JPH0561082A - Nonlinear optical material having rigid skeleton - Google Patents

Nonlinear optical material having rigid skeleton

Info

Publication number
JPH0561082A
JPH0561082A JP24413891A JP24413891A JPH0561082A JP H0561082 A JPH0561082 A JP H0561082A JP 24413891 A JP24413891 A JP 24413891A JP 24413891 A JP24413891 A JP 24413891A JP H0561082 A JPH0561082 A JP H0561082A
Authority
JP
Japan
Prior art keywords
group
aromatic
hydrogen
univalent
optical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24413891A
Other languages
Japanese (ja)
Inventor
Yutaka Takeya
竹谷  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP24413891A priority Critical patent/JPH0561082A/en
Publication of JPH0561082A publication Critical patent/JPH0561082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the material having a remarkable nonlinear optical phenomenon with the second harmonic generating phenomenon for changing the wave length of an incident laser beam as the center and with the transparent region enlarged by providing a specified N-aromatic group-substituted polycyclic skeleton to the material. CONSTITUTION:This material has an N-aromatic group-substituted polycyclic skeleton shown by the expression. In the expression, X is a 2 to 6-membered-ring univalent polycyclic hydrocarbon, Ar is a 5-18C aromatic ring, R1 is hydrogen or a 1-3C univalent hydrocarbonic group, and R2 is hydrogen or a univalent functional group with the Hammett's substituent content being -0.15 to 1.5, and (n) is an integer of 0 to 4. Besides, a 3 or 4-membered polycyclic hydrocarbonic group is preferably used as X, and R2 should be a combination of one or >=2 kinds selected from -SH, -NHCOR3, etc., when R3 is hydrogen, a 1-6C univalent aliphatic hydrocarbonic group or a 5-18C univalent aromatic ring group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非線形光学材料分野、
さらに詳細には、大きな二次の非線形光学物性を発現す
るための非対称構造を有し、透明領域の広いN―芳香族
基置換多環系骨格を有する非線形光学材料に関する。
The present invention relates to the field of nonlinear optical materials,
More specifically, the present invention relates to a non-linear optical material having an N-aromatic group-substituted polycyclic skeleton having a wide transparent region and having an asymmetric structure for exhibiting a large second-order non-linear optical physical property.

【0002】[0002]

【従来の技術】有機物質の非線形光学特性が、既存の無
機化合物に比べて大きいことが近年知られてきた。非線
形光学効果とは、例えばレーザ光のような強い光電場を
物質に印加した時、その物質の電気分極応答が印加電界
の大きさの一次に比例する関係から、その大きさの二次
以上の高次の効果があらわれる事を示す。
2. Description of the Related Art In recent years, it has been known that the nonlinear optical characteristics of organic substances are greater than those of existing inorganic compounds. The non-linear optical effect means that when a strong photoelectric field such as laser light is applied to a substance, the electric polarization response of the substance is proportional to the primary magnitude of the applied electric field. It shows that higher-order effects are exhibited.

【0003】二次の非線形光学には、入射光の波長を1
/2の波長に変換する第二高調波発生、1種類の波長の
光を2種類の光に変換させるパラメトリック発振、逆に
2種類の波長の光から1種類の波長の光を発現させる二
次光混合などがある。これらの諸特性から、大きな技術
発展が期待される光データ/光情報処理や、光通信に用
いられる光スイッチ、光メモリー、あるいは、光情報記
憶素子として使用される可能性が高い。特に、近年、光
記録分野では、記録符号の読み取り、あるいは書き込み
の波長の短波長化が、高密度の記録を行う上で強く要望
されるようになってきた。操作性、簡便性の観点から、
半導体レーザが主として用いられて来ているが、既存の
半導体材料の組合せでは、一般に630nmより短い波
長の発光を生起させることは困難であると言われてい
る。この観点から、ここに述べた二次の非線形光学特性
を利用して、第二高調波発生により、紫外領域に近い青
色を発光する材料が詳しく検討され、ニオブ酸リチウ
ム、KTP,BBOに代表される無機材料での応用が積
極的に研究されている。しかしながら、この様な状態で
の波長変換の機作は、結晶の複屈折を利用した位相整合
条件を満足した時にのみ活性が高くなるという現象であ
り、この条件を揃えるための空間配置の決定など、非常
に煩雑な操作が必要であり、かつ外部温度、湿度により
複屈折の挙動が変化する事も多く、実用上問題が多い。
For the second-order nonlinear optics, the wavelength of the incident light is 1
Second harmonic generation for conversion to / 2 wavelength, parametric oscillation for converting light of one kind of wavelength into two kinds of light, conversely secondary to express light of one kind of wavelength from light of two kinds of wavelength There is light mixing. Due to these characteristics, there is a high possibility that it will be used as an optical data / optical information processing, which is expected to undergo great technological development, an optical switch used for optical communication, an optical memory, or an optical information storage element. In particular, in recent years, in the optical recording field, there has been a strong demand for shortening the wavelength of reading or writing the recording code in order to perform high density recording. From the viewpoint of operability and convenience
Although semiconductor lasers have been mainly used, it is generally said that it is difficult to cause emission of light having a wavelength shorter than 630 nm with existing semiconductor material combinations. From this point of view, using the second-order nonlinear optical characteristics described here, materials that emit blue light close to the ultraviolet region by the generation of the second harmonic are studied in detail, and are typified by lithium niobate, KTP, and BBO. Applications in inorganic materials are being actively researched. However, the mechanism of wavelength conversion in such a state is that the activity becomes high only when the phase matching condition utilizing the birefringence of the crystal is satisfied, and the spatial arrangement for aligning this condition is determined. Very complicated operations are required, and the behavior of birefringence often changes depending on the external temperature and humidity, which is a problem in practical use.

【0004】本発明で問題とする二次の非線形光学特性
は3階のテンソルであるので、分子、または、結晶で対
称中心が存在すると顕在化しない。この理由の為に、有
機化合物の場合、分子レベルでは大きな非線形光学効果
を発現する構造を有していても、第2高調波発生を用い
る実用形態としての結晶、あるいは、固体状にすると、
その固体化の段階で反転対称性の構造が優先的に形成さ
れることが多く、このために光学素子として非線形光学
効果が発現されなくなるという問題点があった。
Since the quadratic nonlinear optical characteristic of the present invention is a tensor of the third order, it does not become apparent when a symmetry center exists in a molecule or a crystal. For this reason, in the case of an organic compound, even if it has a structure that exhibits a large non-linear optical effect at the molecular level, if it is made into a crystal or solid state as a practical form using the second harmonic generation,
In many cases, a structure having inversion symmetry is preferentially formed at the stage of solidification, which causes a problem that a nonlinear optical effect is not exhibited as an optical element.

【0005】一般に、第2高調波発生能は、分子内での
分極が大きく、かつその分極の寄与が大きくなる長い共
役系ほど大きくなるが、共役長さが長くなると吸収極大
は長波長側に移り、入射光の1/2波長に対応すること
が起こる。そうなると発生する第2高調波を吸収し、屈
折率の変化する光損傷や、化学的に変性、あるいは、熱
エネルギの吸収により燃焼することがある。従って、非
線形光学材料そのものの吸収波長が、可視域にないこ
と、あるいは、少なくとも、400nm付近に存在しな
い事は必須である。さらに、非線形分極を増大させると
この分極を相互に相殺させる働きが作用するので、固体
集合体では、全体の分極が発現しないことが多く、これ
ら2ケの問題点は、有機材料のこの分野への応用で大き
な障害となっている。
Generally, the second harmonic generation ability becomes larger in a long conjugated system in which the polarization in the molecule is large and the contribution of the polarization is large, but when the conjugation length becomes long, the absorption maximum becomes to the long wavelength side. Then, it occurs that it corresponds to ½ wavelength of the incident light. In that case, the generated second harmonic may be absorbed and may be burned due to optical damage with a change in refractive index, chemical modification, or absorption of heat energy. Therefore, it is essential that the absorption wavelength of the nonlinear optical material itself is not in the visible range, or at least does not exist near 400 nm. Furthermore, when the nonlinear polarization is increased, the functions of canceling out the polarizations act on each other, so that in the solid aggregate, the total polarization is often not expressed. These two problems are related to this field of organic materials. Is a major obstacle to the application of.

【0006】本発明者は、結晶又は固体状になっても非
対称構造を形成させると共に、可視光域に吸収のない新
規な材料を見いだすというかかる困難を克服するために
鋭意研究を進めた結果、多環式骨格が分子集合体の非対
称性を保持し、かつ窒素基を分極の大きなπ電子からな
る芳香族基を修飾することでこの2ケの要求を満足させ
る有機材料の発見に至り、本発明に到達した。
The present inventor has conducted earnest researches in order to form an asymmetric structure even in a crystal or solid state and to overcome such a difficulty of finding a novel material having no absorption in the visible light region. The polycyclic skeleton retains the asymmetry of the molecular assembly, and by modifying the nitrogen group with an aromatic group consisting of highly polarized π-electrons, we have discovered an organic material that satisfies these two requirements. The invention has been reached.

【0007】即ち、本発明は、下記(1)式で表され
る、N―芳香族基置換多環系骨格を有する非線形光学材
料に関する。
That is, the present invention relates to a non-linear optical material having an N-aromatic group-substituted polycyclic skeleton represented by the following formula (1).

【0008】 X―N(R1 )―Ar―(R2 )n (1) [但し,式中Xは、2環以上6環以下の1価の多環系炭
化水素基を示し、Arは、芳香環の炭素数が5〜18の
芳香環を示し、R1 は、水素、または,炭素数1から3
の1価の炭化水素基を示し、R2 は、水素、または,ハ
メットの置換基定数が、−0.15より大きく、1.5
より小さい1価の官能基を表す。nは、0から4の整数
を示す。]
X—N (R 1 ) —Ar— (R 2 ) n (1) [wherein, X represents a monovalent polycyclic hydrocarbon group having 2 to 6 rings, and Ar is , An aromatic ring having 5 to 18 carbon atoms, R 1 is hydrogen or 1 to 3 carbon atoms.
R 2 represents hydrogen or a Hammett's substituent constant is larger than −0.15 and is 1.5.
It represents a smaller monovalent functional group. n represents an integer of 0 to 4. ]

【0009】一般式(1)において、Arは、芳香環の
炭素数が5〜18の(1+n)価の芳香環を示す。この
Arとしては、4―ピリジン、2―ピリジン、ベンゼ
ン、インデン、ナフタレン、ビフェニル、ナフタレン、
アセナフチレン、フルオレン、フェナントレン、アント
ラセン、ベンゾフラン、ベンゾチオフェン、インドー
ル、キノリン、イソキノリン、カルバゾール等から誘導
される基を挙げることが出来る。
In the general formula (1), Ar represents a (1 + n) -valent aromatic ring having 5 to 18 carbon atoms in the aromatic ring. As this Ar, 4-pyridine, 2-pyridine, benzene, indene, naphthalene, biphenyl, naphthalene,
Examples thereof include groups derived from acenaphthylene, fluorene, phenanthrene, anthracene, benzofuran, benzothiophene, indole, quinoline, isoquinoline, carbazole and the like.

【0010】また、一般式R1 は、水素、または,炭素
数1から3の1価の炭化水素基を表し、メチル基、エチ
ル基、n―プロピル基等を好ましく挙げる事が出来る。
2 は、基本的には、電子吸引の性能を有している事が
望ましく、かかる、性質を表すものとしては、水素、ま
たは,ハメットの置換基定数が、−0.15より大き
く、1.5より小さい1価の官能基であり、具体的に
は、、―SH,―NHCOR3 、―OCOR3 、―OC
3 、―CONH2 、―COOR3 、―COOH、―S
OR3 、―SCF3 、―COR3 、―CF3 、―SO2
NH2 、―CN、―SO2 3 、―NO2 、―N+ (R
3 2 、―SO2 3 、及びハロゲン原子から選ばれる
1種類、または2種類以上の組合せからなる。式中R3
は、水素、炭素数が1から6の1価の脂肪族炭化水素
基、芳香環の炭素数が5〜18の芳香族基 を表すが、
かかる例としては、メチル基、エチル基、n―プロピル
基、n―ブチル基、等の直鎖状炭化水素基、フェニル
基、ビフェニル基、ピリジル基らの芳香族基等を示す事
が出来る。
Further, the general formula R 1 represents hydrogen or a monovalent hydrocarbon group having 1 to 3 carbon atoms, and methyl group, ethyl group, n-propyl group and the like can be preferably mentioned.
Basically, it is desirable that R 2 has an electron-withdrawing property. As a property showing such a property, hydrogen or Hammett's substituent constant is larger than −0.15 and 1 .5 is smaller than monovalent functional groups, in particular ,, - SH, -NHCOR 3, -OCOR 3, -OC
F 3 , -CONH 2 , -COOR 3 , -COOH, -S
OR 3, -SCF 3, -COR 3 , -CF 3, -SO 2
NH 2 , —CN, —SO 2 R 3 , —NO 2 , —N + (R
3 ) One, or a combination of two or more selected from 2 , SO 2 F 3 , and a halogen atom. R 3 in the formula
Represents hydrogen, a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, or an aromatic group having 5 to 18 carbon atoms in the aromatic ring.
Examples thereof include linear hydrocarbon groups such as methyl group, ethyl group, n-propyl group and n-butyl group, aromatic groups such as phenyl group, biphenyl group and pyridyl group.

【0011】一方、Xは、2環以上6環以下の1価の多
環系炭化水素基を示し、好ましくは、3環又は4環系で
あり、かかる基を与える化合物としては、アダマンタ
ン、ノルアダマンタン、エタノアントラセン、メタノア
ントラセン、ノルボルネン、ノルボニレン等を挙げるこ
とが出来る。
On the other hand, X represents a monovalent polycyclic hydrocarbon group having 2 or more rings and 6 or less rings, preferably a 3- or 4-ring hydrocarbon group, and a compound giving such a group is adamantane or nor. Examples thereof include adamantane, ethanoanthracene, methanoanthracene, norbornene and norbonylene.

【0012】かかる材料は、対応する多環式アミンと活
性ハロゲンを含有する芳香族誘導体との脱ハロゲン化水
素反応、あるいは、ハロゲン含有の多環式骨格材料とア
ミノ芳香族誘導体との同様の脱ハロゲン化水素反応で得
られる。
Such materials can be obtained by dehydrohalogenation reaction of the corresponding polycyclic amine with an aromatic derivative containing an active halogen, or by similar dehydrogenation of a halogen-containing polycyclic skeleton material with an aminoaromatic derivative. Obtained by hydrogen halide reaction.

【0013】このように得られたN―芳香族基置換多環
系骨格を有する化合物は、一般に芳香族骨格に置換する
官能基の種類によって吸収極大の波長が変化する。通常
は、250nmから350nm付近になり、少なくとも
400nm以上には吸収の存在しない透明性に優れた固
体を提供する。この特性は、既存の半導体レーザの波長
が、780nm付近から880nm付近で有ることを考
察するに、その1/2波長が390nmから440nm
での発光であるので、この波長では吸収損失がなく、損
傷劣化の恐れもなく著しく優位に用いる事が出来る。
In the compound having an N-aromatic group-substituted polycyclic skeleton thus obtained, the wavelength of absorption maximum generally changes depending on the kind of the functional group substituting the aromatic skeleton. Usually, it is in the vicinity of 250 nm to 350 nm, and it provides a solid having excellent transparency and having no absorption at least at 400 nm or more. Regarding this characteristic, considering that the wavelength of the existing semiconductor laser is from around 780 nm to around 880 nm, its half wavelength is from 390 nm to 440 nm.
Since it emits light at 1, there is no absorption loss at this wavelength and there is no fear of damage and deterioration, and it can be used remarkably.

【0014】また、耐熱性も良好で、加熱融解冷却によ
り、容易に均一な結晶固体を回収出来る。有機溶媒に対
する溶解性も良好で、メタノール、アセトン、THFら
の溶液から、溶媒を蒸発させることで大きな結晶を得る
こともできる。
Further, it has good heat resistance, and a uniform crystalline solid can be easily recovered by heating, melting and cooling. It also has good solubility in organic solvents, and large crystals can be obtained by evaporating the solvent from a solution of methanol, acetone, or THF.

【0015】以下に実施例を用いて本発明を更に詳しく
説明する。
The present invention will be described in more detail with reference to the following examples.

【0016】[0016]

【参考例】第2高調波の発生の測定については、エス.
ケー.クルツ(S.K.Kurtz)等によるジャーナ
ル・オブ・アプライド・フィジックス(J.Appl.
Phys.)39巻3798頁(1968年刊)中に記
載されている方法に準拠して、本発明の化合物の粉末に
対して行った。入射線源としては、Nd:YAGレーザ
(2KW/2Hzパルス)の1.06μの光線を使用、
ガラスセル中に充填した粉末サンプルに照射し、発生し
た緑色光を検知することにより行った。比較用のサンプ
ルとして、尿素粉末を用いた。
[Reference example] For the measurement of the second harmonic generation, see S.
K. Kurtz (SK Kurtz) et al. Journal of Applied Physics (J. Appl.
Phys. ), Vol. 39, page 3798 (published in 1968), according to the method described in the powder of the compound of the present invention. As the incident radiation source, a 1.06μ light beam of an Nd: YAG laser (2KW / 2Hz pulse) is used,
It was performed by irradiating the powder sample filled in the glass cell and detecting the generated green light. Urea powder was used as a sample for comparison.

【0017】[0017]

【実施例1】1―アダマンタンアミンと2,4―ジニト
ロフルオロベンゼンとを、脱酸剤として、炭酸ソーダを
用いて、DMSO中で加熱反応を行った。得られた結晶
を、THFから再結晶して、淡黄色の結晶を回収した。
この結晶の、DMSO中の吸収極大は、357nmであ
り、420nm以上には吸収が認められなかった。この
結晶を細かく粉砕して、参考例に準拠して、第二高調波
を測定したら、尿素の約8倍程度の発光が観測された。
Example 1 1-adamantanamine and 2,4-dinitrofluorobenzene were heated in DMSO using sodium carbonate as a deoxidizing agent. The obtained crystals were recrystallized from THF to collect pale yellow crystals.
The absorption maximum of this crystal in DMSO was 357 nm, and absorption was not observed at 420 nm or more. When this crystal was finely crushed and the second harmonic was measured according to the reference example, about 8 times as much light emission as urea was observed.

【0018】[0018]

【実施例2】3―ノルアダマンタンアミン塩酸塩と、2
等量よりやや過剰の炭酸リチウムの共存下に、2,4―
ジニトロフルオロベンゼンと反応させ、3―(2,4ジ
ニトロフェニルアミノ)ノルアダマンタンを定量的に得
た。この固体の融点は、247℃で、DMSO中の吸収
極大は、366nmであり、430nm以上には吸収が
認められなかった。この固体の第二高調波発生強度は、
尿素の約10倍であった。
Example 2 3-noradamantanamine hydrochloride and 2
In the presence of lithium carbonate in a slight excess of the equivalent amount, 2,4-
By reacting with dinitrofluorobenzene, 3- (2,4 dinitrophenylamino) noradamantane was quantitatively obtained. The melting point of this solid was 247 ° C., the absorption maximum in DMSO was 366 nm, and absorption was not observed above 430 nm. The second harmonic generation intensity of this solid is
It was about 10 times that of urea.

【0019】[0019]

【実施例3〜9】実施例1と同様に反応を行い、その第
二高調波発生強度を測定した結果を以下に示す。
[Examples 3 to 9] The same reaction as in Example 1 was carried out and the second harmonic generation intensity was measured. The results are shown below.

【0020】[0020]

【表1】 [Table 1]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記(1)式で表されるN―芳香族基置
換多環系骨格を有する事を特徴とする非線形光学材料。 X―N(R1 )―Ar―(R2 )n (1) [但し,式中Xは、2環以上6環以下の1価の多環系炭
化水素基を示し、Arは、芳香環の炭素数が5〜18の
芳香環を示し、R1 は、水素、または,炭素数1から3
の1価の炭化水素基を示し、R2 は、水素、または,ハ
メットの置換基定数が、−0.15より大きく、1.5
より小さい1価の官能基を表す。nは、0から4の整数
を示す。]
1. A non-linear optical material having an N-aromatic group-substituted polycyclic skeleton represented by the following formula (1). X—N (R 1 ) —Ar— (R 2 ) n (1) [wherein, X represents a monovalent polycyclic hydrocarbon group having 2 to 6 rings, and Ar is an aromatic ring. Represents an aromatic ring having 5 to 18 carbon atoms, and R 1 is hydrogen or 1 to 3 carbon atoms.
R 2 represents hydrogen or a Hammett's substituent constant is larger than −0.15 and is 1.5.
It represents a smaller monovalent functional group. n represents an integer of 0 to 4. ]
【請求項2】 上記(1)式において、多環系炭化水素
基Xが3環系又は4環系であることを特徴とする請求項
1のN―芳香族基置換多環系骨格を有する非線形光学材
料。
2. The N-aromatic group-substituted polycyclic skeleton according to claim 1, wherein the polycyclic hydrocarbon group X in the formula (1) is a tricyclic system or a tetracyclic system. Non-linear optical material.
【請求項3】 上記(1)式に於けるN―芳香族基置換
多環系骨格において、R2 が、―SH,―NHCO
3 、―OCOR3 、―OCF3 、―CONH2 、―C
OOR3 、―COOH、―SOR3 、―SCF3 、―C
OR3 、―CF3 、―SO2 NH2 、―CN、―SO2
3 、―NO2 、―N+ (R3 2 、―SO2 3 、及
びハロゲン原子[但し、R3 は、水素、炭素数が1から
6の1価の脂肪族炭化水素基、芳香環の炭素数が5〜1
8の1価の芳香族基を表す]から選ばれる1種または、
2種類以上の組合せである事を特徴とする請求項1のN
―芳香族基置換多環系骨格を有する非線形光学材料。
3. In the N-aromatic group-substituted polycyclic skeleton in the above formula (1), R 2 is —SH, —NHCO.
R 3 , —OCOR 3 , —OCF 3 , —CONH 2 , —C
OOR 3 , —COOH, —SOR 3 , —SCF 3 , —C
OR 3 , —CF 3 , —SO 2 NH 2 , —CN, —SO 2
R 3 , —NO 2 , —N + (R 3 ) 2 , —SO 2 F 3 , and a halogen atom [wherein R 3 is hydrogen, a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, Carbon number of aromatic ring is 5 to 1
Represents a monovalent aromatic group of 8], or
The N according to claim 1, which is a combination of two or more kinds.
-A non-linear optical material having an aromatic group-substituted polycyclic skeleton.
JP24413891A 1991-08-30 1991-08-30 Nonlinear optical material having rigid skeleton Pending JPH0561082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24413891A JPH0561082A (en) 1991-08-30 1991-08-30 Nonlinear optical material having rigid skeleton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24413891A JPH0561082A (en) 1991-08-30 1991-08-30 Nonlinear optical material having rigid skeleton

Publications (1)

Publication Number Publication Date
JPH0561082A true JPH0561082A (en) 1993-03-12

Family

ID=17114327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24413891A Pending JPH0561082A (en) 1991-08-30 1991-08-30 Nonlinear optical material having rigid skeleton

Country Status (1)

Country Link
JP (1) JPH0561082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014069510A1 (en) * 2012-10-31 2016-09-08 富山化学工業株式会社 Novel amine derivative or salt thereof
WO2021263164A1 (en) * 2020-06-25 2021-12-30 Lightwave Logic, Inc. Nonlinear optical chromophores comprising a diamondoid group

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014069510A1 (en) * 2012-10-31 2016-09-08 富山化学工業株式会社 Novel amine derivative or salt thereof
WO2021263164A1 (en) * 2020-06-25 2021-12-30 Lightwave Logic, Inc. Nonlinear optical chromophores comprising a diamondoid group
CN115996920A (en) * 2020-06-25 2023-04-21 光波逻辑有限公司 Nonlinear optical chromophores comprising adamantyl-like groups
US11921401B2 (en) 2020-06-25 2024-03-05 Lightwave Logic, Inc. Nonlinear optical chromophores having a diamondoid group attached thereto, methods of preparing the same, and uses thereof

Similar Documents

Publication Publication Date Title
Lee et al. Benzothiazolium single crystals: a new class of nonlinear optical crystals with efficient THz wave generation
Lee et al. Efficient optical‐to‐THz conversion organic crystals with simultaneous electron withdrawing and donating halogen substituents
JPS61296332A (en) High performance non-linear type optical substrate
Senthil et al. Linear and nonlinear optical properties of N-(3-nitrophenyl) acetamide single crystals
Karuppasamy et al. Growth, structural, optical, thermal, laser damage threshold and theoretical investigations of organic nonlinear optical 2-aminopyridinium 4-nitrophenolate 4-nitrophenol (2AP4N) single crystal
Lakshmi et al. Synthesis, Crystal Growth, and Optical Characterization of a Novel Nonlinear Optical Organic Material: N, N‐Diarylbenzamide
JP2676379B2 (en) Third-order nonlinear optical material and device
Nivetha et al. Structural, spectral, thermal, and optical studies of stilbazolium derivative crystal:(E)-4-(3-hydroxy-4-methoxystyryl)-1-methyl pyridinium iodide monohydrate
Prabukanthan et al. Synthesis, crystal growth and characterization of organic nonlinear optical materials methoxy-N, N-diphenylbenzamides
JPH0561082A (en) Nonlinear optical material having rigid skeleton
Fuks-Janczarek et al. Field-stimulated electrooptics in quinoline and stilbene chromophore derivatives incorporated into photopolymer thin films
Schaerlaekens et al. Photorefractive properties of bifunctional N-arylated carbazole derivatives in a carbazole polymer host matrix
JPH0545687A (en) Nonlinear optical material excellent in transparency
Ravi et al. Linear‐Nonlinear Optical and Quantum Chemical Studies on Quinolinium 4‐Aminobenzoate: A Third Order Non‐Linear Optical Material for Optoelectronic Applications
WO1994018601A1 (en) Third-order nonlinear optical material
JPH06118462A (en) Organic nonlinear optical material
Anand et al. Physicochemical and Nonlinear Optical Properties of a Stilbazolium Family Single Crystal with Third Order Nonlinear Optical Activity
JP2704111B2 (en) Nonlinear optical element
JPH0470631A (en) Organic nonlinear optical material
JPH04161933A (en) Non-linear optical material
JP2704110B2 (en) Nonlinear optical material and nonlinear optical element using the same
JPH03211532A (en) Organic nonlinear optical material
JPH0498224A (en) Nonlinear optical material
JPH0498225A (en) Nonlinear optical material
JPH0450930A (en) Nonlinear optical material