JPH056109B2 - - Google Patents

Info

Publication number
JPH056109B2
JPH056109B2 JP58121019A JP12101983A JPH056109B2 JP H056109 B2 JPH056109 B2 JP H056109B2 JP 58121019 A JP58121019 A JP 58121019A JP 12101983 A JP12101983 A JP 12101983A JP H056109 B2 JPH056109 B2 JP H056109B2
Authority
JP
Japan
Prior art keywords
temperature
control
compressor
refrigeration
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58121019A
Other languages
Japanese (ja)
Other versions
JPS6014074A (en
Inventor
Makoto Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12101983A priority Critical patent/JPS6014074A/en
Publication of JPS6014074A publication Critical patent/JPS6014074A/en
Publication of JPH056109B2 publication Critical patent/JPH056109B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 本発明は温度制御装置、特に冷凍コンテナと呼
ばれる輪送すべき物品が格納された室内の空気の
温度制御に好適な温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device, and particularly to a temperature control device suitable for controlling the temperature of the air inside a room in which articles to be transported, called a refrigerated container, are stored.

従来の冷凍コンテナの温度制御装置の一例が第
1図に示され、10は輪送すべき物品が格納され
る室で、室内空気は送風機12を駆動することに
よつて図に白抜矢印で示すように蒸発器4および
ヒータ11を通つて循環せしめられる。1は冷凍
圧縮機で、この冷凍圧縮機1から吐出された高温
高圧の冷媒ガスは凝縮器2に入つてここで冷却さ
れて凝縮液化せしめられ、次いで絞り3に入つて
ここで断熱膨張し、次いで蒸発器4に入つてここ
で室10を循環する空気を冷却し自身は加熱され
て蒸発して気化しガス状となつて圧縮機1に戻
る。圧縮機1の運転中弁5を開くことにより、圧
縮機1から吐出された高温高圧の冷媒ガスの1部
が凝縮器2および絞り3をバイパスして放熱する
ことなく蒸発器4に流入し、蒸発器4における冷
却能力を低減でき、また、弁5の開度を加減する
ことにより、冷却能力を無段階に制御することが
できる。8は戻り空気6の温度を検出する温度検
知器、9は吹き出し空気7の温度を検出する温度
検知器、14は温度検知器選択手段で、温度設定
手段15で任意に設定された設定温度が冷蔵条件
のときはこの信号を受けて温度検知器9で検出し
た吹出空気7の温度を制御に用いることを選択
し、温度設定手段15で設定された設定温度が冷
凍条件のときはこの信号を受けて温度検知器8で
検出した戻り空気6の温度を制御に用いることを
選択する。16は偏差算出装置で、温度検知選択
手段14で選択された温度検知器8又は9の検出
温度と温度設定手段15で設定された温度とを対
比して両者の偏差を演算し、これを運転指示装置
20に出力する。17はサーモスタツト選択手段
で、温度設定手段15で設定された設定温度が冷
蔵条件のときはこの信号を受けて冷蔵用サーモス
タツト18を選択し、設定温度が冷凍条件のとき
はこの信号を受けて冷凍用サーモスタツト19を
選択する。運転指示装置20では偏差算出装置1
6から出力された偏差とサーモスタツト選択手段
17からの入力されるサーモスタツト18または
19に設定されている偏差とを対比し、これらサ
ーモスタツト18または19の動作パターンに従
つて所定の運転モードで圧縮機1、弁5、ヒータ
11および送風機12を運転する指令を出す。室
10内に冷凍品を格納し、室温を所定温度以下に
維持する場合、例えば温度設定手段15に−18℃
を設定すると、これからの信号により温度検知器
選択手段14は温度検知器8を選択し、サーモス
タツト選択手段17は冷凍用サーモスタツト19
を選択する。温度検知器8で検出した戻り空気6
の検出温度が温度設定手段15により設定された
設定温度即ち−18℃より高い場合、この偏差は偏
差算出装置16を経て運転指示装置20に入力さ
れ、ここで冷凍用サーモスタツト19に設定され
ている偏差と比較され、前者が後者以上である場
合は、運転指示装置20からの指示により冷媒圧
縮機1、送風機12を起動して、室10内を循環
する空気を蒸発器4により冷却する。空気温度が
低下して検出温度と設定温度との偏差が冷凍用サ
ーモスタツト19に設定されている偏差以下にな
ると運転指示装置20からの指示により冷媒圧縮
機1は停止し、以下上記の起動、停止を繰返すこ
とにより室10内温度は温度設定手段15で設定
された−18℃に維持される。また、室10内に冷
蔵品を格納するため、温度設定手段15に例えば
0℃を設定した場合、温度検知器選択手段14は
温度検知器9を選択し、サーモスタツト選択手段
17は冷蔵用サーモスタツト18を選択する。温
度検知器9で検出した吹出し空気7の検出温度が
設定温度即ち0℃より高い場合においてこの偏差
が冷蔵用サーモスタツト18に設定されている偏
差より大きいときは運転指示装置20からの指示
により圧縮機1および送風機12を駆動し、室1
0内温度が降下して、検出温度と設定温度との偏
差が冷蔵用サーモスタツト18に設定されている
偏差以下になると、運転指示装置20からの指示
により弁5が開弁し、蒸発器4の冷却能力を低減
する。以後、圧縮機1の運転を続けながら弁5の
開度を運転指示装置20からの指示によつて調整
して蒸発器4の冷却能力を調整するが、室10の
熱負荷が弁5による調整範囲を越えて下つた場合
には運転指示装置20の指示によりヒータ11を
通電させ室10の熱負荷と蒸発器4の冷却能力と
の平衡を維持する。また、検出温度と設定温度と
の偏差が冷蔵用サーモスタツト18で設定された
偏差以下の場合には、圧縮機1を起動せずにヒー
タ11を送風機12を起動してこれにより循環空
気を加熱し、室10内温度が上昇して検出温度と
設定温度との偏差が冷蔵用サーモスタツト18に
よる設定偏差以上に達した時点で圧縮機1を始動
する。
An example of a conventional temperature control device for a refrigerated container is shown in FIG. 1, where 10 is a chamber where articles to be transported are stored, and indoor air is supplied by driving a blower 12 as indicated by the white arrow in the figure. It is circulated through the evaporator 4 and heater 11 as shown. Reference numeral 1 designates a refrigeration compressor, and the high-temperature, high-pressure refrigerant gas discharged from the refrigeration compressor 1 enters a condenser 2, where it is cooled and condensed and liquefied, and then enters a throttle 3, where it is adiabatically expanded. The air then enters the evaporator 4, where it cools the air circulating in the chamber 10, where it is heated, evaporates, and returns to the compressor 1 in the form of a gas. By opening the valve 5 during operation of the compressor 1, a part of the high temperature and high pressure refrigerant gas discharged from the compressor 1 bypasses the condenser 2 and the throttle 3 and flows into the evaporator 4 without releasing heat. The cooling capacity in the evaporator 4 can be reduced, and by adjusting the opening degree of the valve 5, the cooling capacity can be controlled steplessly. 8 is a temperature sensor for detecting the temperature of the return air 6; 9 is a temperature sensor for detecting the temperature of the blown air 7; 14 is a temperature sensor selection means; the set temperature arbitrarily set by the temperature setting means 15; When the refrigeration condition is selected, this signal is received and the temperature of the blown air 7 detected by the temperature sensor 9 is selected to be used for control, and when the set temperature set by the temperature setting means 15 is the refrigeration condition, this signal is selected. Then, the temperature of the return air 6 detected by the temperature sensor 8 is selected to be used for control. Reference numeral 16 denotes a deviation calculating device, which compares the detected temperature of the temperature detector 8 or 9 selected by the temperature detection selection means 14 and the temperature set by the temperature setting means 15, calculates the deviation between the two, and calculates the difference between the two. Output to the instruction device 20. Reference numeral 17 denotes a thermostat selection means which receives this signal and selects the refrigerating thermostat 18 when the set temperature set by the temperature setting means 15 is a refrigeration condition, and receives this signal when the set temperature is a refrigeration condition. to select the refrigeration thermostat 19. In the driving instruction device 20, the deviation calculation device 1
The deviation output from the thermostat 6 is compared with the deviation set in the thermostat 18 or 19 inputted from the thermostat selection means 17, and a predetermined operation mode is selected according to the operation pattern of these thermostats 18 or 19. A command is issued to operate the compressor 1, valve 5, heater 11, and blower 12. When storing frozen products in the chamber 10 and maintaining the room temperature below a predetermined temperature, for example, the temperature setting means 15 is set to -18°C.
When set, the temperature sensor selection means 14 selects the temperature sensor 8 based on the signal from now on, and the thermostat selection means 17 selects the refrigeration thermostat 19.
Select. Return air 6 detected by temperature detector 8
If the detected temperature is higher than the set temperature set by the temperature setting means 15, that is, -18°C, this deviation is inputted to the operation instruction device 20 via the deviation calculation device 16, where it is set in the refrigeration thermostat 19. If the former is greater than or equal to the latter, the refrigerant compressor 1 and blower 12 are activated in response to an instruction from the operation instruction device 20, and the air circulating in the room 10 is cooled by the evaporator 4. When the air temperature decreases and the deviation between the detected temperature and the set temperature becomes less than the deviation set in the refrigeration thermostat 19, the refrigerant compressor 1 is stopped by an instruction from the operation instruction device 20, and then the above-mentioned startup, By repeating the stoppage, the temperature inside the chamber 10 is maintained at -18°C, which is set by the temperature setting means 15. Further, in order to store refrigerated items in the chamber 10, when the temperature setting means 15 is set to, for example, 0°C, the temperature sensor selection means 14 selects the temperature sensor 9, and the thermostat selection means 17 selects the refrigerating thermos. Select tattoo 18. When the detected temperature of the blown air 7 detected by the temperature detector 9 is higher than the set temperature, that is, 0°C, and this deviation is larger than the deviation set in the refrigeration thermostat 18, the compressor is The air blower 1 and the blower 12 are driven to
When the internal temperature drops and the deviation between the detected temperature and the set temperature becomes equal to or less than the deviation set in the refrigeration thermostat 18, the valve 5 opens according to an instruction from the operation instruction device 20, and the evaporator 4 reduce the cooling capacity of Thereafter, while the compressor 1 continues to operate, the opening degree of the valve 5 is adjusted according to instructions from the operation instruction device 20 to adjust the cooling capacity of the evaporator 4, but the heat load in the chamber 10 is adjusted by the valve 5. If the temperature exceeds the range, the heater 11 is energized according to an instruction from the operation instruction device 20 to maintain a balance between the heat load of the chamber 10 and the cooling capacity of the evaporator 4. In addition, if the deviation between the detected temperature and the set temperature is less than the deviation set by the refrigeration thermostat 18, the heater 11 and blower 12 are started without starting the compressor 1, thereby heating the circulating air. However, when the temperature inside the room 10 rises and the deviation between the detected temperature and the set temperature reaches the set deviation set by the refrigeration thermostat 18 or more, the compressor 1 is started.

上記従来の装置においては、冷凍時には圧縮機
1の運転・停止を繰返して温度を制御するが、冷
蔵時には弁5の開度を無段階に増減して冷却能力
を無段階に減増し、室温の変動巾を可能な限り小
さくなるよう制御している。従つて、工業製品の
冷蔵時等さ程厳しい温度管理を要しない場合にも
常時時圧縮機1を運転しているため圧縮機1を駆
動するためのエネルギーが消費されるので、エネ
ルギー消費効率が極めて悪いという不具合があつ
た。
In the above-mentioned conventional device, during refrigeration, the compressor 1 is repeatedly started and stopped to control the temperature, but during refrigeration, the opening degree of the valve 5 is steplessly increased/decreased to steplessly increase/decrease the cooling capacity. The range of fluctuation is controlled to be as small as possible. Therefore, even in cases where strict temperature control is not required, such as when refrigerating industrial products, the compressor 1 is constantly running, and energy is consumed to drive the compressor 1, which reduces energy consumption efficiency. There was a problem that was extremely bad.

本発明は、上記不具合に対処するため、圧縮機
を連続運転しながら冷却能力を無段階に調整して
温度制御を行なう容量制御機能を具備すると共
に、圧縮機をオン・オフ運転して温度制御を行な
うオン・オフ制御機能を具備した冷却装置と加熱
装置とを備え、両装置により室内の温度を冷凍条
件から冷蔵条件にわたる広範囲の温度範囲の中で
設定温度に制御する温度制御装置において、設定
温度が冷蔵条件のとき、前記冷蔵装置の能力を、
熱負荷に応じて圧縮機を連続運転しながら、容量
制御により無段階に調整して高精度に温度制御す
る制御方法と、前記冷却装置及び加熱装置をオ
ン・オフ運転して省エネルギー化を図りつつ温度
制御する制御方法とのいずれかを選択可能な温度
制御方法選択手段を有することを特徴とする温度
制御装置を提供することを目的とするものであ
る。
In order to deal with the above-mentioned problems, the present invention has a capacity control function that performs temperature control by steplessly adjusting the cooling capacity while continuously operating the compressor, and also controls temperature by operating the compressor on and off. A temperature control device that is equipped with a cooling device and a heating device that have an on/off control function to control the indoor temperature to a set temperature within a wide temperature range from freezing conditions to refrigeration conditions. When the temperature is under refrigeration conditions, the capacity of the refrigeration device is
A control method that continuously operates the compressor according to the heat load and continuously adjusts the temperature using capacity control to control the temperature with high precision, and operates the cooling device and heating device on and off to save energy. It is an object of the present invention to provide a temperature control device characterized by having a temperature control method selection means that can select one of the control methods for temperature control.

以下、本発明を第2図に示す1実施例を参照し
ながら具体的に説明する。第2図におては、23
は第2冷蔵用サーモスタツト、27は制御方法選
択スイツチで、フイルム、電気製品等の工業製品
を室10内に格納するときはこれを操作して省エ
ネ制御を選択し、果実、チルドビーフ等の農産物
を格納するときには精密制御を選択する。省エネ
制御を選択したときは、これからの信号を受けて
サーモスタツト選択手段17は第2冷蔵用サーモ
スタツト23を選択すると同時に温度検知器選択
手段14は温度検知器8および9の双方の検出温
度を選択する。精密制御を選択したときは、これ
からの信号を受けてサーモスタツト選択手段17
は冷蔵用サーモスタツト18を選択すると同時に
温度検知器選択手段14は温度検知器9を選択す
る。他の構成、機能は第1図に示す従来のものと
同様であり、同一の機能を果す部品には第1図の
符号と同一の符号を付し、その説明は省略する。
従つて、冷凍品の貯蔵品及び農産品を室10内に
格納して0℃近辺にて冷蔵保管する場合で、温度
設定手段15で設定温度0℃が設定され、制御方
法選択スイツチ27で精密制御を選択した時の機
能は第1図に例示したものと同じであり、その説
明は省略する。
The present invention will be specifically described below with reference to an embodiment shown in FIG. In Figure 2, 23
27 is a second refrigeration thermostat, and 27 is a control method selection switch.When storing industrial products such as films and electrical products in the room 10, this is operated to select energy saving control, and 27 is a control method selection switch. Choose precision control when storing produce. When energy saving control is selected, the thermostat selection means 17 selects the second refrigeration thermostat 23 in response to this signal, and at the same time the temperature sensor selection means 14 selects the detected temperatures of both temperature sensors 8 and 9. select. When precision control is selected, the thermostat selection means 17 receives the upcoming signal.
selects the refrigerating thermostat 18, and at the same time the temperature sensor selection means 14 selects the temperature sensor 9. The other configurations and functions are the same as the conventional one shown in FIG. 1, and parts that perform the same functions are designated by the same reference numerals as those in FIG. 1, and their explanations will be omitted.
Therefore, when stored frozen products and agricultural products are stored in the chamber 10 and stored refrigerated at around 0°C, the set temperature is set to 0°C by the temperature setting means 15, and the control method selection switch 27 is used to precisely control the setting temperature. The functions when control is selected are the same as those illustrated in FIG. 1, and their explanation will be omitted.

フイルム、電気製品等の工業製品を室10内に
格納して例えば20℃近辺で冷蔵保管する場合、温
度設定手段15で設定温度20℃が設定され、制御
方法選択スイツチ27で省エネ制御を選択する。
すると、これからの信号により温度検知器選択手
段14は温度検知器8および9を選択し、サーモ
スタツト選択手段17は第2冷蔵用サーモスタツ
ト23を選択する。偏差算出装置16では温度検
知器8の検出温度と設定温度即ち20℃との偏差が
算出される一方、温度検知器8の検出温度と温度
検知器9の検出温度との差も算出される。偏差算
出装置16にて算出された温度検知器8の検出温
度と設定温度20℃との偏差が第二冷蔵用サーモス
タツト23に設定されている所定の偏差を上回る
時運転指示装置25の指示により圧縮機1が運転
を開始し、蒸発器4にて室10を循環する空気が
冷却されることは上記従来のものと同じである。
この冷却作用の結果、温度検知器8の検出温度と
設定温度20℃との偏差が、冷蔵用サーモスタツ
ト18に設定されている所定の偏差まで降下する
と運転指示装置25は弁5に対して開弁の指令を
行ない冷却能力が削減される。弁5の開度は運転
指示装置25により、偏差算出装置16にて算出
される温度検知器9の検出温度と、温度検知器8
の検出温度との差が所定の値となるように比例制
御が行なわれる。かくして、熱負荷の代小によら
ず削減された所定の冷却能力で運転が行なわれる
室10の温度は更に降下する。その結果、温度検
知器8の検出温度と設定温度20℃との偏差が第二
冷蔵用サーモスタツト23に設定されている値、
例えば零となると、運転指示装置25は圧縮器1
の運転を停止するように指令すると共に、弁5に
対しては閉弁の指令を行なう。この圧縮機1の停
止の間において送風機12の作動のための動力
や、外部からの室10内への熱浸入等により室1
0の温度が上昇し、温度検知器8の検出温度と設
定温度20℃との偏差が第二冷蔵用サーモスタツ
ト23に設定されている偏差を上回ると運転指示
装置25は圧縮機1に再度運転開始を指令すると
共に、弁5に対して開弁の指示を行ない、削減さ
れた所定の冷却能力での冷却運転が再開される。
以上の作用の繰り返しにより室10の温度はほぼ
一定に保持されることとなる。一方、外気温度が
低下した場合など圧縮機1の停止しているのに更
に室10の温度が低下するような時で温度検知器
8の検出温度と設定温度20℃との偏差が第二冷蔵
用サーモスタツト23に設定されている負の偏差
を下回り更に負側となる場合には、ヒータ11へ
通電が開始され、ヒータ11への通電と送風機1
2の運転による加熱運転が行なわれる。この加熱
運転の結果、温度検知器8の検出温度と設定温度
20℃との偏差が、第二冷蔵用サーモスタツト23
に設定されている所定の偏差を上回るとヒータ1
1への通電は停止される。以上の動作の結果室1
0はほぼ一定の温度に保持されることとなる。
When industrial products such as films and electrical products are stored in the chamber 10 and stored in a refrigerator at, for example, around 20°C, the temperature setting means 15 sets a set temperature of 20°C, and the control method selection switch 27 selects energy saving control. .
Then, the temperature sensor selection means 14 selects the temperature sensors 8 and 9 based on the signals from this, and the thermostat selection means 17 selects the second refrigeration thermostat 23. The deviation calculation device 16 calculates the deviation between the temperature detected by the temperature sensor 8 and the set temperature, that is, 20° C., and also calculates the difference between the temperature detected by the temperature sensor 8 and the temperature detected by the temperature sensor 9. When the deviation between the detected temperature of the temperature detector 8 calculated by the deviation calculation device 16 and the set temperature of 20°C exceeds a predetermined deviation set in the second refrigeration thermostat 23, according to the instruction from the operation instruction device 25. The compressor 1 starts operating and the air circulating in the chamber 10 is cooled by the evaporator 4, as in the conventional system.
As a result of this cooling action, when the deviation between the temperature detected by the temperature sensor 8 and the set temperature of 20°C falls to a predetermined deviation set in the refrigeration thermostat 18, the operation instruction device 25 opens the valve 5. Commands the valves to reduce cooling capacity. The opening degree of the valve 5 is determined by the operation instruction device 25 based on the detected temperature of the temperature sensor 9 calculated by the deviation calculation device 16 and the temperature sensor 8.
Proportional control is performed so that the difference between the detected temperature and the detected temperature becomes a predetermined value. In this way, the temperature of the chamber 10, which is operated with a reduced predetermined cooling capacity, will further drop regardless of the thermal load. As a result, the deviation between the temperature detected by the temperature detector 8 and the set temperature of 20°C is the value set in the second refrigeration thermostat 23.
For example, when it becomes zero, the operation instruction device 25
At the same time, the valve 5 is commanded to close. While the compressor 1 is stopped, the power for operating the blower 12, heat intrusion from the outside into the chamber 10, etc.
0 rises and the deviation between the temperature detected by the temperature detector 8 and the set temperature of 20°C exceeds the deviation set in the second refrigeration thermostat 23, the operation instruction device 25 causes the compressor 1 to operate again. At the same time as commanding the start, an instruction is given to the valve 5 to open the valve, and the cooling operation is restarted at the reduced predetermined cooling capacity.
By repeating the above actions, the temperature of the chamber 10 is maintained substantially constant. On the other hand, when the temperature in the chamber 10 further decreases even though the compressor 1 is stopped, such as when the outside air temperature decreases, the deviation between the temperature detected by the temperature detector 8 and the set temperature of 20° C. When the negative deviation is lower than the negative deviation set in the thermostat 23 and becomes further negative, energization to the heater 11 is started;
Heating operation is performed by operation No. 2. As a result of this heating operation, the detected temperature and set temperature of temperature sensor 8 are determined.
The deviation from 20℃ is the second refrigeration thermostat 23.
When the deviation exceeds the predetermined deviation set in
1 is stopped. Result room 1 of the above actions
0 is maintained at a substantially constant temperature.

しかして、上記実施例においては、制御方法選
択スイツチにより冷蔵時には精密制御の他に省エ
ネ制御を選択できるようにし、精密制御を選択し
たときは圧縮機の運転を継続しながら弁の開度を
熱負荷即ち検出温度と設定温度との偏差に応じて
無段階に調整し室温を目標温度に近接した極めて
狭い温度変動巾に維持し高精度の温度制御ができ
る。一方、省エネ制御を選択したとき、圧縮機の
運転・停止を繰返し、圧縮機の運転中は熱負荷の
大小によらずして弁の開度を吹き出し空気温度と
戻り空気温度との差が一定となるよう即ち削減さ
れた所定の冷却能力になるように調節して省エネ
ルギーの温度制御をすることができる。
Therefore, in the above embodiment, the control method selection switch allows the selection of energy-saving control in addition to precision control during refrigeration, and when precision control is selected, the opening degree of the valve is changed by heat while continuing to operate the compressor. Highly accurate temperature control is possible by steplessly adjusting according to the load, that is, the deviation between the detected temperature and the set temperature, and maintaining the room temperature within an extremely narrow temperature fluctuation range close to the target temperature. On the other hand, when energy saving control is selected, the compressor is repeatedly started and stopped, and while the compressor is operating, the difference between the blowing air temperature and the return air temperature is constant regardless of the size of the heat load. In other words, it is possible to perform energy-saving temperature control by adjusting the cooling capacity to a predetermined reduced cooling capacity.

またこの圧縮機1の発停を伴なう温度管理を行
なう場合でも吹き出し空気7の温度の管理も行な
われることとなり室10の局所的な冷えすぎや、
温度ばらつきが大きくなることを防止できる一
方、圧縮機1の発停頻度を抑えることができ、圧
縮機1の寿命の増大にも効果がある。
Furthermore, even when temperature control involves turning on and off the compressor 1, the temperature of the blown air 7 is also controlled, so that the room 10 may become too cold locally.
While it is possible to prevent temperature variations from increasing, it is also possible to suppress the frequency of starting and stopping the compressor 1, which is also effective in increasing the life of the compressor 1.

なお、上記実施例においては第二冷蔵用サーモ
スタツト22の使用時において弁5の開度は、温
度検知器8及び9の検出温度の差が一定となるよ
う比例制御したが、これは必ずしも一定の温度差
である必要はなく、圧縮機1の発停及び弁5の開
閉の指示は戻り空気6の温度を検知する温度検知
器8の検出温度を用いて行ない、冷却装置の冷却
能力の制御にあたつては吹き出し空気7の温度を
検知する温度検知器9の検出温度が、設定温度よ
りも所定温度だけ低くなるように弁5の開度の調
整を行なつてもよく、単に、局所的な冷えすぎや
温度ばらつきを抑え、圧縮機1の発停頻度をも抑
えるのみであれば弁5の開度を一定の値とするこ
とも可能である。更に言えば、冷却能力制御を必
ずしも必要とするわけではないこともあり、この
時は弁5に対し開弁の指令が行なわれなくてもよ
い。
In the above embodiment, when the second refrigeration thermostat 22 is used, the opening degree of the valve 5 is proportionally controlled so that the difference between the temperatures detected by the temperature detectors 8 and 9 is constant, but this is not necessarily constant. There is no need to be a temperature difference of In this case, the opening degree of the valve 5 may be adjusted so that the temperature detected by the temperature detector 9 that detects the temperature of the blown air 7 is lower than the set temperature by a predetermined temperature. It is also possible to set the opening degree of the valve 5 to a constant value if only to suppress excessive cooling and temperature variations, and to suppress the frequency of starting and stopping the compressor 1. Furthermore, since cooling capacity control may not necessarily be necessary, the command to open the valve 5 may not be issued at this time.

また、上記実施例においては温度制御に用いる
温度検知器の検出温度を常に一方のみとしたが、
これは温度検知器8及び9の検出温度の比較演算
結果、例えば高い方の値とか低い方の値、更にま
た両者の平均値等を用いることも可能であり単に
一方のみを温度制御に用いるのとの併用も可能で
ある。
In addition, in the above embodiment, only one temperature was detected by the temperature sensor used for temperature control; however,
This can be done by using the comparison calculation results of the temperatures detected by the temperature detectors 8 and 9, such as the higher value, lower value, or even the average value of both, so it is possible to use only one of them for temperature control. It is also possible to use it in combination with

また、上記実施例では冷却装置の冷却能力制御
を行なう例として、ホツトガスのバイパス量を制
御する例を示したが、これに代えて蒸発器4と圧
縮機1の間に弁を設けたり、絞り装置を可変とし
て循環冷媒量の制御を行なつて冷却能力を制御し
てもよく、また、圧縮機1そのものの容量制御を
行なつてもよい。
Furthermore, in the above embodiment, as an example of controlling the cooling capacity of the cooling device, an example was shown in which the bypass amount of hot gas was controlled, but instead of this, a valve may be provided between the evaporator 4 and the compressor 1, or a The cooling capacity may be controlled by making the device variable and controlling the amount of circulating refrigerant, or the capacity of the compressor 1 itself may be controlled.

更に、上記実施例では冷凍時と省エネ冷蔵時の
制御動作が互いに異なる例を示したが、同じ制御
動作であつても構わない。
Further, in the above embodiment, an example is shown in which the control operations during freezing and during energy-saving refrigeration are different from each other, but the control operations may be the same.

更に、上記実施例では弁5を1つだけ用いた例
を示したが2つ以上の弁を設け、使い分けするこ
とも可能である。
Further, although the above embodiment shows an example in which only one valve 5 is used, it is also possible to provide two or more valves and use them properly.

また、上記実施例では冷蔵時の制御動作を2通
りとしたが、必ずしも2通りである必要はなく更
に多くの制御動作をさせても良く、また冷凍時に
ついても複数の制御動作をさせてもよい。
Further, in the above embodiment, there are two types of control operations during refrigeration, but it is not necessary that there are two types of control operations, and more control operations may be performed, and multiple control operations may also be performed during freezing. good.

更に、上記実施例では物品を格納する室内空気
の温度を制御したがこれに限らず本発明は加熱装
置または冷却装置によつて加熱または冷却される
客体温度制御に広く適用できる。
Further, in the above embodiment, the temperature of the indoor air in which the article is stored is controlled, but the present invention is not limited to this, and the present invention can be widely applied to temperature control of an object heated or cooled by a heating device or a cooling device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍コンテナーの温度制御装置
の1例を示す系統図、第2図は本発明を冷凍コン
テナーの温度制御装置に適用した場合の1実施例
を示す系統図である。 冷却加熱装置……1,2,3,4,5,11、
客体……6,7、温度制御方法選択手段……2
7。
FIG. 1 is a system diagram showing an example of a conventional temperature control device for a refrigerated container, and FIG. 2 is a system diagram showing an embodiment in which the present invention is applied to a temperature control device for a refrigerated container. Cooling and heating device...1, 2, 3, 4, 5, 11,
Object...6,7, Temperature control method selection means...2
7.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機を連続運転しながら冷却能力を無段階
に調整して温度制御を行なう容量制御機能を具備
すると共に、圧縮機をオン・オフ運転して温度制
御を行なうオン・オフ制御機能を具備した冷却装
置と加熱装置とを備え、両装置により室内の温度
を冷凍条件から冷蔵条件にわたる広範囲の温度範
囲の中で設定温度に制御する温度制御装置におい
て、設定温度が冷蔵条件のとき、前記冷却装置の
能力を、熱負荷に応じて圧縮機を連続運転しなが
ら、定量制御により無段階に調整して高精度に温
度制御する制御方法と、前記冷却装置及び加熱装
置をオン・オフ運転して省エネルギー化を図りつ
つ温度制御する制御方法とのいずれかを選択可能
な温度制御方法選択手段を有することを特徴とす
る温度制御装置。
1 Equipped with a capacity control function that performs temperature control by steplessly adjusting the cooling capacity while operating the compressor continuously, as well as an on/off control function that controls temperature by operating the compressor on and off. In a temperature control device that includes a cooling device and a heating device, and uses both devices to control the indoor temperature to a set temperature within a wide temperature range ranging from freezing conditions to refrigeration conditions, when the set temperature is in the refrigeration condition, the cooling device A control method that continuously operates the compressor according to the heat load and continuously adjusts the temperature using quantitative control to control the temperature with high precision, and saves energy by turning on and off the cooling device and heating device. 1. A temperature control device characterized by having a temperature control method selection means that can select one of the control methods for temperature control while controlling the temperature.
JP12101983A 1983-07-05 1983-07-05 Method of controlling temperature Granted JPS6014074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12101983A JPS6014074A (en) 1983-07-05 1983-07-05 Method of controlling temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12101983A JPS6014074A (en) 1983-07-05 1983-07-05 Method of controlling temperature

Publications (2)

Publication Number Publication Date
JPS6014074A JPS6014074A (en) 1985-01-24
JPH056109B2 true JPH056109B2 (en) 1993-01-25

Family

ID=14800789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12101983A Granted JPS6014074A (en) 1983-07-05 1983-07-05 Method of controlling temperature

Country Status (1)

Country Link
JP (1) JPS6014074A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623637B2 (en) * 1985-03-11 1994-03-30 日立冷熱株式会社 Cooling room temperature control method
JP2548585B2 (en) * 1987-12-04 1996-10-30 日本建鐵株式会社 Cooling room temperature control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107914A (en) * 1980-12-26 1982-07-05 Nippon Denso Co Ltd Air conditioning controller for car
JPS5864437A (en) * 1981-10-14 1983-04-16 Nippon Denso Co Ltd Control on refrigerating cycle
JPS5867513A (en) * 1981-10-19 1983-04-22 Nissan Motor Co Ltd Automobile's air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754411Y2 (en) * 1978-05-02 1982-11-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107914A (en) * 1980-12-26 1982-07-05 Nippon Denso Co Ltd Air conditioning controller for car
JPS5864437A (en) * 1981-10-14 1983-04-16 Nippon Denso Co Ltd Control on refrigerating cycle
JPS5867513A (en) * 1981-10-19 1983-04-22 Nissan Motor Co Ltd Automobile's air conditioner

Also Published As

Publication number Publication date
JPS6014074A (en) 1985-01-24

Similar Documents

Publication Publication Date Title
EP2217872B1 (en) Control method of refrigerator
JPH087313Y2 (en) Refrigerator control device
US4509586A (en) Temperature control device for a refrigerating apparatus having both a heating means and a cooling means
JPS62195272A (en) Thawing refrigerator
JPH0362993B2 (en)
EP3686519B1 (en) A system having an optimised subcooler and a method of operating the system
JPH056109B2 (en)
JPH056108B2 (en)
JPH11281221A (en) Cooler of open show case
JPH0526457Y2 (en)
JP5384124B2 (en) Refrigeration system, control device and control method thereof
JP2990441B2 (en) Thermoelectric element control device for vehicle refrigerator-freezer
JPH0477226B2 (en)
JP2999776B2 (en) Refrigeration device defrost control method
KR100229488B1 (en) Independent cooling type refrigerator and defrost control method thereof
JPH0914766A (en) Refrigerating unit
JPH10115481A (en) Showcase cooling apparatus
KR0161949B1 (en) Refrigeration cycle apparatus of refrigerator having two evaporators
JPH02247460A (en) Operation control device for refrigerator
JPH0444179B2 (en)
JPH0477219B2 (en)
JPH0188351U (en)
JP2760571B2 (en) Refrigeration cycle control device
JP2512866Y2 (en) Ice making device for vehicle cold storage
JPS6014073A (en) Air conditioner