JPH0560935A - Device for adjusting incident position of light beam of optical fiber - Google Patents

Device for adjusting incident position of light beam of optical fiber

Info

Publication number
JPH0560935A
JPH0560935A JP8604991A JP8604991A JPH0560935A JP H0560935 A JPH0560935 A JP H0560935A JP 8604991 A JP8604991 A JP 8604991A JP 8604991 A JP8604991 A JP 8604991A JP H0560935 A JPH0560935 A JP H0560935A
Authority
JP
Japan
Prior art keywords
light beam
fiber
lens
incident
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8604991A
Other languages
Japanese (ja)
Inventor
Hisami Nishi
壽巳 西
Toshiaki Tanaka
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP8604991A priority Critical patent/JPH0560935A/en
Publication of JPH0560935A publication Critical patent/JPH0560935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain a small-sized device for adjusting the incident position of a light beam whose action is stable and by which the position at the time of making the light beam incident on a light transmitting fiber through a condensing lens is easily adjusted and incident efficiency is made high. CONSTITUTION:When a light beam 2 is condensed by a condensing lens 3 and made incident on a light transmitting fiber 4, a transparent plate 7 is arranged between the lens 3 and the end face of the fiber 4 and held by a swing mechanism so that its tilt angle may be varied. By varying the tilt angle of the transparent plate 7, the position of a beam condensing point 5 on the end face of the fiber (distance (h) to the optical axis of the beam) is varied so as to finely adjust an incident position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスレーザや半導体レ
ーザ等の光ビームを光伝送ファイバに効率よく入射させ
る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for efficiently injecting a light beam such as a gas laser or a semiconductor laser into an optical transmission fiber.

【0002】[0002]

【従来の技術】従来技術においては、図3に示すように
ガスレーザや半導体レーザ等の光源1から発生した光ビ
ーム2は、集光レンズ3によって集光されて光伝送ファ
イバ4に入射される。
2. Description of the Related Art In the prior art, as shown in FIG. 3, a light beam 2 generated from a light source 1 such as a gas laser or a semiconductor laser is condensed by a condenser lens 3 and is incident on an optical transmission fiber 4.

【0003】光ビーム2を効率よく光伝送ファイバに入
射させるには、光ビーム2の集光点5に対して光伝送フ
ァイバ4のコア部端面が精度よく配置されている必要が
ある。光伝送ファイバ4としてシングルモードファイバ
を用いる場合はそのコア径が10ミクロン以下であり、
集光点5と光伝送ファイバのコアの中心との位置ずれ精
度は1ミクロン以下が要求されている。
In order to allow the light beam 2 to efficiently enter the optical transmission fiber, the end surface of the core portion of the optical transmission fiber 4 needs to be accurately arranged with respect to the focal point 5 of the light beam 2. When a single mode fiber is used as the optical transmission fiber 4, its core diameter is 10 microns or less,
The positional deviation accuracy between the focusing point 5 and the center of the core of the optical transmission fiber is required to be 1 micron or less.

【0004】通常、この精度は無調整で達成するには非
常に困難であり,集光点5と光伝送ファイバ4を相対的
に移動させるためのサブミクロンの精度をもつ二次元な
いし三次元の微調整機構が用いられている。
Normally, this precision is very difficult to achieve without adjustment, and it is possible to obtain a two-dimensional or three-dimensional precision with submicron precision for moving the converging point 5 and the optical transmission fiber 4 relatively. A fine adjustment mechanism is used.

【0005】この微調機構としては <1>機械式の高分解能1軸平行スライド機構を2軸な
いし3軸組み合わせ光伝送ファイバを平行移動させるも
の。 <2>前記機械式スライド機構に微調整機構として圧電
素子を用いたもの。 <3>図4に示すように光伝送ファイバ4は固定し、あ
おり機構により厚肉集光レンズ6を傾け光ビームを平行
移動させるもの(特開平1−319710)。 <4>米国ニューポート社製のM-F-915,916,917型高精
度単一モードファイバカップラのように、集光レンズと
光伝送ファイバを同時に集光レン ズの後側
焦点位置を中心に回転させ光ビームの微動を行うもの。 などがある。
As the fine adjustment mechanism, <1> a mechanical high-resolution single-axis parallel slide mechanism is used to move a two-axis or three-axis combination optical transmission fiber in parallel. <2> A piezoelectric element is used as a fine adjustment mechanism in the mechanical slide mechanism. <3> As shown in FIG. 4, the optical transmission fiber 4 is fixed, and the thick beam condensing lens 6 is tilted by a tilting mechanism to move the light beam in parallel (JP-A-1-319710). <4> Like the MF-915,916,917 type high-precision single-mode fiber coupler manufactured by Newport, Inc., the condensing lens and the optical transmission fiber are simultaneously rotated around the rear focal point of the condensing lens to generate the light beam. Things that do fine movements. and so on.

【0006】[0006]

【発明が解決しようとする課題】光伝送ファイバと集光
レンズとの位置をサブミクロンで調整する場合、前述<
1>の方式は、重量の大きい大型高分解能3軸平行移動
ステージを用いねばならず、実験室での使用に限定され
小型装置への組み込みが困難である。また通常の小型ス
テージでは1ミクロン程度の分解能が限度でありサブミ
クロンの調整は非常に困難で多大な時間を要する、さら
に調整後に固定ネジ等を締めると調整位置が動いてしま
うという決定的欠点をもつ。また、固定ネジを締めない
と安定性に欠け常に調整を行う必要がある。
When the positions of the optical transmission fiber and the condenser lens are adjusted in the submicron range, the above-mentioned <
The method 1) requires the use of a large, high-resolution, high-resolution 3-axis parallel translation stage, is limited to use in a laboratory, and is difficult to install in a small device. In addition, the resolution of about 1 micron is the limit for ordinary small stages, and adjustment of sub-microns is very difficult and takes a lot of time. Hold. In addition, unless the fixing screws are tightened, the stability is lacking and it is necessary to constantly make adjustments.

【0007】<2>の方式は、<1>の方式で達成困難
なサブミクロンの微動を圧電素子を用いて行うものであ
るが、その駆動のため高電圧を必要としたり、素子のヒ
ステリシスのため実験室用のコンピュータ制御装置とし
て使用を限定される。
The method <2> uses a piezoelectric element to perform submicron fine movement, which is difficult to achieve with the method <1>. However, a high voltage is required to drive the piezoelectric element and hysteresis of the element may occur. This limits its use as a computer control device for laboratories.

【0008】一方<3>、<4>の方式は、安価でコン
パクトな構造をもち低分解能装置でサブミクロンの調整
が行え、小型のため装置組み込み用として適している。
しかし、<3>は厚肉集光レンズ6を傾けるため軸外収
差を発生して入射効率を下げたり、レンズのあおりと同
時に不規則な平行移動が生じるため、その平行移動量が
そのまま光ビームのシフトとなり安定な調整は困難であ
る。<4>は集光レンズと光伝送ファイバを2軸の回転
機構をもつ可動台上に配置するため光伝送ファイバ等に
外部から与えられる振動等で回転機構が振動し安定な効
率が得られず、装置組み込み用には不向きである。
On the other hand, the methods <3> and <4> have an inexpensive and compact structure, can perform submicron adjustment with a low resolution device, and are small in size, and are suitable for incorporation into the device.
However, in <3>, since the thick condenser lens 6 is tilted, an off-axis aberration is generated to reduce the incidence efficiency, and an irregular parallel movement occurs at the same time as the lens tilts. It becomes a shift of and stable adjustment is difficult. In <4>, since the condensing lens and the optical transmission fiber are arranged on the movable table having the biaxial rotation mechanism, the rotation mechanism vibrates due to the vibration given from the outside to the optical transmission fiber and the stable efficiency cannot be obtained. , Not suitable for use in equipment.

【0009】光ビームを効率よく安定に光伝送ファイバ
に導く小型装置の提供は、すべて相反する問題を含む。
シングルモードファイバのようにサブミクロンの微動を
3軸同時に行うのは、非常に高価で大きな実験室用の微
動装置に限られ、安定性の悪いものであった。この課題
の解決には粗動と微動を行う機構を分離し、微動時には
1軸ごとの調整が多軸へ影響しないことが必須である。
Providing a compact device for efficiently and stably directing a light beam to an optical transmission fiber involves conflicting problems.
Performing submicron fine movements on three axes simultaneously like a single mode fiber is very expensive and limited to a large laboratory fine movement device, and has poor stability. In order to solve this problem, it is essential that the mechanism that performs coarse movement and the mechanism that performs fine movement be separated so that the adjustment for each axis does not affect the multiple axes during fine movement.

【0010】本発明の目的は、このような従来技術の欠
点を解消し、集光レンズを通して光ビームを光伝送ファ
イバに入射させる時の位置調整を容易に行うことが出
来、それによって入射効率を高め、安定でかつ小型な光
ビームの入射位置調整装置を提供することにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to easily adjust the position when the light beam is incident on the optical transmission fiber through the condenser lens, thereby improving the incidence efficiency. An object of the present invention is to provide a high, stable and small light beam incident position adjusting device.

【0011】[0011]

【課題を解決するための手段】本発明の光ファイバ光線
入射位置調整機構は、光伝送ファイバの端面に対向して
配置した集光レンズと、このレンズと光ファイバ端面と
の間に配置した透明平板と、それらを保持するとともに
平行移動せしめる調整機構及びあおり機構とを備える。
SUMMARY OF THE INVENTION An optical fiber beam incident position adjusting mechanism of the present invention comprises a condenser lens arranged facing the end face of an optical transmission fiber, and a transparent lens arranged between the lens and the end face of the optical fiber. It is provided with flat plates, and an adjusting mechanism and a tilting mechanism for holding them and moving them in parallel.

【0012】[0012]

【作用】図1に示すように、集光レンズ3と光伝送ファ
イバ4との間の収束光8に厚みd、屈折率nの平行平板
7を配置し、その法線9と光軸Zとのなす角θをあおり
機構により調整すると、収束光8の集光点5の光軸Zか
らの直角方向のシフト量hは
As shown in FIG. 1, a parallel plate 7 having a thickness d and a refractive index n is arranged in the convergent light 8 between the condenser lens 3 and the optical transmission fiber 4, and its normal line 9 and the optical axis Z are arranged. When the angle θ formed by is adjusted by the tilting mechanism, the shift amount h of the converging light 8 in the direction perpendicular to the optical axis Z of the condensing point 5 becomes

【0013】[0013]

【数1】 [Equation 1]

【0014】で与えられる。ここで、θ〜0(ゼロ)の
場合 h=[d(n−1)/n]sinθ (2) と近似出来る。
Is given by Here, in the case of θ to 0 (zero), it can be approximated as h = [d (n−1) / n] sin θ (2).

【0015】[0015]

【実施例】以下本発明を図1及び図2に示した実施例に
基づいて詳細に説明する。図1は、本発明の機構による
作用を光学的に説明するための概略図であり、ガスレー
ザや半導体レーザ等の光源(図外)で発生した光ビーム
2を集光レンズ3で集光し、光伝送ファイバ4に入射さ
せるに当たり、集光レンズ3と光伝送ファイバ4の端面
との間に平行平面の透明平板7を配置し、その傾斜角度
を可変出来るようにする。ここで、平行平板7は、後述
する2軸のあおり機構により、光ビームの光軸Zに対し
て角度θを自由に設定できるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in FIGS. FIG. 1 is a schematic diagram for optically explaining the operation of the mechanism of the present invention, in which a light beam 2 generated by a light source (not shown) such as a gas laser or a semiconductor laser is condensed by a condenser lens 3, When entering the light transmission fiber 4, a parallel flat plate 7 is arranged between the condenser lens 3 and the end face of the light transmission fiber 4 so that the tilt angle can be changed. Here, the parallel plate 7 can freely set an angle θ with respect to the optical axis Z of the light beam by a biaxial tilting mechanism described later.

【0016】平板7の法線9と光軸Zとのなす角θをあ
おり機構により調整すると、収束光8の集光点5の光軸
Zからの直角方向のシフト量hは前述の式(1)で与え
られる。ここで、θ〜0(ゼロ)の場合は、前述の式
(2)のように近似出来る。
When the angle θ formed by the normal line 9 of the flat plate 7 and the optical axis Z is adjusted by the tilting mechanism, the shift amount h of the converging light 8 at the condensing point 5 in the direction perpendicular to the optical axis Z is expressed by the above equation ( Given in 1). Here, in the case of θ to 0 (zero), it can be approximated by the above-mentioned equation (2).

【0017】集光レンズ3、光伝送ファイバ4は、通常
の粗動が可能な小型2軸ないし3軸平行移動機構により
保持され、光伝送ファイバへの光ビームの入射効率が概
略最大の位置で、安定化のため固定ネジ等で固定を行
う。この時固定に伴い最大入射効率位置がわずかにずれ
る。
The condensing lens 3 and the optical transmission fiber 4 are held by a small biaxial or triaxial parallel moving mechanism which is capable of ordinary coarse movement, so that the efficiency of incidence of the light beam on the optical transmission fiber is approximately at a maximum position. , Fix it with a fixing screw for stability. At this time, the position of maximum incidence efficiency is slightly shifted due to fixing.

【0018】図2に本発明機構の具体的構造例示す。微
動用の平行平板7は保持板7Aの中央開口部に保持され
ており、この保持板7Aに対して2軸のあおり機構20
が装着されている。あおり機構20として通常の3点支
持のあおり台が使用でき、あおり量は対角に配置した調
整ねじ10、11を回転させて行う。つまり、あおり機
構20の基盤と平行平板保持板7Aとは、一方に固定さ
れたバネ群で引きつけられており、この引きつけ力によ
り、中央支点12とネジ10、11との3点で接触して
いる。
FIG. 2 shows a specific structural example of the mechanism of the present invention. The parallel plate 7 for fine movement is held in the central opening of the holding plate 7A, and a biaxial tilting mechanism 20 for the holding plate 7A is provided.
Is installed. A normal three-point supporting tilting base can be used as the tilting mechanism 20, and the amount of tilting is performed by rotating the adjusting screws 10 and 11 arranged diagonally. In other words, the base of the tilt mechanism 20 and the parallel plate holding plate 7A are attracted by the spring group fixed to one side, and this attraction force makes contact with the central fulcrum 12 and the screws 10 and 11 at three points. There is.

【0019】ここで、集光レンズ3へ入射する光ビーム
2のビーム直径を1mm、光伝送ファイバ4としてシン
グルモードファイバを仮定しその開口数をNA=0.1
とすると、集光レンズ3の焦点距離はf=5mmであ
る。薄肉レンズを用いると差動距離は3〜4mmとれる
ため、最大4mm程度の厚みの平行平板が使用できる。
Here, assuming that the beam diameter of the light beam 2 incident on the condenser lens 3 is 1 mm, and the single-mode fiber is used as the optical transmission fiber 4, its numerical aperture is NA = 0.1.
Then, the focal length of the condenser lens 3 is f = 5 mm. When a thin lens is used, the differential distance can be 3 to 4 mm, so a parallel plate having a maximum thickness of about 4 mm can be used.

【0020】簡単のため、ネジ10のみを回しX方向の
微動を行う場合を考えるとする。平行平板7の厚みをd
=1mm、屈折率をn=1.52とすると、あおり角θ
が小さい条件では(2)式が適用でき h=342θ (μm/rad) (3) となる。そこで、この平行平板7は支点12から10m
mの位置でマイクロメータ等のネジ10、11で支持さ
れ、ネジの移動量をD(μm)とすると h=342D/10000=0.0342D〜D/29 (4) となる。
For simplicity, let us consider a case where only the screw 10 is turned to perform fine movement in the X direction. The thickness of the parallel plate 7 is d
= 1 mm and refractive index n = 1.52, the tilt angle θ
(2) can be applied under the condition that is small, h = 342θ (μm / rad) (3). Therefore, the parallel plate 7 is 10 m from the fulcrum 12
It is supported by screws 10 and 11 such as a micrometer at the position of m, and when the moving amount of the screw is D (μm), h = 342D / 10000 = 0.0342D to D / 29 (4)

【0021】つまり、平行平板のおあり用ネジを1μm
移動させると、集光点5は光軸と直角方向に0.034
2μm移動し、通常の1μm程度の分解能をもつネジを
用いても実効的にはサブミクロンの感度が得られる。
X、Yの2次元方向で微動するには、平行平板を2方向
にあおればよい。これにより、粗動機構固定時のわずか
なずれを容易に再調整できる。
In other words, the parallel flat screw has a screw of 1 μm.
When moved, the focal point 5 is 0.034 in the direction perpendicular to the optical axis.
Even if a screw that moves by 2 μm and has a resolution of about 1 μm is used, submicron sensitivity can be effectively obtained.
In order to make fine movements in the two-dimensional directions of X and Y, it suffices to place parallel plates in the two directions. This makes it possible to easily readjust a slight deviation when fixing the coarse movement mechanism.

【0022】以上、本発明の一実施例について記述した
が、感度を上げるには平行平板の厚みdをさらに厚くす
ればよいし、感度を下げるには薄くすればよい。なお、
光軸Z方向の移動はシングルモードファイバの場合、
X、YY方向に比べて1桁以上粗い精度でよく、通常の
粗動機構のみでよい。また、本発明で使用する平板は、
厳密な意味での平行面である必要はなく、ウエッジ板で
あってもよい。更に、偏波面の調整のための波長板を本
発明のビーム入射位置調整用透明平板と兼用させ、微動
を同時に行うことも可能である。
Although one embodiment of the present invention has been described above, the thickness d of the parallel plate may be further increased to increase the sensitivity, and the thickness d may be decreased to decrease the sensitivity. In addition,
In the case of a single mode fiber, the movement in the optical axis Z direction is
The accuracy is coarser by one digit or more than in the X and YY directions, and only a normal coarse movement mechanism is required. The flat plate used in the present invention is
It does not need to be parallel surfaces in a strict sense, and may be a wedge plate. Further, the wave plate for adjusting the plane of polarization may also be used as the transparent flat plate for adjusting the beam incident position of the present invention to perform fine movement at the same time.

【0023】[0023]

【発明の効果】本発明は上記のように、光ビームのX,
Y方向の微動機構を透明平板のあおり機構に分担させて
いるため、集光レンズ3と光伝送ファイバ4を粗動機構
で概略調整した後、固定ネジ等で移動しないよう固定
し、最終的に透明平板のあおりで微調整をおこなうこと
で入射効率を最大に保てる。
As described above, the present invention has the following advantages.
Since the fine movement mechanism in the Y direction is shared by the tilting mechanism of the transparent plate, the condenser lens 3 and the optical transmission fiber 4 are roughly adjusted by the coarse movement mechanism, and then fixed by a fixing screw or the like so as not to move, and finally. The incident efficiency can be kept to the maximum by making fine adjustments with the transparent flat plate.

【0024】特に、平板を用いたことでその厚みdを変
化させると微動感動が調整できること、平板のあおり用
ネジは通常の粗動用ネジが使用でき、平板の平行移動は
集光点5の移動に影響しない、集光レンズを傾けず軸上
で用いるため集光性能の劣化がない、平板は傾けると若
干の非点収差を発生するが、シングルモードファイバの
ようなNA=0.1程度の低NA集光レンズではその影
響がほぼ無視できる、等の効果を持つ。
Particularly, by using a flat plate, it is possible to adjust the feeling of fine movement by changing the thickness d, and a normal coarse movement screw can be used as the tilting screw of the flat plate, and the parallel movement of the flat plate is the movement of the focusing point 5. Does not affect the focusing performance, since the condenser lens is not tilted and used on the axis, the focusing performance is not deteriorated. When the flat plate is tilted, some astigmatism is generated, but NA = 0.1, which is the same as that of a single mode fiber, With a low NA condenser lens, the effect is almost negligible.

【0025】また、通常の高分解能微動台に比べて、通
常の低分解能機構を使用でき非常に小型で安価かつ高安
定な装置を実現出来る。調整作業も、微動と粗動を分離
して行えるため熟練を要せず、短時間で実施できる効果
がある。実施例では、光ビーム2が平行光の場合につい
て説明したが、光ビーム2が発散光の場合は光源1と集
光レンズ3の間に平行平板を配置しても効果は同じであ
る。
Further, as compared with an ordinary high resolution fine movement table, an ordinary low resolution mechanism can be used, and a very small, inexpensive and highly stable apparatus can be realized. The adjustment work can be performed in a short time without requiring skill because fine movement and coarse movement can be performed separately. In the embodiment, the case where the light beam 2 is parallel light has been described, but when the light beam 2 is divergent light, the same effect can be obtained by disposing a parallel plate between the light source 1 and the condenser lens 3.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の光学系を説明する側断面図。FIG. 1 is a side sectional view illustrating an optical system of a device of the present invention.

【図2】本発明の一実施例を示す一部破断斜視図。FIG. 2 is a partially cutaway perspective view showing an embodiment of the present invention.

【図3】従来方法の一例を示す側面図。FIG. 3 is a side view showing an example of a conventional method.

【図4】従来方法の他の例を示す側面図。FIG. 4 is a side view showing another example of the conventional method.

【符号の説明】[Explanation of symbols]

1・・・光源、2・・・光ビーム、3・・・集光レン
ズ、4・・・光伝送ファイバ、5・・・集光点、6・・
・厚肉集光レンズ、7・・・ビーム入射位置調整用透明
平板、8・・・収束ビーム、9・・・平板7の法線、1
0、11・・・あおり量調整用ネジ、12・・・あおり
機構の支点、20・・・あおり機構
1 ... Light source, 2 ... Light beam, 3 ... Focusing lens, 4 ... Optical transmission fiber, 5 ... Focusing point, ...
-Thick condenser lens, 7 ... Transparent flat plate for adjusting beam incident position, 8 ... Convergent beam, 9 ... Normal line of flat plate 1, 1
0, 11 ... Screws for adjusting the amount of tilt, 12 ... A fulcrum of the tilt mechanism, 20 ... A tilt mechanism

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年8月12日[Submission date] August 12, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】 以上、本発明の一実施例について記述し
たが、感度を上げるには平行平板の厚みdをさらに厚く
すればよいし、感度を下げるには薄くすればよい。な
お、光軸Z方向の移動はシングルモードファイバの場
合、X、Y方向に比べて1桁以上粗い精度でよく、通常
の粗動機構のみでよい。また、本発明で使用する平板
は、厳密な意味での平行面である必要はなく、ウェッジ
板であってもよい。更に、偏波面の調整のための波長板
を本発明のビーム入射位置調整用透明平板と兼用させ、
微動を同時に行うことも可能である。
Although one embodiment of the present invention has been described above, the thickness d of the parallel plate may be further increased to increase the sensitivity, and the thickness d may be decreased to decrease the sensitivity. In the case of the single mode fiber, the movement in the optical axis Z direction may be performed by an accuracy of one digit or more as compared with the X and Y directions, and only a normal coarse movement mechanism may be used. Further, the flat plate used in the present invention does not need to be parallel surfaces in a strict sense, and may be a wedge plate. Furthermore, the wave plate for adjusting the polarization plane is also used as the transparent flat plate for adjusting the beam incident position of the present invention,
It is also possible to perform fine movements at the same time.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】数1[Correction target item name] Number 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【数1】 [Equation 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光伝送ファイバに光を集光入射させるレン
ズと、このレンズと光ファイバ端面との間に配置した透
明平板とを備え、該透明平板を、その面法線とビーム光
軸との成す角度を変化させ得るあおり機構で保持させた
ことを特徴とする光ビーム入射位置調整装置。
1. A lens comprising a lens for converging and entering light into an optical transmission fiber, and a transparent flat plate arranged between the lens and an end face of the optical fiber, the transparent flat plate having a surface normal and a beam optical axis. A light beam incident position adjusting device, characterized in that the device is held by a tilting mechanism that can change the angle formed by.
JP8604991A 1991-03-26 1991-03-26 Device for adjusting incident position of light beam of optical fiber Pending JPH0560935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8604991A JPH0560935A (en) 1991-03-26 1991-03-26 Device for adjusting incident position of light beam of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8604991A JPH0560935A (en) 1991-03-26 1991-03-26 Device for adjusting incident position of light beam of optical fiber

Publications (1)

Publication Number Publication Date
JPH0560935A true JPH0560935A (en) 1993-03-12

Family

ID=13875830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8604991A Pending JPH0560935A (en) 1991-03-26 1991-03-26 Device for adjusting incident position of light beam of optical fiber

Country Status (1)

Country Link
JP (1) JPH0560935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004272143A (en) * 2003-03-12 2004-09-30 Oyokoden Lab Co Ltd Optical coupling device for optical waveguide and its manufacturing method
JP2007010854A (en) * 2005-06-29 2007-01-18 Nec Corp Module for optical communication using parallel flat plate for optical axis compensation, and manufacturing method of same
US11471978B2 (en) 2018-03-15 2022-10-18 Panasonic Intellectual Property Management Co., Ltd. Laser oscillator, laser machining device in which same is used, and laser oscillation method
WO2023112993A1 (en) * 2021-12-15 2023-06-22 古河電気工業株式会社 Optical device and method for manufacturing optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004272143A (en) * 2003-03-12 2004-09-30 Oyokoden Lab Co Ltd Optical coupling device for optical waveguide and its manufacturing method
JP2007010854A (en) * 2005-06-29 2007-01-18 Nec Corp Module for optical communication using parallel flat plate for optical axis compensation, and manufacturing method of same
US11471978B2 (en) 2018-03-15 2022-10-18 Panasonic Intellectual Property Management Co., Ltd. Laser oscillator, laser machining device in which same is used, and laser oscillation method
WO2023112993A1 (en) * 2021-12-15 2023-06-22 古河電気工業株式会社 Optical device and method for manufacturing optical device

Similar Documents

Publication Publication Date Title
JP4387198B2 (en) Surface mirror with multiple mirror surfaces
US7319566B2 (en) Beam manipulation using sets of wedges
JP5588358B2 (en) Kinematic optical mount
US20090141258A1 (en) Imaging Device in a Projection Exposure Machine
US7486382B2 (en) Imaging device in a projection exposure machine
WO2006047480A2 (en) Method and apparatus of making highly repetitive micro-pattern using laser writer
US4886337A (en) Manipulator device for the transfer of laser light into an optical fiber
JP2002528905A (en) Realization of circular symmetry and reduction of the effects of optical defects and deviations during real-time use of optical devices
JPH10253872A (en) Holding device for reflecting optical member and exposure device
US4319804A (en) Adjustable hollow retroflector
US20030053742A1 (en) Mirror angle detecting device, optical signal switching system, and optical signal switching method
JPH0560935A (en) Device for adjusting incident position of light beam of optical fiber
JPS63107021A (en) Aligner
JPH07301724A (en) Light beam incident device with incident position adjusting mechanism
JP2803440B2 (en) XY fine movement stage
JP3462997B2 (en) Method of adjusting objective lens for optical pickup, objective lens for optical pickup, objective lens barrel, and method of adjusting the same
JP3427428B2 (en) Optical element position adjusting device and projection exposure device
US5105297A (en) Mount for an optical element
JP2761300B2 (en) Tracking actuator for optical disk drive
JPH01319710A (en) Incident position adjusting device for light beam
JPH01167805A (en) Optical parts
JPS63127218A (en) Direction adjusting device for light beam changing mirror
JPH06168456A (en) Adjusting device for inclination angle of optical means
WO1996010699A1 (en) Positioning devices and a method and positioning device for aligning an optical fiber with an optical beam
KR100302179B1 (en) 3- axes stage apparatus using kinematic joint