JPH0561008A - Formation of optical waveguide element and signal electrode - Google Patents

Formation of optical waveguide element and signal electrode

Info

Publication number
JPH0561008A
JPH0561008A JP22082791A JP22082791A JPH0561008A JP H0561008 A JPH0561008 A JP H0561008A JP 22082791 A JP22082791 A JP 22082791A JP 22082791 A JP22082791 A JP 22082791A JP H0561008 A JPH0561008 A JP H0561008A
Authority
JP
Japan
Prior art keywords
signal electrode
optical waveguide
optical
electrode
waveguide element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22082791A
Other languages
Japanese (ja)
Inventor
Tadao Nakazawa
忠雄 中澤
Takashi Yamane
隆志 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22082791A priority Critical patent/JPH0561008A/en
Publication of JPH0561008A publication Critical patent/JPH0561008A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a forming method for an optical waveguide element provided with a signal electrode which improves the performance and the reliability of the element and the signal electrode in the optical waveguide element utilizing the electrooptical effect of an optical modulator, etc., used in e.g. a high frequency zone. CONSTITUTION:The optical waveguide element is provided with an optical waveguide 23 formed on a substrate 1 having the electrooptical effect and the signal electrode 3 disposed so as to control the optical beams and a resin layer 8 is adhered to one side of the signal electrode 3 to enhance the adhesive force between the substrate 1 and the signal electrode 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば高周波数帯域で使
用される光変調器等の電気光学効果を利用した光導波路
素子に係り、特に性能や信頼性を向上させる信号電極を
具えた光導波路素子と信号電極の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide element utilizing an electro-optical effect such as an optical modulator used in a high frequency band, and particularly to an optical waveguide having a signal electrode for improving performance and reliability. The present invention relates to a method of forming an element and a signal electrode.

【0002】近年、光ファイバやレーザ光源の進歩・発
達に伴い光通信をはじめとする各種の光応用システムが
実用化されているが、光通信システム等の分野において
光導波路素子を用い光信号を更に高速制御する技術の開
発が強く要望されている。
In recent years, various optical application systems such as optical communication have been put into practical use with the progress and development of optical fibers and laser light sources. In the field of optical communication systems, etc., optical waveguide elements are used to transmit optical signals. There is a strong demand for the development of technology for high-speed control.

【0003】例えば伝送速度が1.6 Gbps程度の光通信シ
ステムではレーザダイオード(LD)を直接変調する方式を
用いてきたが、変調周波数が高くなると変調光波長の微
小変動や光ファイバの分散特性等のため高速化や長距離
通信に限界が生じる。
For example, in an optical communication system with a transmission speed of about 1.6 Gbps, a method of directly modulating a laser diode (LD) has been used. However, when the modulation frequency becomes high, a minute fluctuation of the modulated light wavelength and dispersion characteristics of the optical fiber are caused Therefore, there is a limit to high speed and long distance communication.

【0004】一方、高速光変調方式として半導体レーザ
光を外部で変調する外部変調方式がよく知られており、
特に電気光学効果を有する基板上に分岐光導波路を設け
進行波電極を介して駆動するマッハツェンダ型外部変調
器は有力視されている。
On the other hand, as a high-speed optical modulation method, an external modulation method in which semiconductor laser light is externally modulated is well known.
In particular, a Mach-Zehnder type external modulator in which a branched optical waveguide is provided on a substrate having an electro-optical effect and is driven via a traveling wave electrode is considered to be promising.

【0005】しかし、光変調器等の光導波路素子は進行
波電極(信号電極と称する)の放熱性や基板との密着性
が性能や信頼性を左右する。そこで性能や信頼性を向上
させる信号電極を具えた光導波路素子と信号電極の形成
方法の開発が望まれている。
However, in an optical waveguide device such as an optical modulator, the performance and reliability depend on the heat dissipation of the traveling wave electrode (referred to as a signal electrode) and the adhesion to the substrate. Therefore, it is desired to develop an optical waveguide device having a signal electrode and a method for forming the signal electrode that improve the performance and reliability.

【0006】[0006]

【従来の技術】図3は光変調器の基本構成例を示す図
で、同図(a) は平面図、同図(b) はY−Y断面図、図4
は従来の電極形成方法の一例を示す側断面図である。
2. Description of the Related Art FIG. 3 is a diagram showing a basic configuration example of an optical modulator. FIG. 3 (a) is a plan view, FIG. 3 (b) is a sectional view taken along line YY, and FIG.
FIG. 6 is a side sectional view showing an example of a conventional electrode forming method.

【0007】図3において光変調器には通常LiNbO3やLi
TaO3等の電気光学効果を有する基板1が用いられ、その
表面には出入口が1本で中間に分岐光導波路21、22を具
えた光導波路2が形成されている。なお光導波路2、2
1、22は例えば基板1にTiを選択的に拡散せしめるTi拡
散法やプロトン交換法によって形成される。
In FIG. 3, the optical modulator is usually LiNbO 3 or Li.
A substrate 1 having an electro-optical effect such as TaO 3 is used, and an optical waveguide 2 having a single entrance and an outlet and intermediate branch optical waveguides 21 and 22 is formed on the surface thereof. The optical waveguides 2 and 2
1 and 22 are formed by, for example, a Ti diffusion method or a proton exchange method in which Ti is selectively diffused in the substrate 1.

【0008】また信号電極3や接地電極4は蒸着或いは
メッキにより形成されたAu等の金属層からなり、光導波
路上の金属電極層への光の吸収を小さくするためSiO2
の薄膜からなるバッファ層5を介して前記光導波路の上
に形成されている。なお図中の6は高周波変調用の信号
電源、RTは電極間に挿入された終端抵抗である。
The signal electrode 3 and the ground electrode 4 are made of a metal layer such as Au formed by vapor deposition or plating, and are made of a thin film such as SiO 2 in order to reduce absorption of light into the metal electrode layer on the optical waveguide. It is formed on the optical waveguide via the buffer layer 5. In the figure, 6 is a signal power source for high frequency modulation, and RT is a terminating resistor inserted between the electrodes.

【0009】いま、左側の光導波路2から入った直流光
は分岐光導波路21、22によって2分割され再び合流して
右側の光導波路2から出る。その間に信号電源6から信
号電極3に高周波変調用の信号電圧を印加すると、それ
ぞれの分岐光導波路21、22における電気光学効果によっ
て分岐された両光の間に位相差が生じる。
Now, the DC light entering from the left optical waveguide 2 is split into two by the branch optical waveguides 21 and 22 and merged again to emerge from the right optical waveguide 2. When a signal voltage for high frequency modulation is applied from the signal power supply 6 to the signal electrode 3 during that time, a phase difference occurs between the two lights branched by the electro-optic effect in the respective branch optical waveguides 21 and 22.

【0010】そのとき両光の位相差がπ、或いは0にな
るように信号電圧を印加し再び合流させると、例えば光
信号出力はオン・オフのパルス信号になって右側の一本
の光導波路2から取り出すことができる。即ち、左側の
光導波路2から入った直流光を信号電圧によって変調し
右側の光導波路2から取り出すことができる。
At this time, when a signal voltage is applied and merged again so that the phase difference between the two lights becomes π or 0, for example, the optical signal output becomes an ON / OFF pulse signal and one optical waveguide on the right side. 2 can be taken out. That is, the DC light entering from the left optical waveguide 2 can be modulated by the signal voltage and extracted from the right optical waveguide 2.

【0011】通常、このような光導波路素子は光導波路
内を通過する光の速度と信号電極を通過するマイクロ波
の速度を整合するため、信号電極3は電気抵抗の低いAu
を用いその厚さができるだけ厚くなるように形成してい
る。以下、図4により従来の信号電極形成方法について
詳細に説明する。
In such an optical waveguide element, since the speed of light passing through the inside of the optical waveguide and the speed of microwaves passing through the signal electrode are usually matched, the signal electrode 3 has a low electric resistance Au.
Is used so that the thickness thereof is as thick as possible. Hereinafter, the conventional signal electrode forming method will be described in detail with reference to FIG.

【0012】図4(a) に示す如く例えばLiNbO3からなる
基板1に例えばTi拡散法で所定の寸法,形状を有する光
導波路2、21、22を形成した後、光の吸収を小さくする
バッファ層5として厚さ 500nm程度のSiO2膜をスパッタ
形成し、その上に信号電極および接地電極形成用の金属
下地層31として例えば厚さ 150nmのAuを蒸着する。
As shown in FIG. 4A, after forming optical waveguides 2, 21, 22 having a predetermined size and shape on a substrate 1 made of, for example, LiNbO 3 by a Ti diffusion method, a buffer for reducing light absorption. A SiO 2 film having a thickness of about 500 nm is formed as the layer 5 by sputtering, and Au, for example, having a thickness of 150 nm is vapor-deposited thereon as a metal base layer 31 for forming the signal electrode and the ground electrode.

【0013】図4(b) に示す如く上記処理基板に厚さ20
μm 程度のレジスト膜を被着せしめたあと通常のフォト
リソ技術によって、金属下地層31上の信号電極3および
接地電極4を形成する領域以外の部分にレジストパター
ン7を形成する。
As shown in FIG. 4 (b), the thickness of the processed substrate is 20
After depositing a resist film having a thickness of about μm, a resist pattern 7 is formed on a portion of the metal underlayer 31 other than the region where the signal electrode 3 and the ground electrode 4 are formed by a normal photolithography technique.

【0014】次いで図4(c) に示す如く上記処理基板の
レジストパターン7が形成されていない金属下地層31の
上に、例えば前記レジストパターン7の上面に一致する
程度の厚さにAuをメッキし信号電極3および接地電極4
を形成する。
Next, as shown in FIG. 4C, Au is plated on the metal underlayer 31 of the above-mentioned processed substrate on which the resist pattern 7 is not formed, for example, to a thickness corresponding to the upper surface of the resist pattern 7. Signal electrode 3 and ground electrode 4
To form.

【0015】更に図4(d) に示す如く適当な剥離液で上
記処理基板のレジストパターン7を除去した後、図4
(e) に示す如く例えば沃素と沃化カリウムの混合水溶液
の中で30秒程度エッチングし、信号電極3および接地電
極4の形成領域以外の部分に被着した金属下地層31のAu
を溶解除去する。
Further, as shown in FIG. 4 (d), after removing the resist pattern 7 of the above-mentioned treated substrate with an appropriate stripping solution, FIG.
As shown in (e), for example, Au of the metal underlayer 31 is etched in a mixed aqueous solution of iodine and potassium iodide for about 30 seconds and deposited on a portion other than the formation region of the signal electrode 3 and the ground electrode 4.
Are dissolved and removed.

【0016】[0016]

【発明が解決しようとする課題】しかし、従来の信号電
極形成方法では最終工程においてエッチングにより金属
下地層を溶解除去する際に、信号電極や接地電極の側面
が金属下地層に近い程強く溶解除去されるアンダーエッ
チングが生じ、特に信号電極は電極巾が通常10μm以下
と狭いためアンダーエッチングが基板との間の密着性を
低下させる。かかる基板との間の密着性は信号電極が厚
くなるほど大きく低下し、従来の信号電極形成方法では
20μm以上の信号電極は形成できないという問題があっ
た。
However, in the conventional signal electrode forming method, when the metal underlayer is dissolved and removed by etching in the final step, the side surfaces of the signal electrode and the ground electrode are dissolved and removed more strongly as they are closer to the metal underlayer. Under-etching occurs, and since the signal electrode has a narrow electrode width of usually 10 μm or less, the under-etching lowers the adhesion with the substrate. The adhesion between the substrate and the substrate significantly decreases as the signal electrode becomes thicker.
There is a problem that a signal electrode of 20 μm or more cannot be formed.

【0017】本発明の目的は性能や信頼性を向上させる
信号電極を具えた光導波路素子と信号電極の形成方法を
提供することにある。
It is an object of the present invention to provide an optical waveguide device having a signal electrode and a method for forming the signal electrode, which improves performance and reliability.

【0018】[0018]

【課題を解決するための手段】図1は本発明になる光導
波路素子を示す側断面図である。なお全図を通し同じ対
象物は同一記号で表している。
FIG. 1 is a side sectional view showing an optical waveguide device according to the present invention. Note that the same object is denoted by the same symbol throughout the drawings.

【0019】上記課題は電気光学効果を有する基板1上
に形成され光を伝播する光導波路23と、光を電気信号に
よって制御するごとく配設された信号電極3を有する光
導波路素子であって、片側に添設してなる樹脂層8によ
って支持された信号電極3を有する本発明の光導波路素
子。および前記光導波路素子の製造において少なくとも
信号電極3を形成するメッキ工程と、信号電極3の片側
に樹脂層8を添設する補強工程を含む本発明になる信号
電極の形成方法によって達成される。
The above problem is an optical waveguide element having an optical waveguide 23 formed on a substrate 1 having an electro-optical effect and propagating light, and an optical waveguide element having signal electrodes 3 arranged so as to control light by an electric signal. The optical waveguide device of the present invention having the signal electrode 3 supported by the resin layer 8 provided on one side. And a method of forming a signal electrode according to the present invention, which includes a plating step of forming at least the signal electrode 3 in the manufacture of the optical waveguide element and a reinforcing step of additionally providing the resin layer 8 on one side of the signal electrode 3.

【0020】[0020]

【作用】図1において片側に添設してなる樹脂層によっ
て支持された信号電極を有する本発明の光導波路素子
は、例えば信号電極自体と基板の間の密着力が低下して
も樹脂層によって支持されており、20μm以上の信号電
極を形成しても信号電極が剥離したり傾いたりすること
はない。即ち、性能や信頼性を向上させる信号電極を具
えた光導波路素子と信号電極の形成方法を実現すること
ができる。
In the optical waveguide element of the present invention having the signal electrode supported by the resin layer provided on one side in FIG. 1, for example, even if the adhesion between the signal electrode itself and the substrate is reduced, It is supported, and even if a signal electrode of 20 μm or more is formed, the signal electrode does not peel off or tilt. That is, it is possible to realize an optical waveguide device including a signal electrode and a method of forming the signal electrode, which improve performance and reliability.

【0021】[0021]

【実施例】以下添付図により本発明の実施例について説
明する。なお図2は本発明になる信号電極の形成方法を
示す側断面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 2 is a side sectional view showing a method of forming a signal electrode according to the present invention.

【0022】本発明になる光導波路素子と従来の光導波
路素子との相違点は図1に示す如く信号電極3の片側
に、感光性アクリルやポリイミド等の光硬化性樹脂から
なる樹脂層8が添設されていることにある。以下図2に
より本発明になる光導波路素子と信号電極の形成方法に
ついて詳細に説明する。
The difference between the optical waveguide element according to the present invention and the conventional optical waveguide element is that a resin layer 8 made of a photocurable resin such as photosensitive acrylic or polyimide is provided on one side of the signal electrode 3 as shown in FIG. It is attached. The method of forming the optical waveguide element and the signal electrode according to the present invention will be described in detail below with reference to FIG.

【0023】図2(a) に示す如く例えば大きさが40mm×
2mm、厚さが1mmのLiNbO3からなる板の表面を鏡面研磨
して基板1とし、例えば約 100nmの厚さに真空蒸着した
Tiを光導波路に相当する部分が残るように通常のフォト
エッチング法で処理し、約1050℃で10時間加熱してTiを
LiNbO3中に熱拡散させて光導波路23、24を形成する。
As shown in FIG. 2A, for example, the size is 40 mm ×
The surface of a plate made of LiNbO 3 having a thickness of 2 mm and a thickness of 1 mm is mirror-polished to form a substrate 1, which is vacuum-deposited to a thickness of, for example, about 100 nm.
The Ti is processed by the usual photo-etching method so that the part corresponding to the optical waveguide remains, and the Ti is heated at about 1050 ° C for 10 hours.
The optical waveguides 23 and 24 are formed by thermal diffusion in LiNbO 3 .

【0024】次いでバッファ層5としてSiO2膜を 500nm
の厚さに真空蒸着しその上に例えば厚さ 150nmのAuを金
属下地層31として蒸着する。しかる後、信号電極3と接
地電極4の形成領域、その領域を接続するブリッジ部分
および周辺部分を残し、それ以外の部分に被着した金属
下地層31をフォトエッチング法によって除去する。
Next, a SiO 2 film having a thickness of 500 nm is formed as the buffer layer 5.
Is vacuum-deposited to a thickness of, and, for example, Au having a thickness of 150 nm is vapor-deposited thereon as the metal underlayer 31. Thereafter, the formation region of the signal electrode 3 and the ground electrode 4, the bridge portion connecting the regions and the peripheral portion are left, and the metal underlayer 31 adhered to the other portions is removed by the photoetching method.

【0025】図2(b) に示す如く上記処理基板の上に所
望する信号電極の厚さと同等の厚さのレジストを例えば
スピンコートし、通常のフォトリソ技術によって信号電
極3と接地電極4となる領域以外の部分にレジストパタ
ーン7を形成する。
As shown in FIG. 2B, a resist having the same thickness as the desired signal electrode thickness is spin-coated on the above-mentioned processed substrate, for example, and the signal electrode 3 and the ground electrode 4 are formed by the usual photolithography technique. A resist pattern 7 is formed on a portion other than the region.

【0026】次いで図2(c) に示す如く上記処理基板の
レジストパターン7が形成されていない金属下地層31の
上に、例えば前記レジストパターン7の上面に一致する
程度の厚さにAuをメッキし信号電極3および接地電極4
を形成する。
Then, as shown in FIG. 2 (c), Au is plated on the metal underlayer 31 on which the resist pattern 7 of the processing substrate is not formed, for example, to a thickness corresponding to the upper surface of the resist pattern 7. Signal electrode 3 and ground electrode 4
To form.

【0027】しかる後、図2(d) に示す如く上記処理基
板のレジストパターン7を適当な剥離液で除去すること
によって、バッファ層5の上に所望する幅と厚さを有す
る信号電極3および接地電極4を形成することができ
る。
Thereafter, as shown in FIG. 2 (d), the resist pattern 7 on the treated substrate is removed by an appropriate stripping solution to form a signal electrode 3 having a desired width and thickness on the buffer layer 5. The ground electrode 4 can be formed.

【0028】そこで図2(e) に示す如く上記処理基板に
感光性アクリルやポリイミド等の光硬化性樹脂81をスピ
ンコートし、通常のフォトリソ技術による露光と現像を
行うことによって図2(f) に示す如く信号電極3の片側
に樹脂層8が添設される。
Then, as shown in FIG. 2 (e), a photo-curing resin 81 such as photosensitive acrylic or polyimide is spin-coated on the above-mentioned treated substrate, and exposure and development are carried out by a usual photolithography technique to obtain the structure shown in FIG. 2 (f). A resin layer 8 is attached to one side of the signal electrode 3 as shown in FIG.

【0029】しかし、従来の信号電極3に比べて充分に
厚い信号電極3を一度のメッキによって形成しようとす
ると、光硬化性樹脂をスピンコートし片側に樹脂層8を
添設するまえに信号電極3が基板1から剥離したり斜め
に傾くことがある。
However, if the signal electrode 3 which is sufficiently thicker than the conventional signal electrode 3 is to be formed by one-time plating, the signal electrode is formed before the photo-curing resin is spin-coated and the resin layer 8 is attached to one side. 3 may peel from the substrate 1 or may be inclined at an angle.

【0030】かかる充分に厚い信号電極3を形成する場
合は図2(b) に示すレジストパターン7の形成工程か
ら、図2(e) に示す光硬化性樹脂による補強工程とを交
互に繰り返しすことによって所望する厚さの信号電極3
を形成することができる。
In the case of forming such a sufficiently thick signal electrode 3, the step of forming the resist pattern 7 shown in FIG. 2 (b) and the step of reinforcing with a photocurable resin shown in FIG. 2 (e) are alternately repeated. Signal electrode 3 having a desired thickness by
Can be formed.

【0031】なお、信号電極3と接地電極4の形成領域
を接続するブリッジ部分や周辺部分に金属下地層31が残
っており、信号電極3の片側に樹脂層8を添設したあと
適当な方法で信号電極3と接地電極4の露出部分を被覆
し、例えば沃素と沃化カリウムの混合水溶液の中でエッ
チングし金属下地層31を溶解除去する必要がある。
The metal underlayer 31 remains in the bridge portion and the peripheral portion connecting the formation region of the signal electrode 3 and the ground electrode 4, and the resin layer 8 is attached to one side of the signal electrode 3 and then an appropriate method is used. It is necessary to cover the exposed portions of the signal electrode 3 and the ground electrode 4 with and to dissolve and remove the metal underlayer 31 by etching in a mixed aqueous solution of iodine and potassium iodide.

【0032】このように片側に添設してなる樹脂層によ
って支持された信号電極を有する本発明の光導波路素子
は、例えば信号電極自体と基板の間の密着力が低下して
も樹脂層によって支持されており、20μm以上の信号電
極を形成しても信号電極が剥離したり傾いたりすること
はない。即ち、性能や信頼性を向上させる信号電極を具
えた光導波路素子と信号電極の形成方法を実現すること
ができる。
The optical waveguide element of the present invention having the signal electrode supported by the resin layer thus provided on one side is, for example, the resin layer even if the adhesion between the signal electrode itself and the substrate is lowered. It is supported, and even if a signal electrode of 20 μm or more is formed, the signal electrode does not peel off or tilt. That is, it is possible to realize an optical waveguide device including a signal electrode and a method of forming the signal electrode, which improve performance and reliability.

【0033】[0033]

【発明の効果】上述の如く本発明によれば性能や信頼性
を向上させる信号電極を具えた光導波路素子と信号電極
の形成方法を提供することができる。
As described above, according to the present invention, it is possible to provide an optical waveguide device having a signal electrode and a method for forming the signal electrode, which can improve performance and reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明になる光導波路素子を示す側断面図で
ある。
FIG. 1 is a side sectional view showing an optical waveguide device according to the present invention.

【図2】 本発明になる信号電極の形成方法を示す側断
面図である。
FIG. 2 is a side sectional view showing a method of forming a signal electrode according to the present invention.

【図3】 光変調器の基本構成例を示す図である。FIG. 3 is a diagram showing a basic configuration example of an optical modulator.

【図4】 従来の電極形成方法の一例を示す側断面図で
ある。
FIG. 4 is a side sectional view showing an example of a conventional electrode forming method.

【符号の説明】[Explanation of symbols]

1 基板 3 信号電極 4 接地電極 5 バッファ層 7 レジストパターン 8 樹脂層 23、24 光導波路 31 金属下地層 81 光硬化性樹脂 1 substrate 3 signal electrode 4 ground electrode 5 buffer layer 7 resist pattern 8 resin layers 23, 24 optical waveguide 31 metal underlayer 81 photocurable resin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を有する基板(1) 上に形成
され光を伝播する光導波路(23)と、該光を電気信号によ
って制御するごとく配設された信号電極(3)を有する光
導波路素子であって、片側に添設してなる樹脂層(8) に
よって支持された該信号電極(3) を有することを特徴と
する光導波路素子。
1. An optical waveguide comprising an optical waveguide (23) formed on a substrate (1) having an electro-optical effect and propagating light, and a signal electrode (3) arranged so as to control the light by an electric signal. An optical waveguide element, characterized in that it has the signal electrode (3) supported by a resin layer (8) provided on one side.
【請求項2】 請求項1記載の光導波路素子の製造にお
いて少なくとも信号電極(3) を形成するメッキ工程と、
該信号電極(3) の片側に樹脂層(8) を添設する補強工程
を含むことを特徴とする信号電極の形成方法。
2. A plating step for forming at least a signal electrode (3) in the manufacture of the optical waveguide element according to claim 1.
A method of forming a signal electrode, comprising a reinforcing step of additionally providing a resin layer (8) on one side of the signal electrode (3).
【請求項3】 請求項1記載の光導波路素子の製造にお
いて信号電極(3) を形成するためのメッキ工程と、該信
号電極(3) の片側に樹脂層(8) を添設する補強工程とを
交互に繰り返し、所望する厚さの該信号電極(3) を形成
することを特徴とする信号電極の形成方法。
3. A plating step for forming a signal electrode (3) in the production of an optical waveguide element according to claim 1, and a reinforcing step for additionally providing a resin layer (8) on one side of the signal electrode (3). The method for forming a signal electrode is characterized in that the signal electrode (3) having a desired thickness is formed by alternately repeating the above steps.
JP22082791A 1991-09-02 1991-09-02 Formation of optical waveguide element and signal electrode Withdrawn JPH0561008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22082791A JPH0561008A (en) 1991-09-02 1991-09-02 Formation of optical waveguide element and signal electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22082791A JPH0561008A (en) 1991-09-02 1991-09-02 Formation of optical waveguide element and signal electrode

Publications (1)

Publication Number Publication Date
JPH0561008A true JPH0561008A (en) 1993-03-12

Family

ID=16757174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22082791A Withdrawn JPH0561008A (en) 1991-09-02 1991-09-02 Formation of optical waveguide element and signal electrode

Country Status (1)

Country Link
JP (1) JPH0561008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702813A (en) * 2021-09-18 2021-11-26 深钛智能科技(苏州)有限公司 Mixed light generation system for chip testing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702813A (en) * 2021-09-18 2021-11-26 深钛智能科技(苏州)有限公司 Mixed light generation system for chip testing
CN113702813B (en) * 2021-09-18 2023-06-20 深钛智能科技(苏州)有限公司 Mixed light generating system for chip test

Similar Documents

Publication Publication Date Title
US9746743B1 (en) Electro-optic optical modulator devices and method of fabrication
US6198855B1 (en) Velocity-matched, traveling-wave electro-optical devices using non-conductive and conductive polymer buffer layers
JP2009145816A (en) Optical modulator
JPH1068914A (en) Velocity matching progressive wave type electro-optic modulator using benzocyclobutene buffer layer
JPWO2010082673A1 (en) Branched optical waveguide, optical waveguide substrate, and optical modulator
JPH1090638A (en) Optical control element
JPH08271844A (en) Optical modulator and its manufacturing method
JP3570735B2 (en) Optical waveguide device
JP2565002B2 (en) Signal electrode for optical waveguide device and method of forming the same
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP3049245B2 (en) Waveguide type optical modulator
JPH0561008A (en) Formation of optical waveguide element and signal electrode
JPH04217226A (en) Manufacture of light guide path type device
JP4376795B2 (en) Waveguide type optical modulator
JP2005181537A (en) Optical modulator
JP3898851B2 (en) Waveguide type optical device
JP4269546B2 (en) Light modulator
JP2800339B2 (en) Method of manufacturing optical modulator
JP4754670B2 (en) Optical waveguide device
JP2003202533A (en) Organic waveguide type optical modulator and method of manufacturing organic waveguide type optical modulator
JPH09185025A (en) Optical control element
JPH04258918A (en) Light control circuit
JP2725341B2 (en) Light modulator
JP3222092B2 (en) Manufacturing method of ridge structure optical waveguide
JP2720654B2 (en) Light control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203