玠含有物質が噎霧也燥装眮内に䟵入するのを
阻止するため、わずかに高い圧力、䟋えば絶察圧
箄1.2Kgcm2で操䜜するこずが望たしい。枩床は
噎霧也燥宀内の圧力条件䞋に液状媒䜓の沞点より
䜎くおもさし぀かえないが、少なくずも液の小滎
が噎霧也燥装眮の壁たたは排出点に達する前に少
なくずも小滎の衚面を也燥せしめるのに十分な液
状媒䜓の蒞発が起こらなければならない。 噎霧也燥せる固䜓物質をオレフむン重合甚觊媒
の䞀成分ずしお甚いる際に重芁な意味を持぀噎霧
也燥固䜓物質の特性に支障を生じるこずがないよ
うに、噎霧也燥枩床は比范的䜎いこずが望たし
い。噎霧也燥装眮内に導入する熱ガスの枩床が玄
200℃を越えるこずがなく䞔぀液滎もしくは噎霧
也燥物質の枩床が150℃を越えるこずがなく、特
に液滎もしくは噎霧也燥物質の最高枩床が80°〜
130°の範囲になるようにするこずが望たしい。熱
ガスの枩床は液滎もしくは噎霧也燥物質の最高枩
床ず少なくずも等しいこずは理解されるであろ
う。 熱ガスは懞濁液の液滎に察し向流ずしお流すこ
ずができるが通垞は熱ガスず懞濁液を同䞀方向に
流す。同䞀方向に流す堎合、通垞アトマむザヌを
噎霧也燥装眮の頂端に配眮し、熱ガスを装眮の頂
端から導入しお底郚近傍から排出する。 噎霧也燥せる固䜓の䞀郚は装眮の底郚に集積す
るが、スタヌフむヌダヌバルブもしはスクリナヌ
コンベアヌのような適圓な手段を甚いおたたは熱
ガス流を利甚しお奜たしくは連続的に装眮底郚か
ら陀去するこずができる。 噎霧也燥装眮を通過しお冷华した熱ガスは噎霧
也燥装眮から分離陀去するこずができる。次いで
熱ガスをサむクロンに通すこずによ぀お随䌎固䜓
を陀去するこずができ、たたサむクロンで陀去し
た固䜓は噎霧也燥装眮から排出される固䜓に加え
られる。熱ガス䞭に存圚する䞍掻性液状媒䜓の蒞
気は適圓な凝瞮噚で凝瞮するこずが望たしく、そ
しお凝瞮した䞍掻性液状媒䜓は再䜿甚するこずが
できる。次いで、ガスは再加熱しお噎霧也燥装眮
ぞ再埪環する。 噎霧也燥条件は目的ずする粒床に応じお調節す
るこずができる。最終噎霧也燥物質の奜たしい粒
床は20乃至100Ό、特に40乃至80Ό、䟋えば50Όで
ある。 噎霧也燥固䜓物質はオレフむン重合甚觊媒の
成分ずしお䜿甚できるため、噎霧也燥固䜓物質の
圢態は埗られるオレフむン重合䜓が満足すべき粒
子圢態を持぀のにふさわしいものずすべきであろ
う。特に、觊媒系䞭に存圚する遷移金属ミリモル
圓たり1000以䞊のオレフむン単量䜓を重合せし
めるための觊媒の成分ずしお䜿甚する堎合には
実質的に塊や埮粉を含たない重合䜓生成物が埗ら
れるように噎霧也燥条件を遞ぶこずが望たしい。
ここで、重合䜓生成物が「実質的に塊や埮粉を含
たない」ずは重合䜓生成物䞭の塊の含有量が10重
量以䞋であり、䞔぀埮粉重合䜓の含有量も10重
量以䞋であるこずを意味する。特に、重合䜓生
成物䞭の塊及び埮粉の各々の含有量が重量未
満、こずに重量未満ずなるような固䜓物質を
埗るこずが望たしい。ここで「塊」ずは方向の
寞法がcmたたはそれ以䞊であるような重合䜓粒
子を意味する。「埮粉」ずは重合䜓粒子の最倧倧
きさが75Ό未満であるものを指す。 噎霧也燥固䜓物質は非遷移金属の有機化合物ず
共に、オレフむン重合甚觊媒ずするこずができ
る。 埓぀お、本発明はさらに他の面においお、  䞊述のような方法により懞濁液を噎霧也燥す
るこずにより埗られた固䜓物質からなる遷移金
属組成物ず、  アルミニりムもしくは呚期埋衚第族の金
属の有機化合物たたは呚期埋衚第族もしく
は第族の有機化合物ず有機アルミニりム化
合物ずの錯䜓 を混合するこずにより埗られる生成物からなるオ
レフむン重合甚觊媒を提䟛する。 䞊蚘觊媒の成分は䞋蚘䞀般匏で衚わされ
るマグネシりム含有化合物たたは䞋蚘䞀般匏で
衚わされるマグネシりム含有錯䜓ずするこずがで
きる。 R4 aMgQ(2-a)  R4 aMgQ(2-a)bR4 cALQ(3-c)  R4は炭化氎玠ラゞカルであ぀お、R4はそれぞ
れ同䞀であ぀おも盞違しおもよく、はOR5基た
たは北玠以倖のハロゲン原子であ぀お、はそれ
ぞれ同䞀であ぀おも盞異しおもよく、 R5は炭化氎玠ラゞカルたたは眮換炭化氎玠ラ
ゞカルであり、 はより倧きく以䞋の数倀であり、 はより倧きく以䞋の数倀であり、たた はより倧きく以䞋の数倀である。 R4は通垞すべおアルキル基であ぀お、こずに
乃至20個の炭玠原子を有するアルキル基、特に
乃至個の炭玠原子を有するアルキル基である
こずが奜たしく。数倀は少なくずも0.5である
こずが望たしく、特に奜たしい数倀はである。
数倀は通垞の0.05乃至1.0である。数倀は通
垞少なくずも、奜たしくはである。 䞊蚘成分が族の金属ず有機アルミニり
ム化合物ずの錯䜓である堎合この化合物はテトラ
アルキルアルミニりムリチりムのような化合物で
あり埗る。䞊蚘成分は有機アルミニりム化合
物であるこずが奜たしく、有機アルミニりム化合
物ずしおは䟋えばゞヒドロカルビル・アルミニり
ム・ハラむドのようなアルミニりム・ヒドロカル
ビル・ハラむド、アルミニりム・ヒドロカルビ
ル・サルプヌトたたはアルミニりム・ヒドロカ
ルビル・ヒドロカルビルオキシを甚いるこずがで
きるが、アルミニりム・トリヒドロカルビルたた
はゞヒドロカルビル・アルミニりム・ヒドリドが
奜たしい。アルミニりム・トリヒドロカルビルの
䞭でも乃至個の炭玠原子を有するアルキル基
を有するアルミニりムトリアルキル、特にアルミ
ニりムトリ゚チルが奜たしい。 䞊蚘成分ずしおアルミニりム・トリヒドロ
カルビル化合物を甚いおプロピレンのような高玚
オレフむン単量䜓を重合する堎合には觊媒系にさ
らにルむス塩基化合物を配合するこずが望たし
い。ルむス塩基化合物は噎霧也燥する懞濁液䞭に
配合するのに適圓ないかなるタむプのルむス塩基
化合物であ぀おもよいが、有機ルむス塩基化合物
が奜たしい。 適圓なルむス塩基化合物は䞋蚘の䞀般匏で衚
わされる゚ステルがある。 R6COOR7  䞊匏においお、R6は、炭化氎玠ラゞカルであ
぀お、もしくは以䞊のハロゲン原子および
たたはヒドロカヌボンオキシで眮換されおいおも
よく、 R7は炭化氎玠ラゞカルであ぀お、たたは
以䞊のハロゲン原子で眮換されおいおもよい。 䞊蚘匏䞭のR6ずR7は同䞀であ぀おも盞異し
おもよいが、R6ずR7の䞡者ではなく方のみが
アリヌル基を含むこずが望たしい。R6は所望に
より眮換されたアルキルたたはアリヌル基、䟋え
ば、メチル、゚チルたたは特にプニル、トリ
ル、メトキシプニルたたはフルオロプニル基
であるこずが望たしい。R7は個以䞋の炭玠原
子を有するアルキル基、䟋えば、゚チルたたはブ
チル基であるこずが望たしい。R6がアリヌルた
たはハロアリヌル基であ぀お、R7がアルキル基
であるこずが特に奜たしい。匏で衚わされる゚
ステルには安息銙酞゚チルおよび、アニス酞゚チ
ルのようなアニス酞−メトキシ安息銙酞の
゚ステルがある。 ルむス塩基化合物に加えおたたは代替しお眮換
もしくは未眮換ポリ゚ンを觊媒系に配合するこず
ができる。配合するポリ゚ンは−メチルヘプタ
トリ゚ンのような非環匏ポリ゚ン
であ぀おも、たた、シクロオクタトリ゚ン、シク
ロオクタテトラ゚ンもしくはシクロヘプタトリ゚
ンのような環匏ポリ゚ンたたはそのような環匏ポ
リ゚ンのアルキルもしくはアルコキシ眮換誘導䜓
であ぀おもよく、さらに、トリピリナりム塩もし
くは錯䜓、トリポロンたたはトロポンであ぀おも
よい。 觊媒系䞭の䞊蚘成分ずの割合は圓業者
によく知られおいるように広範囲に亘぀お倉える
こずができる。特に奜たしい割合は䜿甚する物質
の皮類及び䞡成分の絶察的濃床に䟝存しお倉わる
が、䞀般には觊媒系䞭の成分䞭に存圚する遷
移金属グラム原子圓たり成分が少なくずも
モル存圚するこずが望たしい。成分䞭の遷
移金属グラム原子圓たりの成分のモル数は
1000ずいう倧きな数倀であ぀おもよいが、500を
越えないこずが望たしく、ある皮の遷移金属組成
物においおは25以䞋、䟋えば乃至10であるこず
が望たしい。 䞊蚘成分に加えお觊媒系にルむス塩基成分
を加える堎合ルむス塩基化合物の添加量は成分
モル圓たりモル以䞋、特に0.1乃至0.5モル
であるこずが望たしい。しかしながら、䜿甚する
有機化合物ずルむス塩基化合物の皮類に応じお、
ルむス塩基化合物の配合割合は最良の觊媒系が埗
られるように倉えるべきである。 觊媒系にポリ゚ンを配合する堎合その配合量は
䞊蚘成分モル圓たりモル以䞋、特に0.01乃
至0.20モルであるこずが望たしい。觊媒系にルむ
ス塩基成分ずポリ゚ンの䞡者を配合する堎合には
これら䞡者の合蚈量が䞊蚘成分モル圓たり
モル以䞋であるこずが望たしい。本発明に係る觊
媒はオレフむン単量䜓の重合たたは共重合に䜿甚
するこずができる。 埓぀お、本発明はさらに他の䞀面においお、少
なくずも皮のオレフむン単量䜓を重合条件䞋に
䞊述のような觊媒ず接觊せしめるこずからなるオ
レフむン重合方法を提䟛する。 觊媒系ず接觊せしめられるオレフむン単量䜓は
次の䞀般匏で衚わされる。 CH2CHR8  䞊匏においお、R8は氎玠原子たたはアルキル
ラゞカルである。 䜿甚するオレフむンずしおぱチレン、プロピ
レン、ブテン−、ペンテン−、ヘキセン−
、−メチルペンテン−たたは䞊蚘䞀般匏
を満足するその他のオレフむンがある。オレフむ
ン単量䜓ずしおは炭玠原子数10以䞋のものが奜た
しい。オレフむン単量䜓は単䞀重合たたは共重合
するこずができる。プロピレンを共重合する堎合
は英囜特蚱第970478号、第970479号及び第
1014944号明现曞に蚘茉されるような逐次共重合
法に埓぀お゚チレンず共重合するこずが望たし
い。本発明方法においお゚チレンを共重合する堎
合には、゚チレンず䟋えばブテン−たたはヘキ
セン−ず混合物を甚いお重合プロセスの間同䞀
組成が実質的に保持されるようにしお共重合する
こずが望たしい。 觊媒の䞊蚘成分はオレフむン単量䜓の存圚
䞋に觊媒の他の成分ず混合するこずができる。觊
媒にルむス塩基化合物を配合する堎合、成分
である有機金属化合物ずルむス塩基化合物ずを予
め混合し、次いでこの混合物ず䞊蚘成分であ
る反応生成物ずを混合するこずが奜たしい。 よく知られおいるようにチヌグラヌ−ナツタ型
觊媒は重合系においお䞍玔分の圱響を受け易い。
埓぀お、重合に䜿甚する単量䜓及び必芁に応じお
䜿甚する垌釈剀いずれも高玔床のものを䜿甚する
こずが望たしい。䟋えば、単量䜓ずしおは5ppm
重量未満の氎及び1ppm重量未満の酞玠を
含むものを䜿甚するこずが望たしい。玔床の高い
物質は英囜特蚱第1111493号、第1226659号及び第
1383611号明现曞に蚘茉されおいるような方法に
よ぀お調補するこずができる。 重合は既知の技法に埓぀お、䟋えば、適圓に粟
補されたパラフむン系炭化氎玠のような䞍掻性垌
釈剀の存圚䞋たたは䞍存圚䞋に、重合媒䜓ずしお
過剰量の液状単量䜓を甚いお液盞䞭でたたは気盞
䞭で気盞ずは実質的に液状媒䜓が存圚しないこ
ずを意味する行うこずができる。 重合を気盞で行う堎合、䟋えばプロピレンのよ
うな単量䜓を液状で重合反応噚䞭ぞ導入し、そし
お、重合反応噚䞭で液状単量䜓が蒞発するこずに
よ぀お蒞発冷华効果が達成されしかも重合の実質
的党䜓がガス状単量䜓によ぀お行われるように反
応噚の枩床及び圧力条件を操䜜するこずができ
る。気盞における重合は、䟋えば英囜特蚱第
1532445号明现曞に詳现に蚘茉されるように単量
䜓の枩床及び分圧がその単量䜓に察する露点枩床
及び圧力に近くなるような条件䞋に行うこずがで
きる。気盞重合反応は流動床反応系、拡販床反応
系たたはリボンブレンダヌ型反応噚のような気盞
−固盞反応を行うのに適圓な手段によ぀お達成で
きる。 本発明に係る觊媒系を甚いお流動床反応噚にお
ける゚チレンを単独重合たたは䟋えばブテン−
ず共重合するこずによ぀お高収率で重合䜓を埗る
こずができる。流動床ガスは重合されるべき単量
䜓ず分子量を調節するため連鎖移動剀ずしお甚い
られる氎玠ずからなるガス状混合物である。即
ち、゚チレンずブテン−ずを共重合しお密床玄
940Kgm3未満の密床を有する゚チレン共重合䜓
を補造する堎合䜿甚するガス組成物は通垞゚チレ
ン50乃至60モルずブテン−、25モルを含
み、残りは䞍掻性成分ず䞍玔分を陀けば氎玠であ
る。 重合はバツチ匏たたは連続匏いずれでも行うこ
ずができ、たた、觊媒成分は別々に重合反応噚䞭
に投入するこずもたた党觊媒成分を予め混合した
埌重合反応噚䞭ぞ投入するこずもできる。觊媒の
党成分を予め混合する堎合はその混合単量䜓の存
圚䞋に行うこずが望たしい。そのような混合によ
぀お、觊媒系を重合反応噚䞭ぞ投入する前にその
単量䜓は少なくずもある皋床重合するこずにな
る。重合を気盞で行う堎合觊媒成分はガス状単量
䜓たたは単量䜓混合物の流れに懞濁せしめお重合
反応噚ぞ導入するこずができる。 埗られる重合䜓の分子量を調節するために重合
には氎玠たたはゞアルキル亜鉛のような連鎖移動
剀の存圚䞋に行うこずができる。 プロピレンの重合においお連鎖移動剀ずしお氎
玠を甚いる堎合その単量䜓に察する量は0.01乃至
5.0モル、特に0.05乃至2.0モルであるこずが
望たしい。重合すべき単量䜓が゚チレンたたぱ
チレンを䞻成分ずする混合物である堎合、氎玠の
䜿甚量はより倧ずするこずができ、䟋えば゚チレ
ンの単重合の堎合反応混合物䞭に50モルを越え
る氎玠を存圚せしめるこずができるが、゚チレン
を共重合せしめる堎合氎玠の量は通垞35モルた
でである。連鎖移動剀の䜿甚量は重合条件、特に
重合枩床に䟝存しお倉わる。重合枩床は通垞、圧
力50Kgcm2以䞋においお20乃至100℃、奜たしく
は50乃至85℃である。 重合は、これたでオレフむン単量䜓の重合に提
案されたいかなる圧力においおも行える。しかし
ながら、重合を3000Kgcm2たでの高い圧力䞋に行
うず重合枩床は300℃ずいう高い枩床ずなるため
に、重合は比范的䜎い圧力及び枩床においお行う
こずが望たしい。重合は垞圧においおも行えるが
わずかに加圧した状態が望たしく、埓぀お乃至
50Kgcm2、特に乃至30Kgcm2の圧力䞋に行うこ
ずが望たしい。重合枩床は垞枩より高いこずが望
たしいが、通垞100℃以䞋である。 埗られる重合䜓の粒子圢態は觊媒系の成分
ずしお甚いられる噎霧也燥固䜓物質の粒子圢態に
䟝存する、即ち噎霧也燥固䜓物質の粒子圢態の圱
響を受けるこずを理解されたい。埓぀お、噎霧也
燥条件を調節するこずにより埗られる重合䜓の粒
子圢態を調節するこずができる。 本発明に係る方法の実斜に適圓な装眮を添付図
面に぀いお説明する。第図は本発明方法の実斜
に䜿甚するこずができる代衚的な噎霧也燥装眮の
断面図であり、第図は噎霧ノズルを備えた別の
装眮の断面図であり、第図は装眮の底郚近傍に
噎霧ノズルを備えた別の装眮の断面図であり、第
図は噎霧也燥噚を含む装眮党䜓の流れ図であ
る。第図においお、気密噎霧也燥装眮は䞊郚
円筒状郚分ず䞋郚郚分䞀般には円錐圢ず
からなる。䞊郚郚分には被芆板が備えられお
いる。 高速ギア−ボツクスモヌタヌ組䜓の出力軞
の端に取付けられた円盀が容噚の頂郚近くに
配眮されおいる。円盀は぀の板及びから
なり、これらの板の間には矜根が取付けられ
おいる。駆動軞はチ゚ンバヌによ぀お取巻
かれ、チ゚ンバヌは円盀の䞊板に達しお
いる。板には䞭倮開口が穿蚭されおいる。 被芆板の䞊にはチ゚ンバヌを取巻く充気
宀が蚭けられおいる。充気宀は、被芆板
の䞭倮開口ずチ゚ンバヌの䞋方䌞長郚ずの
間の環状開口を経由しお容噚に連通しおい
る。 チ゚ンバヌには導管が取付けられ、こ
の導管は遷移金属化合物を含む懞濁液の源図瀺
せずに連な぀おいる。充気宀には導管
が蚭けられ、この導管は加熱䞍掻性ガス源
図瀺せずに連通しおいる。 容噚の底郚近傍には導管が配蚭され、こ
の導管は円錐郚の偎壁を貫いお容噚から
延出しおいる。パルプ手段を備えた導管
が容噚の円錐郚の底端に蚭けられ、也燥固䜓
物質貯蔵甚ホツパヌ図瀺せずに連぀おいる。 運転に際しお円盀は500乃至25000rpmの高速
で回転せしめる。遷移金属化合物ず䞍掻性液状媒
䜓を含む懞濁液、䟋えば䞉塩化チタンのトル゚ン
䞭懞濁液を導管ずチ゚ンバヌを通しお円
盀の板ずずの間ぞ導入する。円盀及び矜
根の高速回転によ぀お懞濁液は円盀の倖呚
から霧滎ずしお飛ばされる。 熱䞍掻性ガスが導管、充気宀及び環状
開口を通぀お回転円盀の呚りぞ流入する。
この熱䞍掻性ガスによ぀お懞濁液の霧滎から液状
媒䜓が蒞発せしめられる。 蒞発した液状媒䜓ず随䌎する噎霧也燥固䜓分を
含む䞍掻性ガスは導管を通぀お容噚から排
出される。噎霧也燥せる固䜓の䞻芁郚分は円錐郚
の底に集積し、バルブの操䜜によ぀お導管
から取出される。 導管を通る䞍掻性ガスはサむクロン図瀺
せずぞ送぀おその䞭から随䌎せる固䜓分を陀去
し、さらに凝瞮噚ぞ図瀺せず送぀お蒞気を液
化回収し、最埌に再加熱噚図瀺せずぞ送るこ
ずができる。次いで、再加熱された䞍掻性ガスは
導管ぞ再埪環される。導管を通る噎霧也
燥固䜓物質は貯蔵ホツパヌ図瀺せずぞ送られ
る。導管ぞ䟛絊される䞍掻性ガスは枩床玄
130℃の窒玠であるこずが望たしい。 第図に瀺す装眮は第図に瀺す装眮ず実質的
に同様であるが、円盀アトマむザヌの代わりに噎
霧ノズルが甚いられおいる。第図においお、第
図に察応するパヌツは同じ参照数字で瀺しおあ
る。噎霧ノズルは充気宀の䞭に配蚭され
おいる。噎霧ノズルは内方導管ず倖方
導管ずを備えおいる。内方導管は導管
に連぀おおり、この導管は遷移金属化合物を
含有する懞濁液の源図瀺せずに連な぀おい
る。倖方導管は䞍掻性ガス源図瀺せずに
連な぀おいる。導管ずは実質的に共軞
的であ぀お、それらは䞋方ぞゆくに埓぀お先现ず
な぀おいる。ノズルはその䞋端に、導管
ずの䞡者の開口によ぀お圢成されたオリフ
むスを備えおいる。 運転に際しお導管を通るガス流が導管
ずを通る懞濁液を匕出す。気䜓ず懞濁液
は、オリフむスを通぀お、噎霧霧的を圢成す
る。導管、充気宀及び開口を通る熱
䞍掻性ガスはオリフむスを通぀お、懞濁液の
液滎から液状媒䜓を蒞発せしめる。次いで、噎霧
也燥せる固䜓分は第図に瀺す装眮に぀いお説明
したのず同様に回収される。 第図に瀺す装眮は噎霧ノズルの䜍眮が第図
に瀺す装眮ず盞違しおいる。第図においお噎霧
ノズルは容噚の䞋郚に配蚭されおいる。オ
リフむスは䞊方に指向しおいる。容噚は円
錐圢被芆板を備え、その䞭倮郚分は導管
に連な぀おいる。 運転に際しおガス及び懞濁液はオリフむス
から䞊方ぞ向か぀お噎霧され、そしお圢成された
霧滎がたず容噚䞭を䞊昇し、次いで、重力の圱
響ず導管から向流的に導入される熱䞍掻性ガ
スの䜜甚によ぀お円錐郚の底に萜䞋し、第図
に぀いお説明した装眮の堎合ず同様に集められ
る。 第図においお熱䞍掻性ガスずノズルからの噎
霧は同䞀方向に流れるが、第図においおは熱䞍
掻性ガスずノズルからの噎霧は向流的に流れる。 第図においお貯槜は導管に連な぀お
いる。導管は噎霧也燥せる固䜓物質の貯槜
に連な぀おいる。導管はサむクロンに
連なり、サむクロンは底郚排出導管及び
バルブを備えおいる。導管は貯槜に
連な぀おいる。サむクロンは蒞気導管を
通じおスクラバヌ凝瞮噚に連な぀おおり、こ
の凝瞮噚の䞊郚には噎霧頭が配蚭されおい
る。スクラバヌ凝瞮噚の底から導管が回
収ポツトぞ䌞びおおり、このポツトは溢
流導管を通じお液䜓貯槜に連な぀おい
る。ポツトの底から導管が䌞びおポンプ
ぞ達し、さらに導管を経お熱亀換噚
ぞ連な぀おいる。導管は熱亀換噚ず噎霧
頭を連結しおいる。再埪環導管はスクラ
バヌ凝瞮噚をフアンぞ結び぀けおいる。
フアンから導管は熱亀換噚に達し、
熱亀換噚は導管を通じお噎霧也燥噚に
連な぀おいる。導管は䞊蚘導管ず貯槜
ずを぀ないでいる。 第図に瀺す装眮の運転においお、噎霧也燥す
べき懞濁液は貯槜に貯えられ、この懞濁液は
所望割合で導管を通぀お、噎霧也燥噚の頂
端に蚭けられた充気宀内の噎霧手段ぞ送られ
る。噎霧噚においお第図に぀いお説明したの
ず同様に噎霧也燥が行われる。噎霧也燥せる固䜓
物質は噎霧也燥噚の底に集められ、導管を
通じお盎接貯槜ぞ送られる。 導管を通るガス混合物はサむクロンぞ
達し、ここで随䌎固圢分がガスから分離される。
固圢分はサむクロンの底に集められ、バルブ
を操䜜するこずにより導管を通じお陀去
される。サむクロンからの固圢分もたた貯槜
ぞ送られる。 䟝然蒞発した液状媒䜓を含むガスは蒞気導管
を通぀おスクラバヌ凝瞮噚ぞ入る。懞濁液
䞭の液状媒䜓ず同䞀の冷液䜓が噎霧頭からス
クラバヌ凝瞮噚䞭に噎霧され、蒞発した液状
媒䜓を凝瞮するず共に前工皋で陀去されなか぀た
残留固䜓粒子を陀去する。液䜓スクラバヌ凝瞮噚
の底から導管を通぀おポツトぞ送ら
れる。過剰の液䜓は溢流導管から陀去され
る。残りの液䜓は導管ポンプ及び導管
を通぀お熱亀換噚に達し、ここで冷华さ
れ導管を通぀お噎霧頭ぞ送られる。容噚
䞭の液䜓は匕続き粟補しおたたは粟補するこ
ずなく噎霧也燥甚懞濁液の調補に甚いられる。 実質的に液䜓蒞気を含たないガスはスクラバヌ
凝瞮噚から導管、フアン及び導管
を通぀お熱亀換噚に達し、ここでガスは加
熱され導管を通぀お噎霧也燥噚ぞ戻され
る。系からの損倱ガスを補うために貯槜から
導管を経お䞍掻性ガスが導管䞭ぞ䟛絊さ
れる。 第図たたは第図に瀺すように噎霧ノズルを
甚いる堎合には貯槜ず噎霧ノズルずを結ぶ別
の導管が必芁ずなるこずは容易に理解されるであ
ろう。 その他の倉曎態様は圓業者ならば自明であ぀お
このような態様が本発明の範囲を逞脱するこずな
く採甚可胜なこずは容易に理解されよう。 以䞋、本発明を実斜䟋に぀いお具䜓的に説明す
る。実斜䟋においおすべおの操䜜は特に断わらな
い限り窒玠雰囲気䞋に行぀た。たた、すべおのガ
ラス装眮は120℃においお少なくずも時間空気
炉䞭で也燥し、さらに䜿甚前に窒玠でパヌゞし
た。 䞉塩化チタン懞濁液の調補  混緎工皋 盎埄25.4mmの鋌球570Kgを含有し合蚈容量玄165
を有するゞヌプテクニヌクSM50ビブロミルを
密封し、排気しお氎銀柱0.2mmずし、窒玠眮換し
お䞊蚘ミル䞭を窒玠ガスで満たした。℃の゚チ
レングリコヌルず氎ずの混合物をミルのゞダケツ
トに通した。䞉塩化チタン近䌌匏TiCl3・
0.33AlCl3で衚わされるストヌフアヌTiCl3−AA
12.01Kgを自由流動粉末ずしおミル䞭ぞ導入し、
次いで、塩化アルミニりム2.95Kg䞊蚘ストヌフ
アヌTiCl3−AA䞭に存圚するTiCl3モル圓たり
0.50モルを加えた。℃の゚チレングリコヌル
ず氎ずの混合物をミルのゞダケツト䞭ぞ通しなが
ら、ミルを振動数1500分及び振幅mmにおいお
24時間振動せしめた。ミルの振動を停止した埌、
ゞプニルスルホン9.02Kg䞊蚘ストヌフアヌ
TiCl3−AA䞭に存圚するTiCl3モル圓たり0.70モ
ルを加え、混合物を分間混緎し、その埌混緎
を停止した。ミルの内容物に四塩化チタン650cm3
䞊蚘ストヌフア−TiCl3−AA䞭に存圚する
TiCl3モル圓たり0.10モルを加え、℃の゚チ
レングリコヌルず氎ずの混合物をミルのゞダケツ
ト䞭ぞ流しながら混緎をさらに24時間続けた。 混緎が終了した埌ミルをさかさにし、振動せし
めお萜䞋した固䜓生成物を窒玠䞭に集めるこずに
よ぀お䞉塩化チタン生成物をミルから陀去した。  掗浄工皋 䞊蚘工皋で埗た混緎生成物1.1Kgをゞダケ
ツトの぀いた攪拌噚付き容ガラス容噚ぞ移し
た。脱気したトル゚ンをガラス容噚に加え、
混合物を攪拌し、埗られた懞濁液を100℃に加熱
した。この懞濁液を100℃に時間保持し、次い
で加熱攪拌を終了した埌に固圢分を沈降せしめ
た。䞊柄み液を吞い出しお沈降した固圢分から分
離した。 䞊蚘プロセスをさらに回繰り返した。各回毎
に容噚のマヌクたで満たすに十分な量の脱気
したトル゚ンを甚いた。最埌の掗浄及び掗浄液の
陀去を行぀た埌に濃厚懞濁液を埗た。 懞濁液の調補参考䟋 䞊蚘及び工皋で埗た濃厚懞濁液に脱気
したトル゚ンを加えるこずによ぀お再び容量
ずなるたで垌釈した。この懞濁液に、懞濁液䞭に
含たれる䞉塩化チタンに察し10モルの固䜓ゞフ
゚ニルスルホンを加えた。この懞濁液を攪拌し、
40分間に亘぀お70℃ずなるたで加熱した。70℃に
時間保持し、その埌攪拌を停止した。攪拌を停
止した埌においおも固䜓粒子は埮现に分散しお折
り沈降しなか぀た。 䞊述の操䜜をいく぀かの資料に぀いお繰返し、
最埌にこれらの資料を集めお、固圢分玄10重量
を含有する懞濁液15を埗た。この懞濁液を以䞋
懞濁液ず呌ぶこずにする。 懞濁液の調補参考䟋 䞊蚘及び工皋を繰り返すこずによ぀お
埗られた倚数の濃厚懞濁液を集めお、固圢分玄30
重量を含有する懞濁液15を埗た。この懞濁液
を以䞋懞濁液ず呌ぶこずずする。 懞濁液の調補参考䟋 䞊蚘懞濁液の調補手法を繰返しお懞濁液
懞濁液ず同じ内容を埗た。 懞濁液の調補 懞濁液の調補手法を繰返しお濃厚懞濁液15
を埗た。 高分子量ポリスチレンBPケミカルズ瀟補
40をトル゚ン250cm3に加え、混合物を空気䞭で
箄65℃に、ポリスチレンがトル゚ンに溶解するに
十分な時間玄10分間加熱しお、ポリスチレン
のトル゚ン溶液を調補した。溶液䞭に窒玠ガスを
吹き蟌んで溶存空気を远出し、次いで溶液を窒玠
雰囲気䞋に保持した。 䞊蚘濃厚懞濁液にポリスチレン溶液を、濃厚懞
濁液䞭の固圢分に察しおポリスチレンが重量
ずなるような割合で加えた。埗られた懞濁液を以
䞋懞濁液ず呌ぶこずずする。 実斜䟋〜実斜䟋〜は参考䟋 第図に瀺したものず同様な噎霧也燥装眮を甚
いお懞濁液乃至を噎霧也燥した。噎霧也燥装
眮の盎埄は2.2、円筒郚高さは195、円錐郚の
角床は60であ぀た。 噎霧也燥噚に入れる前に予め玄137℃に加熱し
た窒玠ガスを埪環せしめた。窒玠ガスの䟛絊割合
は玄600Kg時間であ぀た。懞濁液は予熱するこ
ずなく、垞枩のたたのものを噎霧也燥噚ぞ䟛絊し
た。 噎霧円盀の回転速床及び懞濁液を噎霧也燥噚ぞ
䟛絊する時間を皮々倉えた。これら条件の詳现及
び噎霧也燥生成物の平均粒床を䞋蚘第衚に瀺
す。
This invention relates to the separation of solid materials from suspensions, and in particular to the separation of transition metal catalyst components from an inert liquid medium in which they are suspended or dissolved. Olefin monomers such as ethylene, propylene and higher α-olefin monomers can be polymerized using so-called "Ziegler-Natsuta" catalysts. The term "Ziegler-Natsuta" catalyst generally refers to a catalyst system obtained by mixing a compound of a transition metal of Group A of the Periodic Table with an organic compound of a non-transition metal of Group IA to A of the Periodic Table. used as something. In many of the catalyst systems, the transition metal compound is present as a solid compound or as a compound supported on a solid support. In the polymerization of propylene and higher α-olefins, the catalyst is capable of producing a polymer in a high yield relative to the amount used, and the resulting polymer contains a high proportion of the desired isotactic polymer. It is desirable to do so. The catalyst systems initially reported by Natsuta had relatively low activity and stereospecificity, requiring the separation of catalyst residues from the polymer at the end of the polymerization process and the removal of relatively large amounts of undesired atactic polymers. Ta. Currently developed catalyst systems have relatively high activity, and some of these catalysts do not require complex catalyst separation operations or removal of atactic polymers. Furthermore, in order to simplify the polymerization process, it has been proposed to carry out the polymerization in the absence of a liquid medium by bringing the gaseous monomer into contact with a solid phase consisting of catalyst particles and the resulting polymer. The particle morphology of the catalyst is important for carrying out such polymerization processes. Certain catalysts with excellent activity and stereospecificity cannot be easily used in gas phase polymerization processes. This is because the particle morphology of the catalyst may cause various problems in the gas phase polymerization reaction, or produce polymers with undesirable particle morphology or particle size. In the method for preparing the solid particulate titanium halide-containing catalyst component for olefin polymerization according to the present invention, the particles of at least one solid substance and the substance that promotes agglomeration of the solid particles are aliphatic, alicyclic or aromatic carbonized. By forming a suspension in an inert liquid medium that is hydrogen, the titanium halide is dissolved in the inert liquid medium or the titanium halide is suspended in the inert liquid medium. preparing a suspension present as a solid material or supported on a solid material to be suspended in the suspension; spray-drying the suspension; and recovering the spray-dried titanium halide-containing catalyst component. It is characterized by Although French Patent No. 1146287 discloses a spray drying method, it does not suggest spray drying transition metal compounds useful as polymerization catalyst components. British Patent No. 1248953 discloses the use of silylchromate catalysts as catalysts for gas phase polymerization of olefin monomers. Various techniques have been disclosed for producing catalysts in suitable forms, and
Since siliculromate is a soluble compound obtained from a solution, it is conceivable that the solution could be spray-dried, but although this patent mentions spray-drying, the details of this technique are not explained, and the technique is not implemented. It's not even mentioned in the example. European Patent Publication No. 20818 (JP 55-120608) describes a method for polymerizing ethylene using a catalyst obtained by spray drying a precursor in an electron donor. However, when the present inventor carried out polymerization of propylene using the catalyst of this patent, in contrast to the system of the present invention, polymerization was not possible. Preferably, the particles of at least one solid substance in the suspension spray-dried according to the invention are particles of titanium halide or particles comprising titanium halide. In addition to particles of titanium halide or particles containing titanium halide, other solid substances not containing titanium halide can be included in the suspension. According to a preferred embodiment of the invention, therefore, particles of a solid material that is a titanium halide or a solid material containing a titanium halide are optionally combined with particles of a solid material that does not contain titanium halides in an inert liquid medium. This suspension is spray-dried and the solid material that is then spray-dried is recovered. Alternatively (and less preferably), the suspension consists of particles of one or more solid substances suspended in a solution of titanium halide in an inert liquid medium. Preferably, the suspension contains particles of only one type of solid substance. The inert liquid medium may be any liquid medium that does not affect the properties of the solid material to be spray dried when it is used as a component of the olefin polymerization catalyst. Although aliphatic hydrocarbons such as pentane, hexane or heptane can be used as the inert liquid medium, aromatic hydrocarbons such as benzene, toluene or xylene are preferred. When the transition metal compound is present as or in particles of said at least one solid substance, the inert liquid medium is preferably an aliphatic, aromatic or cycloaliphatic hydrocarbon. Although aliphatic hydrocarbons such as pentane, hexane or heptane can be used as inert liquid medium, aromatic hydrocarbon media such as benzene, toluene or xylene are preferred. In addition to the particles of at least one solid substance and the dissolved or suspended titanium halide, a small amount of a substance that promotes agglomeration of the solid particles is incorporated into the suspension. This substance (hereinafter referred to as "flocculation aid") is preferably present as a solution in an inert liquid medium. The titanium halide present in the suspension is preferably titanium chloride. The particles of at least one solid substance can consist essentially of a solid compound of titanium halide, and can also contain suitable amounts of other substances. Thus, when the solid material is titanium chloride, the solid material may be substantially pure solid titanium trichloride, or titanium tetrachloride may be substituted with titanium tetrachloride, such as aluminum metal, an organoaluminum compound, or an organomagnesium compound. It may also be a material containing titanium trichloride, such as a product prepared by reduction with a reducing agent. Alternatively, titanium chloride may be a product obtained by contacting titanium tetrachloride with silica, alumina, magnesia, mixtures or complexes of two or more of these compounds, or magnesium chloride. In addition to, or instead of, components such as those mentioned above, Lewis base compounds such as ethers, esters, organophosphorus compounds, or sulfur-containing organic compounds can be included in the titanium halide. The Lewis base compound can be incorporated into the titanium halide at various stages of manufacturing the titanium halide. That is, when the titanium halide is a product obtained by reducing titanium tetrachloride with a non-transition metal organic compound, the reduction product can be treated with a Lewis base compound such as an ether. Alternatively, if the titanium halide is a product obtained by contacting titanium tetrachloride with a carrier, the Lewis base compound may be mixed into the carrier to form a mixture or complex with the titanium halide. A supported compound containing a Lewis base compound can be obtained by adding the Lewis base compound to a carrier or by adding the Lewis base compound to already supported titanium halide. Titanium halides supported on magnesium halides are particularly useful in British Patent No. 904510;
No. 1271411, No. 1286867, No. 1310547 and No.
It is described in the specification of No. 1527736. Titanium halides supported on metal oxides such as alumina or silica are particularly useful in European Patent Application Publications.
It is described in specifications No. 14523 and No. 14524.
These types of supported titanium halides can be used in the process of the present invention. An alternative method of incorporating a Lewis base compound into a titanium halide consists of grinding a solid titanium halide in the presence of a Lewis base compound. After the grinding step, the ground titanium halide can be subjected to one or more extraction steps by washing with a suitable liquid medium. Through these washing steps, titanium halide having a fine particle morphology can be obtained. The fine particles thus obtained from solid materials that are or contain titanium halides are particularly suitable for use in the process of the invention. Accordingly, in another aspect, the invention provides one or more extraction steps by grinding a solid titanium halide in the presence of a Lewis base compound and washing the ground titanium halide with a suitable liquid medium. and forming a suspension in which the solids thus ground and washed are dispersed in an inert liquid medium, spray-drying the suspension, and recovering the spray-dried solid material. do. When the titanium halide is a solid titanium halide, it is preferably titanium trichloride. In this specification, titanium trichloride refers not only to pure titanium trichloride, but also to titanium trichloride associated or complexed with other substances, such as aluminum chloride or organoaluminum halides. Titanium trichloride containing aluminum chloride to be associated or to form a complex can be obtained by reducing titanium tetrachloride with metal aluminum. When titanium halides are dissolved in an inert liquid medium, titanium halides can be dissolved in hexane, heptane,
It may be a simple compound such as a dodecane isomer mixture, titanium tetrachloride soluble in a hydrocarbon solvent such as benzene or toluene. Suspensions of particles of at least one solid substance dispersed in a solution of such titanium halides can also be used in the process of the invention. When a titanium halide, e.g. titanium tetrachloride, is dissolved in an inert liquid medium, e.g. a hydrocarbon solvent, the at least one solid material is preferably a material capable of acting as a support for the catalyst or catalyst components for olefin polymerization. . Thus, the solid material may be silica, alumina, magnesia, a mixture or complex of two or more of these compounds, or magnesium chloride, or the resulting polymer, e.g. a polymeric material such as polyethylene or polypropylene. It may be hot. The suspension containing at least one solid substance and the titanium halide dissolved or suspended can optionally contain a flocculation aid, which is an inert substance in which the solid substance particles are suspended. Desirably, it is soluble in a liquid medium. The flocculation aid is one that does not or does not substantially adversely affect the activity and stereospecificity of the catalyst system for olefin polymerization containing the spray-dried solid material that is the product of the process of the invention. should be used in such amounts. If the solid substance to be spray-dried is subsequently suspended in a liquid medium, a flocculation aid is preferably used, preferably one capable of forming a dispersion of the solid substance to be spray-dried into at least small particles in the presence of the liquid medium in which the solid substance is suspended. Should be. Coagulation aids include polystyrene, polyvinyl acetate, atactic polypropylene or AB block copolymers, such as t-butylstyrene-styrene block copolymers. or,
The flocculation aid may be a sulfur-containing organic compound such as diphenyl sulfone, or it may be aluminum chloride or a mixture or complex of a sulfur-containing organic compound and aluminum chloride or titanium tetrachloride. It is to be understood that not all flocculation aids are equally effective on all types of solid material particles. Certain flocculation aids cause swelling of the solid material when added to a suspension of solid material particles. The use of a flocculation aid in the suspension spray drying process can result in a spray-dried solid material having a higher degree of cohesion compared to a similar spray-dried solid material prepared without the use of a flocculation aid. The amount of the coagulation aid used is preferably 1 to 10 mol % based on the titanium halide present in the suspension. The suspension containing the flocculation aid is spray dried in the manner described herein. The suspension to be spray-dried can contain Lewis base compounds which are normally associated with titanium halides. However, when the titanium halide is dissolved in an inert liquid medium, the Lewis base compound can be combined with the solid material, for example by using a solid material that has been previously milled with the Lewis base compound or exposed to the Lewis base compound. We can meet. When a Lewis base compound is present in the suspension, it is preferred that the compound be an organic Lewis base compound. The organic Lewis base compound may be any compound proposed for use in Ziegler polymerization catalysts and which affects the activity or stereospecificity of such catalyst systems. Therefore, Lewis base compounds include ethers, esters, ketones, alcohols, ortho esters, sulfides (thioethers), esters of thiocarboxylic acids (thioesters), thioketones, thiols, sulfones, sulfonamides, and heterocyclic sulfur atoms. fused ring compounds such as silanes or siloxanes, amides such as formamide, urea and its substituted derivatives such as tetramethylurea, thioureas, amines (not only simple amine compounds but also alkanolamines, pyridines or quinolines). and diamines such as tetramethylethylenediamine), or organophosphorus compounds such as organophosphines, organophosphine oxides, organophosphites or organophosphates. The use of organic Lewis base compounds is described in the British patent specifications listed below. 803198, 809717,
880998, 896509, 920118, 921954, 933236,
940125, 966025, 969074, 971248, 1013363,
1017977, 1049723, 1122010, 1150845, 1208815,
1234657, 1324173, 1359328, 1383207, 1423658,
1423659, 1423660, 1495031, 1550810, 1553291
and 1554574. The preferred Lewis base compound depends on the titanium halide and other solid materials present in the suspension of titanium halide. Thus, when using a solid material prepared, for example, by grinding and contacting magnesium dichloride with titanium tetrachloride, the preferred Lewis base compound is an ester, especially an aromatic ester such as ethyl benzoate. When using solid titanium halides, especially titanium trichloride, ground with Lewis base compounds, it is preferred to use sulfur-containing organic compounds or organophosphorus compounds as described in GB 1495031. The particles of at least one solid substance present in the suspension usually have a particle size of less than 10Ό, in particular less than 5Ό. Titanium trichloride prepared as described in GB 1554574 can be used in the process of the invention. In particular, by adding titanium tetrachloride and diphenyl sulfone or other sulfur-containing organic compound to a material obtained by grinding titanium trichloride and aluminum chloride together, grinding the mixture, and then washing the ground material, at least one solid Particles of the substance can be prepared.
The product thus obtained is usually a finely divided solid. When this solid is used as a component of an olefin polymerization catalyst, the catalyst exhibits high activity and stereospecificity, but due to the fine particle size of this solid component, this catalyst is not necessarily suitable for polymerization in the gas phase. . Suspensions of such finely divided solids can be spray dried according to the method of the invention. Therefore, in still another aspect, the present invention provides titanium trichloride, aluminum chloride, and titanium tetrachloride in the presence of a sulfur-containing organic compound selected from compounds represented by the following formulas A), B), or C). and the solid thus ground is dissolved in aluminum chloride and/or titanium tetrachloride and a sulfur-containing organic compound, or the sulfur-containing organic compound and at least aluminum chloride or titanium tetrachloride are dissolved in the solid. The solid to be ground and washed is suspended in an inert liquid medium, the resulting suspension is spray-dried, and then the spray-dried solid material containing titanium trichloride is washed with a liquid medium capable of dissolving the complex with one side. A method for preparing a transition metal composition is provided. In the above formulas A), B) and C), X is a halogen atom, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio group, or -NR 1 R 2 group, and two Xs are bonded together. may be combined with at least one carbon atom in the phenyl group to form an unsaturated hydrocarbon ring. Furthermore, when there is a plurality of X's, they may be the same or different. Y is a halogen atom, an alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio group, or -NR 1 R 2 group,
Furthermore, two Y's may form an unsaturated hydrocarbon ring together with at least two hydrocarbons in the phenyl group to which they are bonded. Furthermore, when there is a plurality of Y's, they may be the same or different. In addition, one X and one Y can be directly bonded or -
O-, -CH 2 -, -NR 1 -, -S- or -CO-
may be replaced by a bond selected from Z is a halogen atom, an alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio group, or -NR 1 R 2 group,
Two Z's may be combined with at least two carbon atoms in the phenyl group to which they are bonded to form an unsaturated hydrocarbon ring. Moreover, when Z is plural, they may be the same or different. D is a halogen atom, an alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio group, or -NR 1 R 2 group,
When D is plural, they may be the same or different. T is -S-, -O-, -NR2- or -CO-. R 1 is a hydrogen atom or a hydrocarbon radical. R 2 is a hydrocarbon radical. R 3 is a hydrocarbon radical or a group represented by the following formula D). n, m, p and q are each 0 or 1 to 5
are integers that may be the same or different. x is a positive integer. The titanium trichloride used in the method described above is a substance containing aluminum chloride, for example with the formula TiCl3 .
A substance expressed by 1/3 AlCl 3 is preferable. The titanium chloride is first ground with additional aluminum chloride, then the ground product is mixed with titanium tetrachloride and a sulfur-containing organic compound, and further grinding is continued. The amount of additional aluminum chloride used is usually 10 to 80 mol %, particularly preferably 25 to 60 mol %, based on titanium trichloride. The amount of titanium tetrachloride added to the mixture is usually 5 to 50 mol %, particularly preferably 10 to 20 mol %, based on titanium trichloride. The amount of sulfur-containing organic compound added to the mixture is usually 50 to 100 mol% based on titanium trichloride. The ground material is then washed several times with a suitable liquid medium. The liquid medium used is usually preferably
A hot aromatic solvent such as toluene maintained at a temperature of 80 to 120°C. It is desirable to repeat washing with the liquid medium several times. Finally, the washed solids are suspended in a suitable inert liquid medium. Preferably, the liquid medium used is a different amount of the same liquid medium used for cleaning. The suspension of the material to be ground and washed is spray dried, which can be carried out by conventional spray drying techniques. That is, the suspension is passed through a suitable atomizer which forms an atomization or dispersion of droplets of the suspension, and a stream of hot gas is brought into contact with said droplets to evaporate the liquid medium and recover the separated solid product. do. Atomizers suitable for forming droplets of suspension include nozzle atomizers and spinning disk atomizers. As is well known, the transition metal component of the catalyst for olefin polymerization is sensitive to oxidation, so spray drying is carried out in a substantially oxygen- and water vapor-free medium. The preferred gas medium for spray drying is high purity nitrogen, but other gas mediums can be used as long as they do not disturb the transition metal components. Other gases used include hydrogen and inert gases such as argon or helium. In order to prevent oxygen-containing substances from entering the spray drying apparatus, it is desirable to operate at slightly higher pressures, for example about 1.2 Kg/cm 2 absolute. The temperature can be below the boiling point of the liquid medium under the pressure conditions in the spray drying chamber, but at least enough to dry the surface of the droplets before they reach the walls or discharge point of the spray drying device. Sufficient evaporation of the liquid medium must occur. It is desirable that the spray drying temperature be relatively low so as not to interfere with the properties of the spray dried solid material, which are important when the solid material to be spray dried is used as a component of a catalyst for olefin polymerization. The temperature of the hot gas introduced into the spray drying equipment is approximately
200℃ and the temperature of the droplets or spray-dried material does not exceed 150℃, especially the maximum temperature of the droplets or spray-dried material is 80℃~
It is desirable to have a range of 130°. It will be appreciated that the temperature of the hot gas is at least equal to the maximum temperature of the droplets or spray dried material. The hot gas can flow countercurrently to the suspension droplets, but typically the hot gas and suspension flow in the same direction. When flowing in the same direction, the atomizer is usually placed at the top of the spray drying device, with the hot gas being introduced at the top of the device and exiting near the bottom. Some of the solids to be spray dried will accumulate at the bottom of the apparatus and are preferably continuously removed from the bottom using suitable means such as star feeder valves or screw conveyors or by means of a hot gas stream. can do. The hot gas that has passed through the spray dryer and cooled can be separated and removed from the spray dryer. Entrained solids can then be removed by passing the hot gas through a cyclone, and the cyclone removed solids are added to the solids exiting the spray dryer. The vapor of the inert liquid medium present in the hot gas is preferably condensed in a suitable condenser, and the condensed inert liquid medium can be reused. The gas is then reheated and recycled to the spray dryer. Spray drying conditions can be adjusted depending on the desired particle size. The preferred particle size of the final spray-dried material is between 20 and 100Ό, particularly between 40 and 80Ό, such as 50Ό. The spray-dried solid material is one of the catalysts for olefin polymerization.
For use as a component, the morphology of the spray-dried solid material should be such that the resulting olefin polymer has a satisfactory particle morphology. Particularly when used as a component of a catalyst for polymerizing more than 1000 g of olefin monomer per millimol of transition metal present in the catalyst system, a polymer product substantially free of lumps and fines is obtained. It is desirable to choose the spray drying conditions accordingly.
Here, the term "substantially free of lumps or fine powder" means that the content of lumps in the polymer product is 10% by weight or less, and the content of fine powder polymer is also 10% by weight. It means that: In particular, it is desirable to obtain solid materials such that the content of lumps and fines in the polymer product is less than 5% by weight, in particular less than 2% by weight. By "lump" we mean polymer particles having a dimension in one direction of 1 cm or more. "Fine powder" refers to polymer particles whose maximum size is less than 75 microns. The spray-dried solid material, along with a non-transition metal organic compound, can be a catalyst for olefin polymerization. Accordingly, in yet another aspect, the present invention provides: 1. a transition metal composition consisting of a solid material obtained by spray drying a suspension by the method as described above; 2. aluminum or a transition metal composition from periodic table A The present invention provides a catalyst for olefin polymerization comprising a product obtained by mixing an organic compound of a group metal or a complex of an organic compound of group A or group A of the periodic table with an organoaluminium compound. Component 2) of the catalyst can be a magnesium-containing compound represented by the following general formula E or a magnesium-containing complex represented by the following general formula F. R 4 a MgQ (2-a) E R 4 a MgQ (2-a) bR 4 c ALQ (3-c) F R 4 is a hydrocarbon radical, and R 4 are different even if they are the same. Q is an OR5 group or a halogen atom other than fluorine, Qs may be the same or different, R5 is a hydrocarbon radical or a substituted hydrocarbon radical, and a is b is a numerical value greater than 0 and less than or equal to 2, and c is a numerical value greater than 0 and less than or equal to 3. R 4 is usually all an alkyl group, especially preferably an alkyl group having 1 to 20 carbon atoms, especially an alkyl group having 1 to 6 carbon atoms. The value a is preferably at least 0.5, with a particularly preferred value being 2.
The numerical value b is usually between 0.05 and 1.0. The numerical value c is usually at least 1, preferably 3. When component 2) is a complex of a group A metal and an organoaluminum compound, this compound may be a compound such as lithium tetraalkylaluminum. The above component 2) is preferably an organoaluminum compound, and as the organoaluminum compound, for example, aluminum hydrocarbyl halide such as dihydrocarbyl aluminum halide, aluminum hydrocarbyl sulfate or aluminum hydrocarbyl hydrocarbyloxy is used. However, aluminum trihydrocarbyl or dihydrocarbyl aluminum hydride is preferred. Among the aluminum trihydrocarbyls, aluminum trialkyl having an alkyl group having 1 to 8 carbon atoms, especially aluminum triethyl, is preferred. When a higher olefin monomer such as propylene is polymerized using an aluminum trihydrocarbyl compound as component 2), it is desirable to further include a Lewis base compound in the catalyst system. The Lewis base compound may be any type of Lewis base compound suitable for inclusion in the suspension to be spray dried, but organic Lewis base compounds are preferred. Suitable Lewis base compounds include esters represented by general formula G below. R 6 COOR 7 G In the above formula, R 6 is a hydrocarbon radical, and includes one or more halogen atoms and/or
or may be substituted with hydrocarbonoxy, R 7 is a hydrocarbon radical, and 1 or 2
It may be substituted with any of the above halogen atoms. R 6 and R 7 in the above formula G may be the same or different, but it is preferable that only one of R 6 and R 7 contains an aryl group, but not both. R 6 is preferably an optionally substituted alkyl or aryl group, such as methyl, ethyl or especially a phenyl, tolyl, methoxyphenyl or fluorophenyl group. Preferably R 7 is an alkyl group having up to 6 carbon atoms, such as an ethyl or butyl group. It is particularly preferred that R 6 is an aryl or haloaryl group and R 7 is an alkyl group. Esters of formula G include ethyl benzoate and esters of anisic acid (4-methoxybenzoic acid) such as ethyl anisate. Substituted or unsubstituted polyenes can be included in the catalyst system in addition to or in place of the Lewis base compound. The polyene to be blended may be an acyclic polyene such as 3-methylheptatriene (1,4,6), or a cyclic polyene such as cyclooctatriene, cyclooctatetraene or cycloheptatriene, or It may also be an alkyl- or alkoxy-substituted derivative of a cyclic polyene such as a tripylylium salt or complex, tripolone or tropone. The proportions of the above components 1) and 2) in the catalyst system can vary over a wide range, as is well known to those skilled in the art. Particularly preferred proportions will vary depending on the type of materials used and the absolute concentrations of both components, but generally there will be at least 1 mole of component 2) for every 2 gram atoms of transition metal present in component 1) in the catalyst system. It is desirable to do so. The number of moles of component 2) per gram atom of transition metal in component 1) is
Although numbers as high as 1000 are possible, it is preferable not to exceed 500, and in some transition metal compositions less than 25, such as from 5 to 10. When a Lewis base component is added to the catalyst system in addition to component 2), the amount of the Lewis base compound added is desirably 1 mol or less, particularly 0.1 to 0.5 mol, per mole of component 2). However, depending on the type of organic compound and Lewis base compound used,
The proportions of Lewis base compounds should be varied to obtain the best catalyst system. When polyene is blended into the catalyst system, the blending amount is desirably 1 mole or less, particularly 0.01 to 0.20 mole, per mole of component 2). When both a Lewis base component and a polyene are blended into the catalyst system, the total amount of these two components is 1 mole per mole of the above component 2).
It is desirable that the amount is less than mol. The catalyst according to the invention can be used for the polymerization or copolymerization of olefin monomers. Accordingly, in yet another aspect, the present invention provides a process for olefin polymerization comprising contacting at least one olefin monomer with a catalyst as described above under polymerization conditions. The olefin monomer contacted with the catalyst system is represented by the general formula H: CH 2 =CHR 8 H In the above formula, R 8 is a hydrogen atom or an alkyl radical. The olefins used are ethylene, propylene, butene-1, pentene-1, and hexene-1.
1,4-methylpentene-1 or the above general formula H
There are other olefins that satisfy. The olefin monomer preferably has 10 or less carbon atoms. Olefin monomers can be homopolymerized or copolymerized. When copolymerizing propylene, British Patent Nos. 970478, 970479 and
Preferably, it is copolymerized with ethylene according to a sequential copolymerization process such as that described in US Pat. No. 1,014,944. When copolymerizing ethylene in the process of the invention, it is desirable to copolymerize ethylene in a mixture with, for example, butene-1 or hexene-1, such that the composition remains substantially the same during the polymerization process. . The above component 1) of the catalyst can be mixed with the other components of the catalyst in the presence of the olefin monomer. When a Lewis base compound is added to the catalyst, component 2)
It is preferable to mix the organometallic compound and the Lewis base compound in advance, and then mix this mixture with the reaction product, which is component 1). As is well known, Ziegler-Natsuta type catalysts are susceptible to impurities in the polymerization system.
Therefore, it is desirable that the monomers used in the polymerization and the diluent used if necessary be of high purity. For example, 5ppm as a monomer
It is desirable to use one containing less than (by weight) water and less than 1 ppm (by weight) of oxygen. High purity substances are available in British Patents Nos. 1111493, 1226659 and
It can be prepared by methods such as those described in US Pat. No. 1,383,611. The polymerization is carried out according to known techniques, for example, using an excess of liquid monomer as the polymerization medium in the presence or absence of an inert diluent such as a suitably purified paraffinic hydrocarbon. It can be carried out in phase or in gas phase (gas phase meaning substantially free of liquid medium). When polymerization is carried out in the gas phase, an evaporative cooling effect is achieved by introducing a monomer, such as propylene, in liquid form into the polymerization reactor and then evaporating the liquid monomer in the polymerization reactor. However, the temperature and pressure conditions of the reactor can be manipulated so that substantially all of the polymerization is carried out with the gaseous monomer. Polymerization in the gas phase is described, for example, in British patent no.
It can be carried out under conditions such that the temperature and partial pressure of the monomers are close to the dew point temperature and pressure for the monomers as described in detail in US Pat. No. 1,532,445. The gas phase polymerization reaction can be accomplished by any suitable means for carrying out gas-solid phase reactions, such as a fluidized bed reaction system, a spread bed reaction system, or a ribbon blender type reactor. The catalyst system according to the invention can be used to homopolymerize ethylene in a fluidized bed reactor or e.g.
A polymer can be obtained in high yield by copolymerizing with. Fluidized bed gas is a gaseous mixture consisting of the monomers to be polymerized and hydrogen, which is used as a chain transfer agent to control the molecular weight. That is, by copolymerizing ethylene and butene-1, the density is approximately
The gas composition used to produce ethylene copolymers with densities below 940 Kg/ m3 usually contains 50 to 60 mol% ethylene and 25 mol% butene-1, with the remainder being inert components and impurities. Except for hydrogen. The polymerization can be carried out either batchwise or continuously, and the catalyst components can be charged separately into the polymerization reactor or all catalyst components can be premixed and then charged into the polymerization reactor. When all the components of the catalyst are mixed in advance, it is desirable to mix them in the presence of the mixed monomers. Such mixing results in at least some polymerization of the monomers before the catalyst system is introduced into the polymerization reactor. If the polymerization is carried out in the gas phase, the catalyst components can be introduced into the polymerization reactor in suspension in a stream of gaseous monomer or monomer mixture. Polymerization can be carried out in the presence of hydrogen or a chain transfer agent such as dialkylzinc to control the molecular weight of the resulting polymer. When hydrogen is used as a chain transfer agent in the polymerization of propylene, the amount relative to the monomer is 0.01 to
It is preferably 5.0 mol%, particularly 0.05 to 2.0 mol%. If the monomer to be polymerized is ethylene or a mixture based on ethylene, the amount of hydrogen used can be higher, for example in the case of homopolymerization of ethylene, when more than 50 mol % of hydrogen is present in the reaction mixture. However, when copolymerizing ethylene, the amount of hydrogen is usually up to 35 mol %. The amount of chain transfer agent used will vary depending on the polymerization conditions, especially the polymerization temperature. The polymerization temperature is usually 20 to 100°C, preferably 50 to 85°C, at a pressure of 50 kg/cm 2 or less. Polymerization can be carried out at any pressure previously proposed for the polymerization of olefin monomers. However, if the polymerization is carried out under a high pressure of up to 3000 Kg/cm 2 , the polymerization temperature will be as high as 300° C., so it is desirable to carry out the polymerization at a relatively low pressure and temperature. Polymerization can be carried out at normal pressure, but it is preferable to perform the polymerization under slightly increased pressure.
It is preferable to carry out the reaction under a pressure of 50 kg/cm 2 , particularly 5 to 30 kg/cm 2 . The polymerization temperature is preferably higher than room temperature, but is usually 100°C or lower. The particle morphology of the resulting polymer is the component 1) of the catalyst system.
It should be understood that this depends on, or is influenced by, the particle morphology of the spray-dried solid material used as the spray-dried solid material. Therefore, the particle morphology of the resulting polymer can be controlled by adjusting the spray drying conditions. Apparatus suitable for carrying out the method according to the invention will now be described with reference to the accompanying drawings. 1 is a cross-sectional view of a typical spray drying apparatus that can be used to carry out the method of the present invention; FIG. 2 is a cross-sectional view of another apparatus equipped with a spray nozzle; and FIG. FIG. 4 is a cross-sectional view of another apparatus with a spray nozzle near the bottom of the apparatus, and FIG. 4 is a flow diagram of the entire apparatus including the spray dryer. In FIG. 1, a hermetic spray drying apparatus 1 consists of an upper cylindrical part 2 and a lower part 3 (generally conical). The upper part 2 is provided with a cover plate 4. A disk 5 attached to the end of the output shaft 6 of a high speed gearbox/motor assembly 7 is located near the top of the container. The disk 5 consists of two plates 8 and 9, and a blade 10 is attached between these plates. The drive shaft 6 is surrounded by a chamber 11 which reaches the upper plate 8 of the disc 5. A central opening 12 is bored in the plate 8. An air chamber 13 surrounding the chamber 11 is provided above the cover plate 4. The plenum chamber 13 communicates with the container 1 via an annular opening 14 between the central opening of the cover plate 4 and the lower extension of the chamber 11 . Attached to chamber 11 is a conduit 15 leading to a source (not shown) of a suspension containing a transition metal compound. A conduit 16 is provided in the filling chamber 13.
A conduit 16 is provided which communicates with a source of heated inert gas (not shown). A conduit 17 is disposed near the bottom of the container 1 and extends from the container 1 through the side wall of the conical portion 3 . Conduit 18 with pulp means 19
is provided at the bottom end of the conical portion 13 of the container and is connected to a hopper (not shown) for storing dry solids. During operation, the disk 5 is rotated at a high speed of 500 to 25,000 rpm. A suspension containing a transition metal compound and an inert liquid medium, for example a suspension of titanium trichloride in toluene, is introduced through conduit 15 and chamber 11 between plates 8 and 9 of disc 5. Due to the high speed rotation of the disk 5 and the blades 10, the suspension is blown off from the outer periphery of the disk 5 as mist droplets. Hot inert gas flows around the rotating disc 5 through the conduit 16, the plenum 13 and the annular opening 14.
The hot inert gas causes the liquid medium to evaporate from the suspension droplets. The inert gas containing the evaporated liquid medium and the accompanying spray-dried solids is discharged from the vessel 1 through conduit 17. The main part of the solids to be spray dried accumulates at the bottom of the cone 3 and is removed from the conduit 18 by actuation of the valve 19. The inert gas passing through conduit 17 is sent to a cyclone (not shown) to remove entrained solids therein, then to a condenser (not shown) to liquefy and recover the vapor, and finally to a reheater. (not shown). The reheated inert gas is then recycled to conduit 16. Spray dried solid material passing through conduit 18 is routed to a storage hopper (not shown). The inert gas supplied to conduit 16 is at a temperature of approximately
Preferably nitrogen at 130°C. The device shown in FIG. 2 is substantially similar to the device shown in FIG. 1, but a spray nozzle is used instead of a disc atomizer. In FIG. 2, parts corresponding to those in FIG. 1 are designated by the same reference numerals. The spray nozzle 20 is arranged within the plenum chamber 13 . The spray nozzle 20 includes an inner conduit 15A and an outer conduit 21. Inner conduit 15A leads to conduit 15, which leads to a source (not shown) of a suspension containing a transition metal compound. Outer conduit 21 is connected to an inert gas source (not shown). Conduits 15A and 21 are substantially coaxial and they taper downwardly. The nozzle 20 has a conduit 15 at its lower end.
It has an orifice 22 formed by both openings A and 21. In operation, the gas flow through conduit 21 flows through conduit 15.
and draw the suspension through 15A. The gas and suspension pass through the orifice 22 to form an atomized atom. The hot inert gas passing through conduit 16, plenum 13 and opening 14 passes through orifice 22 and causes the liquid medium to evaporate from the suspension droplets. The spray-dried solids are then recovered as described for the apparatus shown in FIG. The device shown in FIG. 3 differs from the device shown in FIG. 2 in the location of the spray nozzle. In FIG. 3, the spray nozzle 20 is arranged at the bottom of the container 1. The orifice 22 is directed upward. The container 1 comprises a conical cover plate 23, the central part of which is connected to the conduit 16.
It is connected to. During operation, gas and suspension are passed through orifice 22.
and the formed mist droplets rise first in the container 1 and then, under the influence of gravity and the action of the hot inert gas introduced countercurrently from the conduit 16, into the conical section. 3 and is collected in the same manner as in the apparatus described in connection with FIG. In FIG. 2, the thermally inert gas and the spray from the nozzle flow in the same direction, but in FIG. 3, the thermally inert gas and the spray from the nozzle flow countercurrently. In FIG. 4, the reservoir 24 is connected to the conduit 15. Conduit 18 is a storage tank 2 for solid material to be spray dried.
It is connected to 8. Conduit 17 leads to cyclone 25 which is provided with a bottom discharge conduit 26 and valve 27. Conduit 26 is connected to reservoir 28 . The cyclone 25 is connected through a steam conduit 29 to a scrubber condenser 30, in the upper part of which a spray head 31 is arranged. A conduit 32 extends from the bottom of the scrubber condenser 30 to a collection pot 33 which communicates with a liquid reservoir 35 through an overflow conduit 34. A conduit 36 extends from the bottom of the pot 33 to a pump 37, and then via a conduit 38 to a heat exchanger 39.
It is connected to. Conduit 40 connects heat exchanger 39 and spray head 31 . A recirculation conduit 41 connects scrubber condenser 30 to fan 42 .
From the fan 42, a conduit 43 reaches a heat exchanger 44,
Heat exchanger 44 is connected to spray dryer 1 through conduit 16 . The conduit 45 connects the conduit 43 and the storage tank 4.
6 is connected. In operation of the apparatus shown in FIG. 4, the suspension to be spray-dried is stored in a reservoir 24, and this suspension is passed through a conduit 15 in the desired proportions to a plenum provided at the top of the spray dryer 1. It is sent to the atomizing means in the chamber 13. Spray drying is carried out in the sprayer 1 in the same manner as described in connection with FIG. The solid material to be spray dried is collected at the bottom of the spray dryer 1 and sent via conduit 18 directly to storage tank 28 . The gas mixture passing through conduit 17 reaches cyclone 25 where entrained solids are separated from the gas.
Solids are collected at the bottom of cyclone 25 and removed through conduit 26 by operating valve 27. Solids from cyclone 25 is also sent to storage tank 28. The gas containing the still vaporized liquid medium is transferred to the vapor conduit 2.
9 to the scrubber condenser 30. A cold liquid identical to the liquid medium in the suspension is sprayed from the spray head 31 into the scrubber condenser 30 to condense the evaporated liquid medium and remove residual solid particles not removed in the previous step. From the bottom of the liquid scrubber condenser 30 is sent through conduit 32 to pot 33. Excess liquid is removed from overflow conduit 34. The remaining liquid passes through conduit 36, pump 37 and conduit 38 to heat exchanger 39 where it is cooled and sent through conduit 40 to spray head 31. The liquid in container 35 is subsequently used with or without purification to prepare a suspension for spray drying. Gas substantially free of liquid vapor is transferred from the scrubber condenser 30 to conduit 41, fan 42 and conduit 4.
3 to a heat exchanger 44 where the gas is heated and returned to the spray dryer 1 through conduit 16. Inert gas is supplied from reservoir 46 via conduit 45 into conduit 43 to compensate for gas losses from the system. It will be readily appreciated that if a spray nozzle is used as shown in FIGS. 2 or 3, a separate conduit will be required between the reservoir 46 and the spray nozzle. It will be readily understood that other modifications will be apparent to those skilled in the art and such modifications may be adopted without departing from the scope of the invention. Hereinafter, the present invention will be specifically described with reference to Examples. All operations in the Examples were performed under a nitrogen atmosphere unless otherwise specified. All glass equipment was also dried in an air oven for at least 1 hour at 120°C and further purged with nitrogen before use. Preparation of titanium trichloride suspension A Kneading process Contains 570 kg of steel balls with a diameter of 25.4 mm, total volume of approximately 165
A Jeep Technique SM50 Vibro mill with a 200 mm was sealed, evacuated to 0.2 mm of mercury, replaced with nitrogen, and filled the mill with nitrogen gas. A mixture of ethylene glycol and water at 0°C was passed through the jacket of the mill. Titanium trichloride (approximate formula TiCl 3
Stouffer TiCl 3 −AA expressed as 0.33AlCl 3
12.01Kg was introduced into the mill as a free flowing powder,
Then 2.95 Kg of aluminum chloride (per 3 moles of TiCl present in the Stouffer TiCl 3 -AA above)
0.50 mol) was added. The mill was operated at a frequency of 1500/min and an amplitude of 2 mm while a mixture of ethylene glycol and water at 0°C was passed through the jacket of the mill.
I let it vibrate for 24 hours. After stopping the vibration of the mill,
Diphenyl sulfone 9.02Kg (Storfur above)
0.70 mol per 3 mol of TiCl present in TiCl3 - AA) was added and the mixture was kneaded for 5 minutes, after which kneading was stopped. Titanium tetrachloride 650cm 3 in the contents of the mill
(Present in the Stoffer- TiCl3 -AA above)
0.10 moles per 3 moles of TiCl) was added and milling was continued for a further 24 hours while the 0° C. ethylene glycol and water mixture was passed into the jacket of the mill. After the kneading was completed, the titanium trichloride product was removed from the mill by inverting the mill, vibrating it, and collecting the fallen solid product in nitrogen. B. Washing Step 1.1 kg of the kneaded product obtained in the above step A) was transferred to a 6-volume glass container equipped with a jacket and a stirrer. Add degassed toluene 5 to a glass container,
The mixture was stirred and the resulting suspension was heated to 100°C. This suspension was maintained at 100° C. for 1 hour, and then, after heating and stirring, the solid content was allowed to settle. The supernatant liquid was aspirated and separated from the settled solids. The above process was repeated four more times. Enough degassed toluene was used each time to fill the container to the 6 mark. A thick suspension was obtained after the final washing and removal of the washing liquid. Preparation of suspension (reference example) By adding degassed toluene to the concentrated suspension obtained in steps A) and B) above, the volume was again reduced to 6.
Diluted until. To this suspension was added 10 mol % of solid diphenyl sulfone based on the titanium trichloride contained in the suspension. Stir this suspension and
It was heated to 70°C for 40 minutes. The temperature was maintained at 70°C for 1 hour, after which stirring was stopped. Even after the stirring was stopped, the solid particles were finely dispersed and did not fold or settle. Repeat the above operation for several materials,
Finally, collect these materials and reduce the solid content to approximately 10% by weight.
A suspension 15 was obtained containing . This suspension will be hereinafter referred to as suspension. Preparation of Suspension (Reference Example) A large number of concentrated suspensions obtained by repeating the above steps A) and B) were collected and the solid content was approximately 30%.
A suspension containing 15% by weight was obtained. This suspension will be hereinafter referred to as a suspension. Preparation of Suspension (Reference Example) The above suspension preparation method was repeated to obtain a suspension (same content as the suspension). Preparation of suspension Repeat the suspension preparation method to obtain a concentrated suspension15
I got it. High molecular weight polystyrene (manufactured by BP Chemicals)
A toluene solution of polystyrene was prepared by adding 40 g to 250 cm 3 of toluene and heating the mixture in air to about 65° C. for a time sufficient to dissolve the polystyrene in the toluene (about 10 minutes). Nitrogen gas was bubbled through the solution to drive out dissolved air, and the solution was then maintained under a nitrogen atmosphere. A polystyrene solution is added to the above concentrated suspension, and polystyrene is 1% by weight based on the solid content in the concentrated suspension.
Added in proportions such that The obtained suspension will hereinafter be referred to as suspension. Examples 1 to 4 (Examples 1 to 3 are reference examples) The suspensions were spray dried using a spray drying apparatus similar to that shown in FIG. The diameter of the spray drying apparatus was 2.2 m, the height of the cylindrical part was 195 m, and the angle of the conical part was 60. Nitrogen gas, which was preheated to about 137° C., was circulated before entering the spray dryer. The nitrogen gas supply rate was approximately 600 kg/hour. The suspension was supplied to the spray dryer at room temperature without being preheated. The rotational speed of the spray disk and the time of feeding the suspension to the spray dryer were varied. Details of these conditions and the average particle size of the spray dried product are shown in Table 1 below.

【衚】 実斜䟋  実斜䟋で埗られた生成物を甚いお、他のいか
なる液䜓も実質的に甚いるこずなく液状プロピレ
ンの重合を行぀た。 重合に䜿甚したプロピレンは次のように粟補し
た。即ち、たず、アルコアAlcoa商暙名Flア
ルミナの1.6mm粒子を含むコラム盎埄7.6cm、長
さ0.9䞭に50−60℃においおプロピレンガス
を通し、次いでBTS觊媒酞化マグネシりム担
䜓䞊で酞化第二銅を還元しお埮现金属銅ずしたも
のを含む䞊蚘ず同様なコラムに40−50℃で通
し、排出されるガスを凝瞮し、さらに液状プロピ
レンをナニオン・カヌバむド3A分子篩1.6mmペレ
ツトをそれぞれ含む぀のコラムいずれも盎埄
7.6cm、長さは぀が0.9で残りの぀が1.8
に25℃においお通した。 䞊述の凊理によ぀お単量䜓䞭の含氎量は−
10ppm容量から1ppm容量未満に䜎枛し、
酞玠含有量は−2ppm容量から0.5ppm容
量未満に䜎枛した。䞍掻性化合物窒玠、゚タ
ン等の含有量は0.3であ぀お倉化がなく、䞍
飜和炭化氎玠アレン、メチルアセチレン等の
含有量も1ppm未満で倉化がなか぀た。 重合は鉛盎アンカヌ攪拌機を備えた容スチ
レン鋌オヌトクレヌブを甚いお行぀た。オヌトク
レヌブを70℃で加熱し、排気し、プロピレンを導
入した。次いで、オヌトクレヌブを再び排気し、
䞊述の手法を回繰返した。ゞ゚チルアルミニり
ムクロリド20gmミリモルのヘプタン溶液を
䞊述のプロピレンガスを含有するオヌトクレヌブ
䞭に35℃及び0.14Kgcm2ゲヌゞ圧においお泚入し
た。実斜䟋で埗た生成物2gmミリモルを沞点
170℃−180℃を有するペンタメチルヘプタンに分
散せる懞濁液をオヌトクレヌブ䞭に泚入し、攪拌
機を150rpmで攪拌しながら液状プロピレン
を40分間に亘぀お添加した。このプロピレン添加
は、液状プロピレン5.5を窒玠で圧力を加えお
垞枩のビナヌレツトからオヌトクレヌブぞ移すこ
ずにより行぀た。液状プロピレンを添加する間に
オヌトクレヌブを加熱し、プロピレン添加が完了
した時点で70℃に到達せしめた。次いで、氎玠
200gmミリモルを加え、オヌトクレヌブ内容物の
枩床を70℃に保持した。䜿甚した氎玠は、玔床
99.99の垂販氎玠を分子篩物質ナニオン・カ
ヌバむド3Aを含むコラムむンチ×長さ
フむヌト䞭に20℃においお通すこずにより粟補
したものである。この氎玠は䞊蚘篩コラムに貯蔵
し、必芁に応じお取出した。重合は枩床70℃、圧
力玄30Kgcm2ゲヌゞにおいお行぀た。最初に氎玠
を添加した時点から153060及び90分埌にそれ
ぞれ氎玠20gmミリモルを加えた。液状プロピレ
ンの添加を完了した時点から時間経過しお重合
が完了した埌にオヌトクレヌブを10分間に亘぀お
ガス抜きしお、未重合プロピレンを陀去し、自由
流動性のピンク色の粉末を埗た。 埗られた重合䜓は球状粒子圢態を有し、曲げ匟
性率䞋蚘参照1.47GNm2、メルト・フロ
ヌ・むンデツクス䞋蚘参照18.1を有し、重
合䜓䞭に存圚する残留チタンの量は54ppm重量
であ぀た。 (a) 曲げ匟性率FM 曲げ匟性率はポリマヌ・゚ヌゞ、1970幎月号
57及び58頁に蚘茉されおいるカンチレバヌ・ビヌ
ム装眮を甚いお枬定した。23℃、50RHに60秒
間保持した埌詊隓片の衚皮歪においお詊隓片
の倉圢率を枬定した。䜿甚した詊隓片は玄150×
19×1.6mmの倧きさを持぀ものであり、この詊隓
片は次のように調補した。 重合䜓23に0.1重量の抗酞化剀トパノヌ
ルCAず混合し、この混合物をブラベンダヌ可
塑化機に加え、190℃、30rpm、荷重10Kgで凊理
しおクレヌプを調補した。クレヌプは型板に入
れ、アルミニりムホむルにはさみ、枩床250℃に
おいお電気タンゞヌプレスで加圧した。プレスは
重合䜓が型板から流出するに十分な圧力のもず
に、即ち玄トンの力を加えお分間予熱した。
予熱した埌圧力をトンづ぀加え合蚈15トンたで
匕䞊げ、そしおトンづ぀加圧力を高めるごずに
ガス抜きした即ち圧力を開攟した。分埌に
加圧力が15トンに達した時空気ず氎でプレスを10
分間冷华しお宀枩たで䞋げた。次いで、埗られた
プラツクを150×19×1.6mmの倧きさに裁断した。
各重合䜓の詊隓片を130℃のアニヌル炉に入れ、
この枩床に時間保持した埌スむツチを切぀お炉
を毎時15℃の枩床で垞枩たで冷华せしめた。 (b) メルト・フロヌ・むンデツクスMF1 メルト・フロヌ・むンデツクスはASTM D123870、条件190℃及び10Kgに埓぀お
枬定した。 実斜䟋  攪拌機を具えた91容ステンレス鋌オヌトクレ
ヌブ䞭にポリプロピレン粉末35Kgを入れた。䜿甚
したポリプロピレンは曲げ匟性率1.49GNm2を
有し、゜ツクスレヌ24時間抜出埌の重量損倱を枬
定したずころ熱ぞプタンに4.0重量溶解した。
攪拌機は60rpmで回転し、以䞋の手続きの間この
割合で連続しお回転せしめた。70℃においおオヌ
トクレヌブを窒玠眮換し、次いで圧力を氎銀柱
0.1ミリたで䜎䞋せしめた。オヌトクレヌブに液
状プロピレンを加え、蒞発せしめお圧力を28Kg
cm2ゲヌゞたで䞊昇せしめた。氎玠を別にプロピレ
ンに察し1.5重量の割合で加えた。 ゞ゚チル・アルミニりム・クロリドのペンタメ
チルヘプタン溶解液ず実斜䟋で埗た生成物数
週間保存したもののペンタメチルヘプタン懞濁
液25重量をそれぞれモル比においお
オヌトクレヌブに加え、重合を開始せしめた。液
状プロピレンを入れ、ガス状プロピレンを脱気
し、この間に觊媒を加えた。 重合が開始した時、オヌトクレヌブの脱気を停
止し、液状プロピレンを20℃においお玄15Kg時
間の割合でオヌトクレヌブ䞭に入れ、そしおプロ
ピレンで飜和したポリプロピレンをオヌトクレヌ
ブから間欠的に玄10乃至12Kg重合䜓時間の
割合で取出した。枩床ず圧力はそれぞれ70℃及び
28Kgcm2ゲヌゞに保持した。䞊蚘ゞ゚チルアルミ
ニりムクロリド溶液ず䞊蚘懞濁液を䞉塩化チタン
に察するゞ゚チルアルミニりムクロリドのモル比
がずなるように䞔぀重合䜓が10乃至12Kg
時間の望たしい割合で生成するように連続しおオ
ヌトクレヌブ䞭に導入した。 重合途䞭の皮々の時間に取出した重合䜓生成物
の性質は第衚の通りであ぀た。
EXAMPLE 5 The product obtained in Example 4 was used to polymerize liquid propylene without substantially using any other liquid. The propylene used in the polymerization was purified as follows. That is, propylene gas was first passed at 50-60°C through a column (7.6 cm diameter, 0.9 m length) containing 1.6 mm particles of Alcoa Fl alumina, and then a BTS catalyst (on a magnesium oxide support) was passed through a column (7.6 cm diameter, 0.9 m length) containing The evacuated gas is condensed by passing it through a column similar to the above containing copper (cupric oxide reduced to fine metallic copper) at 40-50°C, and the liquid propylene is passed through a Union Carbide 3A molecular sieve 1.6 mm pellet. 4 columns each containing (each with a diameter
7.6cm, two lengths are 0.9m and the other two are 1.8m)
at 25°C. By the above treatment, the water content in the monomer is reduced to 5-
Reduced from 10ppm (capacity) to less than 1ppm (capacity),
The oxygen content was reduced from 1-2 ppm (by volume) to less than 0.5 ppm (by volume). The content of inert compounds (nitrogen, ethane, etc.) remained unchanged at 0.3%, and the content of unsaturated hydrocarbons (alene, methylacetylene, etc.) remained unchanged at less than 1 ppm. Polymerizations were carried out using an 8 volume styrene steel autoclave equipped with a vertical anchor stirrer. The autoclave was heated to 70°C, evacuated and charged with propylene. The autoclave is then evacuated again and
The above procedure was repeated five times. A heptane solution of diethylaluminium chloride (20 gm mmol) was injected into the autoclave containing propylene gas described above at 35° C. and 0.14 Kg/cm 2 gauge pressure. Boiling point 2 gm mmol of the product obtained in Example 4
The suspension in pentamethylheptane having a temperature of 170℃-180℃ was injected into an autoclave, and liquid propylene 5 was added while stirring with a stirrer at 150 rpm.
was added over 40 minutes. This addition of propylene was carried out by transferring 5.5 liters of liquid propylene from a room-temperature beer bottle to an autoclave under pressure with nitrogen. The autoclave was heated during the addition of liquid propylene and allowed to reach 70°C once the propylene addition was complete. Then hydrogen
200 gm mmol was added and the temperature of the autoclave contents was maintained at 70°C. The purity of the hydrogen used is
Column containing 99.99% commercially available hydrogen molecular sieve material (Union Carbide 3A) (8 inches x 4
The product was purified by passing it through a medium (feet) at 20°C. This hydrogen was stored in the sieve column and removed as needed. Polymerization was carried out at a temperature of 70° C. and a pressure of about 30 Kg/cm 2 gauge. At 15, 30, 60, and 90 minutes after the initial hydrogen addition, 20 gm mmole of hydrogen was added. After completion of the polymerization, 2 hours after the completion of the addition of liquid propylene, the autoclave was degassed for 10 minutes to remove unpolymerized propylene and yield a free-flowing pink powder. The obtained polymer has a spherical particle morphology, a flexural modulus (see a below) of 1.47 GN/m 2 and a melt flow index (see b below) of 18.1, with residual titanium present in the polymer. The amount of is 54ppm (weight)
It was hot. (a) Flexural modulus (FM) Flexural modulus is from Polymer Age, March 1970 issue.
Measurements were made using the cantilever beam apparatus described on pages 57 and 58. After holding the specimen at 23°C and 50% RH for 60 seconds, the deformation rate of the specimen was measured at 1% skin strain. The test piece used was approximately 150×
This test piece had a size of 19 x 1.6 mm, and was prepared as follows. 23 g of polymer was mixed with 0.1% by weight of an antioxidant (Topanol CA), and this mixture was added to a Brabender plasticizer and processed at 190° C., 30 rpm, and a load of 10 kg to prepare a crepe. The crepe was placed in a template, sandwiched between aluminum foils, and pressed using an electric Tansy press at a temperature of 250°C. The press was preheated for 6 minutes under sufficient pressure to cause the polymer to flow from the template, approximately 1 ton of force.
After preheating, the pressure was increased in 5 ton increments to a total of 15 ton, and the gas was vented (that is, the pressure was released) each time the pressure was increased in 5 ton increments. After 2 minutes, when the pressure reaches 15 tons, press with air and water for 10 minutes.
It was cooled down to room temperature for a minute. Next, the obtained plaque was cut into a size of 150 x 19 x 1.6 mm.
A test piece of each polymer was placed in an annealing furnace at 130°C.
After maintaining this temperature for 2 hours, the switch was turned off and the furnace was allowed to cool down to room temperature at a rate of 15°C per hour. (b) Melt Flow Index (MF1) Melt flow index was measured according to ASTM D1238/70, condition N (190°C and 10Kg). Example 6 35Kg of polypropylene powder was placed in a 91 volume stainless steel autoclave equipped with an agitator. The polypropylene used had a flexural modulus of 1.49 GN/m 2 and was dissolved in hot heptane at 4.0% by weight as measured by weight loss after 24 hours of Soxhlet extraction.
The stirrer rotated at 60 rpm and was allowed to rotate continuously at this rate during the following procedure. The autoclave was purged with nitrogen at 70°C, then the pressure was reduced to mercury.
It was reduced to 0.1mm. Add liquid propylene to the autoclave, evaporate it, and reduce the pressure to 28Kg/
It was raised to cm 2 gauge. Hydrogen was added separately in a proportion of 1.5% by weight relative to propylene. A solution of diethyl aluminum chloride in pentamethylheptane and a suspension of the product obtained in Example 4 (stored for several weeks) in pentamethylheptane (25% by weight) were added to the autoclave in a molar ratio of 8:1, respectively. , initiated polymerization. Liquid propylene was charged and gaseous propylene was degassed while the catalyst was added. When the polymerization has started, the degassing of the autoclave is stopped, liquid propylene is introduced into the autoclave at a rate of about 15 Kg/hour at 20°C, and the propylene-saturated polypropylene is intermittently pumped from the autoclave at a rate of about 10 to 12 Kg/hour. coalescence)/time. Temperature and pressure are 70℃ and
Maintained at 28Kg/ cm2 gauge. The above diethylaluminum chloride solution and the above suspension were mixed so that the molar ratio of diethylaluminium chloride to titanium trichloride was 8:1, and the polymer content was 10 to 12 kg/
Continuously introduced into the autoclave to produce at the desired rate of time. The properties of the polymer product taken out at various times during the polymerization are as shown in Table 2.

【衚】 実斜䟋 参考䟋  䞉塩化チタン懞濁液の調補 英囜特蚱第1485181号明现曞実斜䟋に蚘茉さ
れる手法を繰返した。䜆し、ストヌフアヌTiCl3
−AAずトリ−−ブチルホスフむンを4.2の
モル比で䜿甚した。混緎した䞉塩化チタン生成物
を粟補−ヘプタンに懞濁しお、混緎䞉塩化チタ
ン生成物を懞濁液党量に察し40重量含有する懞
濁液を調補した。  䞉塩化チタン懞濁液の噎霧也燥 第図に瀺すのず同様な構造を有する実隓宀芏
暡のガラス補噎霧也燥装眮を甚いお䞊蚘工皋
で埗た懞濁液を噎霧也燥した。噎霧也燥装眮の盎
埄は15cm、長さは0.7であ぀た。円錐圢郚分
は該しお半球状の底郚分ず眮き換え、導管は
省いた。導管のバルブも省き、導管
は盎接サむクロンに結び、サむクロンのキダツチ
ポツトに固䜓物質を集めた。䜿甚した噎霧ノズル
は盎埄0.42mmを有する米囜スプレむむング・シス
テムズ瀟補の1/4JAUオヌトマチツク・゚アヌ・
アトマむゞング・ノズルであ぀た。 噎霧は、予め140乃至150℃に加熱した窒玠を
170乃至180分の割合で導管を通じお流し
ながら窒玠雰囲気䞋に行぀た。玄2.3Kgcm2絶
察圧の窒玠を噎霧ノズルに䟛絊した。過剰の窒
玠圧力氎銀柱cmを貯蔵フラスコに加えるこ
ずによ぀お䞊蚘工皋で埗た懞濁液を攪拌貯蔵
フラスコから噎霧ノズルぞ䟛絊した。 実斜䟋 参考䟋 容ステンレス鋌オヌトクレヌブを甚いお重
合を行぀た。 実質的にドデカン異性䜓からなり170乃至185℃
の沞点範囲を有する脂肪族炭化氎玠垌釈剀を
オヌトクレヌブに入れ、圧力氎銀柱50mmにおいお
70℃で15分間脱気した。次いで、プロピレンを反
応噚に入れお圧力を1.1Kgcm2絶察圧ずした。
垌釈剀を攪拌し、この攪拌は以䞋の操䜜の間続け
た。ゞ゚チルアルミニりムクロリドを䞊蚘炭化氎
玠垌釈剀に溶解しお調補した25重量溶液30ミリ
モルをオヌトクレヌブに加えた。次いで、実斜䟋
で埗た噎霧也燥䞉塩化チタン2.5ミリモルを䞊
蚘炭化氎玠垌釈剀懞濁液ずしお加えた。 オヌトクレヌブを70℃に維持しながらプロピレ
ンをオヌトクレヌブ䞭に送り蟌んで圧力を11.5
Kgcm2絶察圧に維持した。次いで、氎玠200
ミリモルを加えた。プロピレンを加えお圧力を
11.5Kgcm2絶察圧に維持した。時間埌にプ
ロピレンの䟛絊を停止し、オヌトクレヌブを脱気
しお垞圧ずした。重合䜓懞濁液を受噚に入れ、重
合䜓を倧気䞭で別した。重合䜓の詊料を石油゚
ヌテル沞点60−80℃で掗浄し、重合䜓を垌釈
ガスずしお窒玠を甚いお流動床で100℃においお
也燥した。 比范目的のために比范䟋、実斜䟋の
工皋で埗た混緎䞉塩化チタン生成物ミリモルを
甚いお同様に重合を行぀た。 埗られた重合䜓生成物の粒床を分析したずこ
ろ、第衚に瀺す結果を埗た。
[Table] Example 7 (Reference Example) A. Preparation of titanium trichloride suspension The procedure described in Example 2 of GB 1485181 was repeated. However, Stoffer TiCl 3
-AA and tri-n-butylphosphine were used in a molar ratio of 4.2:1. The kneaded titanium trichloride product was suspended in purified n-heptane to prepare a suspension containing 40% by weight of the kneaded titanium trichloride product based on the total amount of the suspension. B. Spray Drying of Titanium Trichloride Suspension The suspension obtained in step A) above was spray dried using a laboratory scale glass spray drying apparatus having a structure similar to that shown in FIG. The spray dryer had a diameter of 15 cm and a length of 0.7 m. conical part 3
was generally replaced by a hemispherical bottom part and the conduit 17 was omitted. The valve 19 of the conduit 18 is also omitted, and the conduit 18
was connected directly to the cyclone and collected the solid material into the cyclone's catch pot. The spray nozzle used was a 1/4JAU Automatic Air Spraying Systems Co., Ltd. in the United States with a diameter of 0.42mm.
It was an atomizing nozzle. For spraying, use nitrogen heated to 140 to 150℃ in advance.
A nitrogen atmosphere was applied while flowing through conduit 16 at a rate of 170-180 min. Approximately 2.3 Kg/cm 2 (absolute pressure) of nitrogen was supplied to the spray nozzle. The suspension obtained in step A) above was fed from the stirred storage flask to the spray nozzle by applying excess nitrogen pressure (5 cm of mercury) to the storage flask. Example 8 (Reference Example) Polymerization was carried out using an 8 volume stainless steel autoclave. Consisting essentially of dodecane isomers 170-185℃
An aliphatic hydrocarbon diluent 3 having a boiling point range of 3 is placed in an autoclave at a pressure of 50 mm of mercury.
Degassed at 70°C for 15 minutes. Next, propylene was introduced into the reactor and the pressure was adjusted to 1.1 Kg/cm 2 (absolute pressure).
The diluent was stirred and this stirring was continued during the following operations. Thirty millimoles of a 25% by weight solution of diethylaluminium chloride dissolved in the above hydrocarbon diluent was added to the autoclave. 2.5 mmol of the spray-dried titanium trichloride obtained in Example 7 were then added as the hydrocarbon diluent suspension. While maintaining the autoclave at 70°C, feed propylene into the autoclave to increase the pressure to 11.5
Kg/cm 2 (absolute pressure) was maintained. Then hydrogen 200
Added mmol. Add propylene and apply pressure
The pressure was maintained at 11.5Kg/cm 2 (absolute pressure). After 4 hours, the supply of propylene was stopped and the autoclave was evacuated to normal pressure. The polymer suspension was placed in a receiver and the polymer was separated in the atmosphere. A sample of the polymer was washed with petroleum ether (boiling point 60-80°C) and the polymer was dried at 100°C in a fluidized bed with nitrogen as diluent gas. For comparative purposes (Comparative Example A), Example 7 A)
Polymerization was carried out in the same manner using 3 mmol of the kneaded titanium trichloride product obtained in the step. When the particle size of the obtained polymer product was analyzed, the results shown in Table 3 were obtained.

【衚】 実斜䟋の重合䜓生成物䞭の埮现重合䜓の含有
量41.7重量は比范䟋の重合䜓生成物䞭の
埮现重合䜓の含有量70.7重量より䜎いこず
が明らかである。さらに、実斜䟋の重合䜓生成
物は自由流動性の非粉末状であ぀たが、比范䟋
の生成物は流動性に乏しい。党く粉末状の物質で
あ぀た。 実斜䟋 参考䟋  䞉塩化チタン懞濁液の調補 盎埄25.4mmのステンレス鋌球180個を含有し有
効容量玄1.5を有するゞヌブテクニヌク・SM6
ビブロミル・チ゚ンバヌをシヌルし、枛圧しお氎
銀柱0.2mmずし、氎玠眮換しお氎玠で満たした。
このミルに也燥プノキサチン17.7ストヌフ
アヌTiCl3−AA䞭に存圚する䞉塩化チタンモル
圓たり0.10モルを入れ、さらに䞉塩化チタン
176.5ストヌフアヌTiCl3−AAを加えた。
℃の゚チレングリコヌルず氎ずの混合物をミル
のゞダケツト䞭に通すこずによりミルを℃に冷
华した。゚チレングリコヌルず氎ずの混合物をゞ
ダケツト䞭に通しながら振動数1500分、振幅
mmにおいお24時間ミルを振動せしめた。 24時間混緎した埌、ミルをさかさにし、ミルを
振動せしめお窒玠雰囲気䞭で固䜓生成物を集める
こずによ぀お䞉塩化チタン生成物をミルから陀去
した。混緎した生成物150を垞枩においお実斜
䟋の重合においお䜿甚した脂肪族炭化氎玠を垌
釈剀1500cm3䞭に懞濁せしめた。混合物を攪拌し
100℃たで加熱した。100℃に達した時攪拌機ず加
熱噚のスむツチを切り、固圢分を沈降せしめお䞊
柄み液を傟斜しお枩床玄75℃においお陀去した。
この手法をさらに回繰返した。回の凊理を終
わ぀た埌にさらに脂肪族炭化氎玠垌釈剀を加え䞉
塩化チタン生成物濃床15重量の懞濁液ずした。  䞉塩化チタン懞濁液の噎霧也燥 実斜䟋の工皋で䜿甚した装眮を甚いお䞊
蚘工皋で埗た懞濁液を噎霧也燥した。䜆し、
䜿甚したスプレヌノズルの盎埄は0.52mmであ぀
た。噎霧条件は実斜䟋の工皋に蚘茉したも
のず同様であ぀たが、窒玠は予め170乃至180℃に
加熱し、その䟛絊は185分の割合で行぀た。
たた窒玠は噎霧ノズルに1.7乃至2.0Kgcm2の圧力
で䟛絊した。 埗られた噎霧也燥生成物は自由流動性の粉末で
あ぀た。 実斜䟋10 比范䟋  四塩化チタン−シリカ−塩化マグネシりム−
テトラヒドロフランの前駆䜓成分の調補 この方法は䞀般的にEP−−20818、第28頁15
行乃至第29頁行に蚘茉されおいる通りであり、
䞋蚘のように、枛少した量の詊薬を甚いお実斜䟋
に甚いられたものず同様な生成物を埗た。  塩化マグネシりム−テトラヒドロフラン−
シリカ混合物の補造 この混合物は攪拌機、凝瞮噚を備え、窒玠源に
連結されたの䞉぀銖ガラスフラスコにおいお
調補した。フラスコ内を窒玠雰囲気にした。 テトラヒドラフランTHFの詊料を先ずモ
レキナラヌシヌブ䞊に貯蔵し、次いで掻性化アル
ミナ䞊に貯蔵しお也燥した。この也燥THFの410
cm2をフラスコ内に入れた。このフラスコを呚囲枩
床においお氎济䞭に眮いた。 攪拌したTHFに29.4の塩化マグネシりムを
埐々に添加した。 塩化マグネシりムの添加完了時に36.9の発煙
シリカ排気された埌窒玠䞋に貯蔵された
CabosilM5シリカを攪拌を続けながら混合
物にゆ぀くり添加した。 混合物を次いで氎济を甚いお還流枩床たで加熱
し、静かに還流しながら時間維持した。この混
合物を攪拌しながら冷华した。 塩化マグネシりム−四塩化チタン−テトラヒ
ドラフラン組成物の補造 この組成物は磁気攪拌機を備え、窒玠源に連結
されたの䞉぀銖ガラスフラスコ内においお調
補した。フラスコ内を窒玠雰囲気にした。 328cm3のTHF工皋(a)ず同様に也燥をフラス
コ内に入れ、5.4の塩化マグネシりムを添加し
た。この混合物を加熱せずに攪拌し、3.6cm3
の四塩化チタンを滎加した。四塩化チタンの添加
時に発生した。この混合物を加熱せずに時間攪
拌し、次いで60℃たで加熱し、60℃に時間維持
した。加熱を次いで停止し、混合物を攪拌しなが
ら宀枩たで冷华した。  前駆䜓の圢成 工皋(b)においお埗られた組成物を移送管を通し
お工皋(a)においお埗られた混合物を含有する
のフラスコに入れた。合䞀した混合物を加熱せず
に30分間攪拌した。 この合䞀した混合物を還流枩床たで加熱し、静
かに還流させながら時間維持した。加熱を停止
し、混合物を攪拌しながら宀枩たで冷华した。 少量のこの混合物を分析及び重合系においお詊
隓するために取出した。  塩化チタン−塩化マグネシりム−シリカ−ポ
リスチレン−テトラヒドロフランの前駆䜓成分
の調補 この方法は䞀般的にEP−−20818、第28頁15
行乃至29頁行たでに蚘茉される通りのものであ
り、䞋蚘のように枛少した量の詊薬を甚いお実斜
䟋に甚いられるそれず同様な生成物を埗た。  塩化マグネシりム−四塩化チタン−テトラ
ヒドラフラン組成物の補造 これは以䞋に瀺す䟋倖を陀いお䞀般的に1b
ず同様にしお調補した。 この組成物は800cm3のTHF、13.4の塩化マグ
ネシりム、8.9cm3の塩化チタンを甚いおフラ
スコ䞭においお調補した。宀枩においお玄30分間
攪拌埌、フラスコの内容物を還流枩床たで加熱
し、玄45分間静かに還流しながら維持した。この
混合物を次いで攪拌しながら宀枩たで冷华した。  シリカ−テトラヒドロフラン−ポリスチレ
ン混合物の補造 これは以䞋に瀺す䟋倖を陀いお䞀般的に1a
ず同様にしお調補した。 この混合物は650cm3のTHF、49.9のシリカ及
び22.5のポリスチレンダりケミカル瀟Dow
Chemical Companyから垂販されおいる「ス
タむロンStyron」686を甚いおフ
ラスコ内で調補した。この混合物は加熱しなか぀
た。  前駆䜓の圢成 工皋(a)においお埗られた組成物を移送管を通し
お工皋(b)においお埗られた混合物を含有する
フラスコに入れた。合䞀された混合物を加熱する
こずなく30分間攪拌した。 この合䞀した混合物を60〜650℃の範囲の枩床
に加熱し、その枩床に時間維持した。この混合
物を次いで攪拌を継続しながら宀枩たで冷华し
た。 少量に埗られた混合物を分析及び重合系におけ
る詊隓のために取出した。  スプレヌ也燥前駆䜓成分 1c及び2cの生成物の䞻たる郚分を䞋蚘条件
を甚いお別々にスプレヌ也燥した。 スプレヌ也燥はEP−−37182の図面の第図
を参照しお説明されたものず同様なガラス補実隓
宀スケヌルのスプレヌ也燥装眮を甚いお行぀た。
このスプレヌ也燥装眮は18cmの盎埄、0.7の長
さ及びほが半球状の底郚断面を有した。底郚断面
からの導管を盎接に固䜓物質が集められるキダツ
チポツトを備えたサむクロンに連結した。スプレ
ヌノズルは装眮の頂郚に配眮され、これは米囜の
スプレヌむングシステムズ瀟Spraying
Systems Co.から埗られた1/4JAU自動空気噎
霧ノズルJAU Automatic Air Atomizing
Nozzleであり、0.72mm盎埄のノズルを有した。 スプレヌは窒玠䞋に110℃の枩床に予備加熱さ
れた窒玠流をスプレヌ也燥装眮に190dm3分の
割合で通過させお行぀た。玄0.6Kgcm2ゲヌゞの
圧力の窒玠をスプレヌノズルに導入した。前駆䜓
混合物は或いはのフラスコから0.05Kgcm2
の過剰窒玠圧力をこのフラスコにかけるこずによ
りスプレヌノズルに䟛絊した。 固圢分を集め、貯蔵フラスコに入れ、窒玠䞋に
貯蔵した。 1cの生成物をスプレヌ也燥しお埗た固圢分は
参照付号1Sで衚わされ、2cの生成物をスプレ
ヌ也燥しお埗られた固圢分は2Sにより衚わされ
る。  プロピレンの重合 前駆䜓成分及びスプレヌ也燥誘導䜓を甚いおプ
ロピレンを重合した。 効率的な攪拌機及び氎ゞダケツトを備えた
の重合フラスコを泚意深く也燥し、500cm3のその
実質的に党おが117〜135℃の範囲の沞点を有する
む゜パラフむン留分を導入した。このむ゜パラフ
むン留分を時間窒玠でパヌゞし、モレキナラヌ
シヌブカラムを通しおから重合フラスコに投入し
た。フラスコ内においお、む゜パラフむン留分を
60℃においお排気し、次いで窒玠を導入した。む
゜パラフむン留分の氎分及び酞玠含有量は10重量
ppm未満であ぀た。トリ゚チルアルミニりムをこ
のむ゜パラフむン留分に添加し、これを攪拌し、
排気し、次いで粟補プロピレンで気圧たで飜和
させた。攪拌を継続し、次いで1c或いは2cの
前駆䜓成分或いはこのむ゜パラフむン留分䞭のス
プレヌ也燥物質1S或いは2Sの懞濁液を添加した。
反応容噚内の圧力はシリンダヌからプロピレンを
䟛絊するこずにより気圧に維持した。前駆䜓成
分或いはスプレヌ也燥物質の導入から玄30分埌、
実隓をプロピレンを陀去し、窒玠を反応容噚に通
過させるこずにより停止した。重合条件及び埗ら
れた結果の詳现を第衚に瀺す。
[Table] The content of fine polymer in the polymer product of Example 8 (41.7% by weight) is lower than the content of fine polymer in the polymer product of Comparative Example A (70.7% by weight). it is obvious. Furthermore, the polymer product of Example 8 was free-flowing, non-powder, whereas the polymer product of Comparative Example A
The product has poor flowability. It was a completely powdery substance. Example 9 (Reference example) A. Preparation of titanium trichloride suspension Jieve Technique SM6 containing 180 stainless steel balls with a diameter of 25.4 mm and having an effective capacity of about 1.5
The Vibromil chamber was sealed, evacuated to 0.2 mm of mercury, and filled with hydrogen.
To this mill was added 17.7 g of dry phenoxatin (0.10 mol per mole of titanium trichloride present in Stouffer TiCl 3 -AA) and additional titanium trichloride.
176.5 g (Storfer TiCl 3 -AA) was added.
The mill was cooled to 0°C by passing a mixture of ethylene glycol and water at 0°C through the jacket of the mill. A mixture of ethylene glycol and water was passed through the jacket at a frequency of 1500/min and an amplitude of 2.
The mill was vibrated for 24 hours at mm. After 24 hours of milling, the titanium trichloride product was removed from the mill by inverting the mill, vibrating the mill, and collecting the solid product under a nitrogen atmosphere. 150 g of the kneaded product was suspended in 1500 cm 3 of diluent of the aliphatic hydrocarbon used in the polymerization of Example 8 at room temperature. stir the mixture
Heated to 100°C. When 100°C was reached, the stirrer and heater were switched off, the solids allowed to settle and the supernatant liquid was decanted at a temperature of about 75°C.
This procedure was repeated four more times. After the five treatments were completed, an additional aliphatic hydrocarbon diluent was added to give a titanium trichloride product suspension of 15% by weight. B Spray drying of titanium trichloride suspension The suspension obtained in step A) above was spray-dried using the apparatus used in step B) of Example 7. however,
The diameter of the spray nozzle used was 0.52 mm. The spraying conditions were similar to those described in step B) of Example 7, but the nitrogen was preheated to 170-180°C and its feed was at a rate of 185/min.
Further, nitrogen was supplied to the spray nozzle at a pressure of 1.7 to 2.0 Kg/cm 2 . The resulting spray-dried product was a free-flowing powder. Example 10 (Comparative example) 1 Titanium tetrachloride-silica-magnesium chloride-
Preparation of the precursor component of tetrahydrofuran This method is generally used in EP-A-20818, page 28, 15
As stated in lines to page 29, line 8,
A product similar to that used in Example 3 was obtained using reduced amounts of reagents, as described below. a Magnesium chloride-tetrahydrofuran-
Preparation of the silica mixture The mixture was prepared in two three-necked glass flasks equipped with a stirrer, condenser, and connected to a nitrogen source. A nitrogen atmosphere was created inside the flask. Samples of tetrahydrofuran (THF) were first stored on molecular sieves and then stored on activated alumina and dried. This dry THF 410
cm2 was placed in the flask. The flask was placed in a water bath at ambient temperature. 29.4 g of magnesium chloride was slowly added to the stirred THF. Upon completion of the magnesium chloride addition, 36.9 g of fuming silica (evacuated and then stored under nitrogen) was added.
Cabosil (M5 silica) was slowly added to the mixture with continued stirring. The mixture was then heated to reflux using a water bath and maintained at gentle reflux for 2 hours. The mixture was cooled with stirring. b Preparation of Magnesium Chloride-Titanium Tetrachloride-Tetrahydrofuran Composition This composition was prepared in one three-necked glass flask equipped with a magnetic stirrer and connected to a nitrogen source. A nitrogen atmosphere was created inside the flask. 328 cm 3 of THF (dried as in step (a)) was placed in the flask and 5.4 g of magnesium chloride was added. Stir this mixture without heating and make 3.6 (5) cm 3
of titanium tetrachloride was added dropwise. This occurred during the addition of titanium tetrachloride. The mixture was stirred for 1 hour without heating, then heated to 60°C and maintained at 60°C for 1 hour. Heating was then stopped and the mixture was allowed to cool to room temperature with stirring. c. Precursor Formation The composition obtained in step (b) is passed through a transfer tube containing the mixture obtained in step (a).
into a flask. The combined mixture was stirred for 30 minutes without heating. The combined mixture was heated to reflux temperature and maintained at gentle reflux for 2 hours. Heating was stopped and the mixture was cooled to room temperature with stirring. A small amount of this mixture was removed for analysis and testing in a polymerization system. 2 Preparation of precursor components of titanium chloride-magnesium chloride-silica-polystyrene-tetrahydrofuran This method is generally used in EP-A-20818, p. 28, 15
A product similar to that used in Example 6 was obtained using reduced amounts of reagents as described in lines to page 29, line 8, as described below. a Manufacture of magnesium chloride-titanium tetrachloride-tetrahydrofuran compositions This generally applies to 1b) with the exceptions noted below.
Prepared in the same manner. This composition was prepared in two flasks using 800 cm 3 of THF, 13.4 g of magnesium chloride, and 8.9 cm 3 of titanium chloride. After stirring for about 30 minutes at room temperature, the contents of the flask were heated to reflux temperature and maintained at gentle reflux for about 45 minutes. The mixture was then cooled to room temperature with stirring. b. Manufacture of silica-tetrahydrofuran-polystyrene mixtures. This generally applies to 1a) with the exceptions noted below.
Prepared in the same manner. This mixture consisted of 650 cm 3 of THF, 49.9 g of silica and 22.5 g of polystyrene (Dow Chemical Company).
It was prepared in 3 flasks using a "Styron" 686/7, commercially available from Chemical Company. This mixture was not heated. c. Precursor formation: Passing the composition obtained in step (a) through a transfer tube containing the mixture obtained in step (b).
I put it in a flask. The combined mixture was stirred for 30 minutes without heating. The combined mixture was heated to a temperature in the range of 60-650°C and maintained at that temperature for 2 hours. The mixture was then cooled to room temperature with continued stirring. A small amount of the resulting mixture was taken for analysis and testing in a polymerization system. 3. Spray Drying Precursor Components The main parts of the products of 1c) and 2c) were spray dried separately using the following conditions. Spray drying was carried out using a glass laboratory scale spray drying apparatus similar to that described with reference to FIG. 3 of the drawings of EP-A-37182.
The spray drying apparatus had a diameter of 18 cm, a length of 0.7 m and a roughly hemispherical bottom cross section. The conduit from the bottom section was connected directly to a cyclone with a catch pot where solid material could be collected. The spray nozzle is located at the top of the device and is manufactured by Spraying Systems, Inc.
1/4JAU Automatic Air Atomizing Nozzle (JAU Automatic Air Atomizing) obtained from
Nozzle) with a 0.72 mm diameter nozzle. Spraying was carried out under nitrogen by passing a nitrogen stream preheated to a temperature of 110° C. through the spray dryer at a rate of 190 dm 3 /min. Nitrogen at a pressure of approximately 0.6 Kg/cm 2 gauge was introduced into the spray nozzle. Precursor mixture is 0.05Kg/cm 2 from 2 or 3 flasks.
An excess nitrogen pressure of 100 ml was applied to the flask to feed the spray nozzle. The solids were collected, placed in a storage flask, and stored under nitrogen. The solid content obtained by spray drying the product of 1c) is designated by the reference number 1S, and the solid content obtained by spray drying the product of 2c) is designated by 2S. 4 Polymerization of Propylene Propylene was polymerized using the precursor components and the spray-dried derivative. 1 with efficient stirrer and water jacket
The polymerization flask was carefully dried and 500 cm 3 of isoparaffin fraction, substantially all of which had a boiling point in the range 117-135° C., was introduced. This isoparaffin fraction was purged with nitrogen for 1 hour and passed through a molecular sieve column before being charged into a polymerization flask. In the flask, the isoparaffin fraction is
It was evacuated at 60°C and then nitrogen was introduced. The water and oxygen content of the isoparaffin fraction is 10% by weight
It was less than ppm. Triethylaluminum is added to the isoparaffin fraction, which is stirred,
It was evacuated and then saturated to 1 atmosphere with purified propylene. Stirring was continued and then the precursor component of 1c) or 2c) or a suspension of the spray-dried material 1S or 2S in this isoparaffin fraction was added.
The pressure inside the reaction vessel was maintained at 1 atmosphere by supplying propylene from a cylinder. Approximately 30 minutes after introduction of the precursor component or spray-dried material,
The experiment was stopped by removing the propylene and passing nitrogen through the reaction vessel. Details of the polymerization conditions and the results obtained are shown in Table 4.

【衚】【table】

【衚】  ゚チレン埌−重合 プロピレン重合実隓〜は重合フラスコを玄
0.4Kgcm2の圧力たで排気するこずによりプロピ
レンを陀去し、次いで排気を行い及び少なくずも
もう䞀回窒玠を添加するこずにより停止した。も
う䞀回系を排気した埌、゚チレンを導入しお気
圧の圧力を䞎え維持した。重合結果を第衚に瀺
す。
[Table] 5 Ethylene post-polymerization In propylene polymerization experiments 2 to 5, the polymerization flask was
The propylene was removed by evacuation to a pressure of 0.4 Kg/cm 2 and then stopped by evacuation and at least one more addition of nitrogen. After evacuating the system once more, ethylene was introduced and a pressure of 1 atmosphere was established and maintained. The polymerization results are shown in Table 5.

【衚】  ゚チレン重合 においお説明した方法をプロピレンの代り
に゚チレンを甚い、重合を時間継続した他は同
様にしお行぀た。重合実隓においお、ヘキセン−
をトリ゚チルアルミニりムの添加埌、䜆し、前
駆䜓成分の添加前に添加した。䜿甚された条件及
び埗られた結果を第衚に瀺す。
[Table] 6 Ethylene Polymerization The method described in 4) was carried out in the same manner except that ethylene was used instead of propylene and the polymerization was continued for 1 hour. In polymerization experiments, hexene-
1 was added after the addition of triethylaluminum, but before the addition of the precursor components. The conditions used and the results obtained are shown in Table 6.

【衚】 実斜䟋 11 埮现に分割せる無氎塩化マグネシりム134.4
1.41モルず安息銙酞゚チル74ml70.60.47
モルずをボヌルミルで混緎し、生成物玄205
を容ゞダケツト付ガラス容噚に入れ、四塩化
チタン3.45Kgを加え、混合物を攪拌し、
100℃に加熱昇枩し30分間、100℃に時間保
持した。混合物を100℃で時間沈降し、䞊柄み
液を傟斜陀去し、残留物を冷华した。この四塩化
チタンによる凊理を繰返した。冷华した固䜓残留
物を最初にのヘプタン−ヘプタンを90
含有で掗浄し、混合物を攪拌し玄100℃に加熱
昇枩し時間、沈降し玄時間、䞊柄み液
を傟斜陀去し、残留物を冷华した。第に、
のヘプタンで掗浄し、混合物を攪拌し、10℃に加
熱昇枩し、40分間、60℃で沈降し玄時間、
䞊柄み液を傟斜陀去し、残留物を冷华した。さら
に、垞枩で2.5のヘプタンで掗浄し、混合物を
攪拌し15分間、沈降し玄時間、䞊柄み液
を傟斜陀去する操䜜を回繰返した。残留物にヘ
プタンを加えおのスラリヌずし、反応容噚か
ら陀去し、スラリヌを窒玠雰囲気に保存した。 箄200の固圢生成物を含むこのスラリヌの䞀
郚を沈降し、䞊柄み液を傟斜陀去した。固圢分を
1.5のトル゚ンで回掗浄し、攪拌し分
間、沈降し、䞊柄み液を傟斜陀去した。容
噚䞭で残留物玄600mlにさらにトル゚ン100ml
およびポリスチレン2.5を加えおスラリヌずし、
これをガラスフラスコに移しお攪拌し、さら
にポリスチレンを加えた。 スラリヌを盎埄15cm、長さ70cmのガラス補噎霧
也燥噚にお噎霧也燥した。この噎霧也燥噚は、第
図に瀺すものずは、円錐圢郚が半球圢郚に代
぀おおり、導管およびバルブが導かれ、
導管がサむクロンに連結されお生成物を回収
するように構成される点で盞違しおいる。盎埄
0.72mmのスプレむノズルを甚い、たた、140〜145
℃に加熱した窒玠を也燥ガスずした。導管䞭
の窒玠圧力は0.5Kg・cm-2ゲヌゞ圧であり、
フラスコ䞭の過圧は0.1Kg・cm-2であ぀た。 噎霧也燥生成物を甚いお実斜䟋ず同じオヌト
クレヌブ䞭にお次のようにポリプロピレンを補造
した。 脂肪族炭化氎玠留分䞻ずしおドデカン異性
䜓、沞点170〜185℃をオヌトクレヌブに入
れ、70℃にお脱気し、0.07Kg・cm-2絶察圧ず
した玄15分間。ガス状プロピレンを装入しお
絶察圧1.1Kg・cm-2ずした。混合物を攪拌し、ト
リむ゜ブチルアルミニりム20モルの䞊蚘炭化氎
玠留分40ml溶解液、−メチル安息銙酞メチルの
䞊蚘炭化氎玠留分40ml溶解液および䞊蚘のように
調補した觊媒0.15モルTiずしお噎霧也燥
固圢分のヘプタン懞濁液の圢でを加えた。さら
にプロピレンを装入しお絶察圧10Kg・cm-2ずし、
氎玠10モルを加えた。反応系にプロピレンを加
えお圧力を維持しながら重合を続けた。30分埌お
よび時間埌に氎玠10モルを加えた。時間埌
にプロピレンの䟛絊を止め、オヌトクレヌブの圧
力を解攟した。垌釈剀を甚い濟過しお重合䜓生成
物を回収した。重合䜓を窒玠流動床䞭100℃にお
也燥し、重合䜓の特性を調べた。結果は次のずお
りであ぀た。
[Table] Example 11 Finely divided anhydrous magnesium chloride 134.4g
(1.41 mol) and ethyl benzoate 74 ml (70.6 g, 0.47
molar) in a ball mill to produce approximately 205g of product.
was placed in a 5-volume glass container with a jacket, titanium tetrachloride 2 (3.45 kg) was added, the mixture was stirred,
The temperature was raised to 100°C (30 minutes) and held at 100°C for 3 hours. The mixture was allowed to settle for 2 hours at 100°C, the supernatant liquid was decanted, and the residue was cooled. This treatment with titanium tetrachloride was repeated. The cooled solid residue was first diluted with 3 heptane (90% n-heptane).
The mixture was stirred and heated to about 100° C. (1 hour), allowed to settle (about 3 hours), the supernatant liquid was decanted, and the residue was cooled. Second, 3
of heptane, the mixture was stirred, heated to 10°C (40 minutes), and settled at 60°C (approximately 2 hours).
The supernatant was decanted and the residue was cooled. Further, washing with 2.5 heptane at room temperature, stirring the mixture (15 minutes), settling (about 2 hours), and decanting the supernatant were repeated three times. Heptane was added to the residue to form a slurry of 1, which was removed from the reaction vessel and the slurry was stored in a nitrogen atmosphere. A portion of this slurry containing approximately 200 g of solid product was allowed to settle and the supernatant liquid was decanted. solid content
Washed three times with 1.5 g of toluene, stirred (5 minutes), settled, and decanted the supernatant. Add 100ml of toluene to the residue (approx. 600ml) in one container.
and 2.5g of polystyrene to make a slurry,
This was transferred to a two-glass flask, stirred, and further 2 g of polystyrene was added. The slurry was spray dried in a glass spray dryer with a diameter of 15 cm and a length of 70 cm. This spray dryer differs from that shown in FIG. 2 in that the conical section 3 is replaced by a hemispherical section, a conduit 17 and a valve 19 are guided,
The difference is that conduit 18 is configured to be connected to a cyclone for product recovery. diameter
Using a 0.72mm spray nozzle, you can also use 140~145
Nitrogen heated to ℃ was used as the drying gas. The nitrogen pressure in the conduit 21 is 0.5Kg cm -2 (gauge pressure),
The overpressure in the second flask was 0.1 Kg·cm -2 . Polypropylene was prepared using the spray-dried product in the same autoclave as in Example 5 as follows. Aliphatic hydrocarbon fraction (mainly dodecane isomer, boiling point 170-185°C) 3 was placed in an autoclave and degassed at 70°C to 0.07 Kg·cm -2 (absolute pressure) (about 15 minutes). Gaseous propylene was charged to create an absolute pressure of 1.1 Kg·cm -2 . The mixture was stirred and 20 mmol of triisobutylaluminum dissolved in 40 ml of the above hydrocarbon fraction, methyl p-methylbenzoate dissolved in 40 ml of the above hydrocarbon fraction and 0.15 mmol of the catalyst prepared as above (as Ti) were added. (in the form of a suspension of spray-dried solids in heptane) was added. Furthermore, propylene was charged to make the absolute pressure 10Kg・cm -2 ,
10 mmol of hydrogen was added. Polymerization was continued while maintaining the pressure by adding propylene to the reaction system. After 30 minutes and after 1 hour, 10 mmol of hydrogen were added. After 2 hours, the propylene feed was stopped and the autoclave pressure was released. The polymer product was recovered by filtration using a diluent. The polymer was dried at 100°C in a nitrogen fluidized bed and the properties of the polymer were investigated. The results were as follows.

【衚】 枬定した。
[Table] Measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明方法の実斜に䜿甚するこずがで
きる代衚的な噎霧也燥装眮の断面図であり、第
図は噎霧ノズルを備えた別の装眮の断面図であ
り、第図は装眮の底郚近傍に噎霧ノズルを備え
た別の装眮の断面図であり、第図は噎霧也燥噚
を含む装眮党䜓の流れ図である。第図は本願発
明の方法で補造される觊媒成分の調補工皋を瀺す
フロヌチダヌト図である。参照数字は次の通り。   気密噎霧也燥装眮、  䞊郚円筒状郚
分、  䞋郚円筒状郚分、  被芆板、 
 円盀、  出力軞、  高速ギダヌボツク
スモヌタヌ組䜓、  板、  矜
根、  チ゚ンバヌ、  䞭倮開口、
  充気宀、  環状開口、
  導管、  バルブ手段、
  ノズル、  倖方導管、  オリフ
むス、  被芆板、  貯槜、  
サむクロン、  排出導管、  バル
ブ、  貯槜、  蒞気導管、  
スクラバヌ凝瞮噚、  噎霧頭、  導
管、  回収ポツト、  導管、 
 貯槜、  導管、  ポンプ、 
 導管、  熱亀換噚、  導管、
  再埪環導管、  フアン、  導
管、  熱亀換噚、  導管、  
貯槜。
FIG. 1 is a cross-sectional view of a typical spray drying apparatus that can be used to carry out the method of the present invention;
3 is a sectional view of another device with a spray nozzle near the bottom of the device, and FIG. 4 is a sectional view of the entire device including the spray dryer. This is a flowchart. FIG. 5 is a flowchart showing the steps for preparing a catalyst component produced by the method of the present invention. The reference numbers are as follows. DESCRIPTION OF SYMBOLS 1... Airtight spray drying device, 2... Upper cylindrical part, 3... Lower cylindrical part, 4... Covering plate, 5...
... Disk, 6 ... Output shaft, 7 ... High speed gearbox/motor assembly, 8, 9 ... Plate, 10 ... Vane, 11 ... Chamber, 12 ... Center opening, 1
3... Air chamber, 14... Annular opening, 15, 16,
17, 18... Conduit, 19... Valve means, 20
... Nozzle, 21 ... Outer conduit, 22 ... Orifice, 23 ... Covering plate, 24 ... Storage tank, 25 ...
Cyclone, 26...Discharge conduit, 27...Valve, 28...Storage tank, 29...Steam conduit, 30...
Scrubber condenser, 31... Spray head, 32... Conduit, 33... Collection pot, 34... Conduit, 35...
...Storage tank, 36...Conduit, 37...Pump, 38...
... Conduit, 39 ... Heat exchanger, 40 ... Conduit, 41
... recirculation conduit, 42 ... fan, 43 ... conduit, 44 ... heat exchanger, 45 ... conduit, 46 ...
Storage tank.

Claims (1)

【特蚱請求の範囲】  固䜓粒子状ハロゲン化チタン含有オレフむン
重合甚觊媒成分の調補方法においお、 (1) 脂肪族、脂環族たたは芳銙族炭化氎玠である
䞍掻性液状媒䜓䞭に固䜓物質の粒子及び該固䜓
粒子の凝集を助長する物質を含んで成る懞濁液
を調補し、ここで該懞濁液はハロゲン化チタン
を含有しおおり、含有ハロゲン化チタンは前蚘
䞍掻性液状媒䜓䞭に溶解しおいるか、又は該媒
䜓䞭に懞濁した固䜓物質ずしお存圚するか、又
は該媒䜓䞭に懞濁した固䜓物質に担持されおお
り (2) 前蚘懞濁液を噎霧也燥しそしお (3) 噎霧也燥したハロゲン化チタン含有觊媒を回
収する こずを特城ずする方法。  固䜓物質が䞉塩化チタンであるかたたは䞉塩
化チタンを含む特蚱請求の範囲第項蚘茉の方
法。  固䜓物質が四塩化チタンを、シリカ、アルミ
ナ、マグネシア、これらの化合物の二もしくはそ
れ以䞊からなる混合物もしくは錯䜓たたは塩化マ
グネシりムず接觊しめるこずにより埗られる生成
物である特蚱請求の範囲第項蚘茉の方法。  懞濁液が、䞍掻性液状媒䜓に溶解せる圢態の
四塩化チタンを含む特蚱請求の範囲第項蚘茉の
方法。  懞濁液が゚ヌテル、゚ステル、有機リン化合
物たたは硫黄含有有機化合物の䞭から遞ばれたル
むス塩基化合物を含む特蚱請求の範囲第項から
第項たでのいずれかに蚘茉の方法。  ルむス塩基化合物の存圚䞋に固䜓ハロゲン化
チタンを粉砕するこずによ぀おルむス塩基化合物
をハロゲン化チタンに配合する特蚱請求の範囲第
項蚘茉の方法。  ルむス塩基化合物の存圚䞋に固䜓粒子状担䜓
を粉砕するこずによ぀おルむス塩基化合物を配合
する特蚱請求の範囲第項蚘茉の方法。  担䜓を四塩化チタンで凊理しおハロゲン化チ
タン含有固䜓粒子を圢成する特蚱請求の範囲第
項蚘茉の方法。  200℃を越えない昇枩䞋に䞍掻性ガスを甚い
お噎霧也燥を行う特蚱請求の範囲第項から第
項たでのいずれかに蚘茉の方法。  熱ガスを噎霧也燥垯域から陀去し、次いで
サむクロンに通しおガス流䞭に随䌎せる固型分を
陀去し、次に凝瞮噚に通しお䞍掻性液状媒䜓の蒞
気を凝瞮・陀去し、その埌再加熱しお噎霧也燥工
皋ぞ再埪環せしめる特蚱請求の範囲第項蚘茉の
方法。
[Scope of Claims] 1. A method for preparing a catalyst component for polymerizing olefins containing solid particulate titanium halide, comprising: (1) particles of a solid substance in an inert liquid medium, which is an aliphatic, alicyclic or aromatic hydrocarbon; and a substance that promotes agglomeration of the solid particles, the suspension comprising a titanium halide, the titanium halide being dissolved in the inert liquid medium. (2) spray drying said suspension; and (3) ) recovering a spray-dried titanium halide-containing catalyst; 2. The method of claim 1, wherein the solid material is or comprises titanium trichloride. 3. The solid substance is a product obtained by contacting titanium tetrachloride with silica, alumina, magnesia, a mixture or complex of two or more of these compounds, or magnesium chloride. the method of. 4. The method of claim 1, wherein the suspension comprises titanium tetrachloride in a form dissolved in an inert liquid medium. 5. The method according to any one of claims 1 to 4, wherein the suspension comprises a Lewis base compound selected from among ethers, esters, organophosphorus compounds or sulfur-containing organic compounds. 6. The method of claim 5, wherein the Lewis base compound is blended with the titanium halide by grinding the solid titanium halide in the presence of the Lewis base compound. 7. The method according to claim 5, wherein the Lewis base compound is blended by grinding a solid particulate carrier in the presence of the Lewis base compound. 8. Claim 7, wherein the support is treated with titanium tetrachloride to form solid particles containing titanium halide.
The method described in section. 9 Claims 1 to 8, in which spray drying is performed using an inert gas at a temperature not exceeding 200°C.
The method described in any of the preceding sections. 10 The hot gas is removed from the spray drying zone, then passed through a cyclone to remove entrained solids in the gas stream, and then passed through a condenser to condense and remove the vapor of the inert liquid medium, before being recycled again. 10. The method of claim 9, wherein the method is heated and recycled to the spray drying process.
JP4307081A 1980-03-24 1981-03-24 Preparation of solid particulate substance, olefin polymerization catalyst containing it and olefin polymerization Granted JPS56155209A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8009838 1980-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2417979A Division JP2592546B2 (en) 1980-03-24 1990-12-19 Olefin polymerization method using solid particulate titanium halide-containing catalyst component

Publications (2)

Publication Number Publication Date
JPS56155209A JPS56155209A (en) 1981-12-01
JPH0561282B2 true JPH0561282B2 (en) 1993-09-06

Family

ID=10512333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4307081A Granted JPS56155209A (en) 1980-03-24 1981-03-24 Preparation of solid particulate substance, olefin polymerization catalyst containing it and olefin polymerization

Country Status (2)

Country Link
JP (1) JPS56155209A (en)
ZA (1) ZA811737B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118703A (en) * 1983-11-30 1985-06-26 Mitsui Toatsu Chem Inc Polymerization of propylene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441985A (en) * 1977-09-09 1979-04-03 Mitsui Petrochem Ind Ltd Polymerization or copolymerization of olefin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441985A (en) * 1977-09-09 1979-04-03 Mitsui Petrochem Ind Ltd Polymerization or copolymerization of olefin

Also Published As

Publication number Publication date
JPS56155209A (en) 1981-12-01
ZA811737B (en) 1982-04-28

Similar Documents

Publication Publication Date Title
JP2592546B2 (en) Olefin polymerization method using solid particulate titanium halide-containing catalyst component
EP0072129B2 (en) Supported transition metal composition
JPH08337611A (en) Production of alpha-olefin polymer
JPS63503550A (en) Method for producing solid catalyst component for olefin polymerization
EP0180420A1 (en) Process for the start up of polymerisation or copolymerisation in the gas phase of alpha-olefins in the presence of a Ziegler-Natta catalyst system
CA1193241A (en) Spraying solid catalyst for polymerizing olefins
US4605714A (en) Catalyst, production and use
JPH0561282B2 (en)
US4465785A (en) Composition production and use
FI61500B (en) FOERFARANDE FOER STEREOSPECIFIK POLYMERISATION AV ALFA-OLEFINER MED 2-6 KOLATOMER I NAERVARO AV ETT KATALYTISKT SYSTEM INNEHAOLLANDE TITANTRICHLORIDPARTIKLAR OCH DE VID FOERFARANDET ANVAENDA TITANTRIKLORPART
EP0290150A2 (en) Polymerisation catalyst
EP0113960A1 (en) Production and use of magnesium halide composition
JPS637561B2 (en)
WO1983001066A1 (en) Preparation of a dried transition metal product
JPH07678B2 (en) Method for producing ethylene copolymer
CA1181733A (en) Transition metal composition, production and use
GB2103627A (en) Transition metal composition
JPH06116326A (en) Production of carrier for olefin polymerization catalyst
EP0099199B1 (en) Magnesium halide composition production and use
JPS62172004A (en) Method for polymerization
JPS58109509A (en) Manufacture and use of composition
GB2072201A (en) Agglomeration Process for Polymerisation Catalyst Components
HU201784B (en) Process for producing catalyst-component for polymerizing olefines and process for polymerizing olefines