JPH0560683A - Measurement method of degree of fatty acid by means of near infrared ray - Google Patents

Measurement method of degree of fatty acid by means of near infrared ray

Info

Publication number
JPH0560683A
JPH0560683A JP25041491A JP25041491A JPH0560683A JP H0560683 A JPH0560683 A JP H0560683A JP 25041491 A JP25041491 A JP 25041491A JP 25041491 A JP25041491 A JP 25041491A JP H0560683 A JPH0560683 A JP H0560683A
Authority
JP
Japan
Prior art keywords
absorbance
fatty acid
near infrared
detected
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25041491A
Other languages
Japanese (ja)
Inventor
Sadakazu Fujioka
定和 藤岡
Taiichi Mori
泰一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP25041491A priority Critical patent/JPH0560683A/en
Publication of JPH0560683A publication Critical patent/JPH0560683A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To establish the method for measuring fatty acid of a grain sample by means of a near infrared ray. CONSTITUTION:A certain quantity of grain samples composed of unpolished rice as particles without pulverization is prepared. And the wave length of a near infrared ray is continuously changed to irradiate the near infrared ray on the samples and the reflection light from the unpolished rice samples is detected. Next the absorbance is detected from the detected value, and the first order differential absorbance or the order differential absorbance is obtained by taking the first on the second derovative of the detected absorbance. Subsequently the degree of fatty acid is found from a previously obtained calibration curve based on the two absrobances at 1334nm and 1420nm, for example, of the fatty acid absorbing wavelengths of the second order differential abnsorbance. However, in the former case of the near infrared rays either value is effective if its value falls within 1334+ or -20nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、近赤外線を利用して米
などの穀物に含まれる脂肪酸度を測定する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the degree of fatty acid contained in grains such as rice using near infrared rays.

【0002】[0002]

【従来の技術】従来、穀物中の蛋白質などの各種成分の
含有量を求める方法としては、所定領域における近赤外
線を穀物サンプルに連続的に照射してその吸光度を求
め、その吸光度に基づいて各種成分の含有量を求めるも
のが知られている。
2. Description of the Related Art Conventionally, as a method for determining the contents of various components such as proteins in grain, the near infrared rays in a predetermined region are continuously irradiated to the grain sample to determine its absorbance, and various absorbances are determined based on the absorbance. It is known to obtain the contents of components.

【0003】[0003]

【発明が解決しようとする課題】しかし、穀物サンプル
中の成分のうち、穀物の変質度合いの指標となる脂肪酸
度を求める方法については、いまだに測定時のサンプル
の形態やその測定に有意義な近赤外線の波長が見出され
ておらず、その手法の確立が望まれていた。
However, among the components in the grain sample, the method for determining the fatty acid content, which is an index of the degree of alteration of the grain, is still in consideration of the morphology of the sample at the time of measurement and the near-infrared light which is significant for the measurement. No wavelength was found, and the establishment of that method was desired.

【0004】そこで、本発明の目的は、近赤外線を利用
して穀物サンプルの脂肪酸度を測定する方法を確立する
ことにある。
Therefore, it is an object of the present invention to establish a method for measuring the fatty acid content of a grain sample using near infrared rays.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明方法は、非粉砕の穀物サンプルに近赤外線
を照射し、そのサンプルの透過光または反射光から脂肪
酸を吸収する特定波長の吸光度を検出し、その検出吸光
度に基づき穀物サンプル中の脂肪酸を測定するものであ
る。
In order to achieve such an object, the method of the present invention comprises irradiating a non-milled grain sample with near-infrared light, and transmitting light or reflected light from the sample at a specific wavelength for absorbing a fatty acid. The absorbance is detected, and the fatty acid in the grain sample is measured based on the detected absorbance.

【0006】また、本発明方法において、反射光を使用
するときには、前記特定波長には少なくとも1334±
20nmを含むことを特徴とする。
In the method of the present invention, when the reflected light is used, the specific wavelength is at least 1334 ±.
It is characterized by including 20 nm.

【0007】さらに、本発明方法において、透過光を使
用するときには、前記特定波長には少なくとも930±
20nmを含むことを特徴とする。
Further, in the method of the present invention, when the transmitted light is used, the specific wavelength is at least 930 ±.
It is characterized by including 20 nm.

【0008】[0008]

【作用】本発明法は、近赤外線を利用して脂肪酸を測定
するにあたり、特定の波長の近赤外線の反射光、または
その透過光を使用すると、サンプルが非粉砕の形態であ
っても、脂肪酸の測定を高精度で行えることを見出した
ものである。
In the method of the present invention, when fatty acid is measured by using near infrared rays, when the reflected light of near infrared rays of a specific wavelength or its transmitted light is used, even if the sample is in a non-pulverized form, the fatty acid It was found that the measurement of can be performed with high accuracy.

【0009】そして、その測定において、反射光を利用
するときには1334±20nmの波長が有用であり、
透過光を利用するときには930±20nmの波長が有
用であることを見出した。
In the measurement, a wavelength of 1334 ± 20 nm is useful when using reflected light,
It has been found that a wavelength of 930 ± 20 nm is useful when utilizing transmitted light.

【0010】[0010]

【実施例】次に、本発明法の実施例について説明する。EXAMPLES Next, examples of the method of the present invention will be described.

【0011】第1実施例は、粉砕せずに粒のままの玄米
からなる穀物サンプルを所定量用意する。そして、その
サンプルに波長を連続的に変化させて近赤外線を照射
し、玄米サンプルからの反射光を検出する。次に、その
検出値から吸光度を検出し、その検出吸光度を1次微分
して1次微分吸光度、または2次微分して2次微分吸光
度を求める。引き続き、例えばその求めた2次微分吸光
度のうち、脂肪酸を吸収する波長が1334nmと、1
420nmとにおける2つの吸光度に基づき、あらかじ
め求めてある検量線により脂肪酸度を求める。なお、上
記で使用する近赤外線のうち前者のものは、その値が1
334±20nmの範囲であれば、いずれの値でも有効
である。
In the first embodiment, a predetermined amount of grain sample made of unpolished brown rice without crushing is prepared. Then, the sample is irradiated with near infrared rays by continuously changing the wavelength, and the reflected light from the brown rice sample is detected. Next, the absorbance is detected from the detected value, and the detected absorbance is first-derivatively differentiated to obtain a first-order differential absorbance, or second-derivatively differentiated to obtain a second-order differential absorbance. Subsequently, for example, in the obtained secondary differential absorbance, the wavelength of absorbing fatty acid is 1334 nm and 1
Based on the two absorbances at 420 nm, the degree of fatty acid is determined by a calibration curve previously determined. Of the near infrared rays used above, the former one has a value of 1
Any value is effective in the range of 334 ± 20 nm.

【0012】このように、第1実施例では測定対象とな
る玄米は、脂肪がその表層部に多く、非粉砕のサンプル
に近赤外線を照射しても脂肪が多い表層部に有効に作用
すると推定され、その結果、サンプルが非粉砕であって
も脂肪酸を精度よく測定できるものと推定される。
As described above, the brown rice to be measured in the first example has a large amount of fat in its surface layer, and it is presumed that even if a non-crushed sample is irradiated with near infrared rays, it effectively acts on the surface layer containing a lot of fat. As a result, it is estimated that fatty acids can be accurately measured even if the sample is not pulverized.

【0013】第2実施例は、粉砕せずに粒のままの玄米
からなる穀物サンプルを所定量用意する。そして、その
サンプルに波長を連続的に変化させて近赤外線を照射
し、玄米サンプルからの透過光を検出する。次に、その
検出値から吸光度を検出し、その検出吸光度を1次微分
して1次微分吸光度、または2次微分して2次微分吸光
度を求める。引き続き、例えばその求めた2次微分吸光
度のうち、脂肪酸を吸収する波長が930nmと、60
6nmとにおける2つの吸光度に基づき、あらかじめ求
めてある検量線により脂肪酸度を求める。なお、上記で
使用する近赤外線のうち前者のものは、その値が930
±20nmの範囲であれば、いずれの値でも有効であ
る。
In the second embodiment, a predetermined amount of grain sample made of unpolished brown rice without crushing is prepared. Then, the sample is irradiated with near infrared rays by continuously changing the wavelength, and the transmitted light from the brown rice sample is detected. Next, the absorbance is detected from the detected value, and the detected absorbance is first-derivatively differentiated to obtain a first-order differential absorbance, or second-derivatively differentiated to obtain a second-order differential absorbance. Subsequently, for example, in the obtained second derivative absorbance, the wavelength for absorbing fatty acid is 930 nm,
Based on the two absorbances at 6 nm, the fatty acid content is determined by a calibration curve previously determined. The near infrared ray used above has a value of 930.
Any value is effective in the range of ± 20 nm.

【0014】第3実施例は、粉砕せずに粒のままの玄米
からなる穀物サンプルを所定量用意する。そして、この
サンプルに波長を連続的に変化させて近赤外線を照射
し、その玄米サンプルからの反射光をまず検出する。次
に、同一のサンプルに再び波長を連続的に変化させて近
赤外線を照射し、今度はその玄米サンプルの透過光を検
出する。そして、反射光の検出値から吸光度を検出し、
その検出した吸光度を2次微分して2次微分吸光度を求
め、そのうち波長が1334nmの吸光度を第1吸光度
とする。さらに、透過光の検出値から吸光度を検出し、
その検出した吸光度を2次微分して2次微分吸光度を求
め、そのうち波長が930nmの吸光度を第2吸光度と
する。引き続き、その求めた第1吸光度、および第2吸
光度に基づき、あらかじめ求めてある検量線により脂肪
酸度を求める。
In the third embodiment, a predetermined amount of grain sample made of unpolished brown rice without crushing is prepared. Then, the sample is irradiated with near-infrared rays by continuously changing the wavelength, and the reflected light from the brown rice sample is first detected. Next, the same sample is irradiated with near-infrared rays by continuously changing the wavelength again, and the transmitted light of the brown rice sample is detected this time. Then, the absorbance is detected from the detection value of the reflected light,
The detected absorbance is secondarily differentiated to obtain a second derivative absorbance, of which the absorbance at a wavelength of 1334 nm is the first absorbance. Furthermore, the absorbance is detected from the detection value of the transmitted light,
The detected absorbance is secondarily differentiated to obtain a second derivative absorbance, and the absorbance at a wavelength of 930 nm is defined as the second absorbance. Subsequently, the fatty acid content is determined based on the determined first absorbance and second absorbance, using a calibration curve previously determined.

【0015】このように第3実施例によれば、性質のこ
となる波長が930nmの透過光にかかる吸光度と、波
長が1334nmの反射光にかかる吸光度とを利用する
ので、第1実施例や第2実施例に比較し、脂肪酸の測定
精度が向上する。
As described above, according to the third embodiment, the absorbance of transmitted light having a wavelength of 930 nm and the absorbance of reflected light having a wavelength of 1334 nm, which have different characteristics, are utilized. The accuracy of fatty acid measurement is improved in comparison with the two examples.

【0016】第4実施例は、細かく粉砕した状態の玄米
からなる穀物サンプルを所定量用意する。そして、その
サンプルに近赤外線を照射し、玄米サンプルからの反射
光を検出する。次に、その検出値から吸光度を検出し、
その検出吸光度を1次微分して1次微分吸光度、または
2次微分して2次微分吸光度を求める。引き続き、例え
ばその求めた2次微分吸光度のうち、脂肪酸を吸収する
波長が2150nmと、2376nmとにおける2つの
吸光度に基づき、あらかじめ求めてある検量線により脂
肪酸度を求める。
In the fourth embodiment, a predetermined amount of grain sample made of brown rice in a finely crushed state is prepared. Then, the sample is irradiated with near infrared rays and the reflected light from the brown rice sample is detected. Next, the absorbance is detected from the detected value,
The detected absorbance is first differentiated to obtain a first derivative absorbance or a second derivative to obtain a second derivative absorbance. Subsequently, for example, based on two absorbances at the fatty acid absorbing wavelengths of 2150 nm and 2376 nm among the obtained secondary differential absorbances, the fatty acid degree is determined by a calibration curve determined in advance.

【0017】次に、本発明法を実施した脂肪酸の測定装
置について、図1を参照して説明する。
Next, a fatty acid measuring apparatus for carrying out the method of the present invention will be described with reference to FIG.

【0018】この装置は、以下に説明する各部からなる
分光装置本体1と、以下に説明する各部からなる検出部
ユニット2と、から構成する。
This apparatus is composed of a spectroscopic device main body 1 composed of each part described below, and a detection unit 2 composed of each part described below.

【0019】分光装置本体1は、光源3と、反射鏡4
と、回折格子駆動用モータ5により駆動する回折格子6
と、を図示のように配置するとともに、後述のように各
部を制御する制御回路7を有する。
The spectroscopic device body 1 includes a light source 3 and a reflecting mirror 4.
And a diffraction grating 6 driven by the diffraction grating driving motor 5.
And are arranged as shown in the drawing, and have a control circuit 7 for controlling each part as described later.

【0020】検出部ユニット2は、測定対象であるサン
プルを収容したサンプル容器を測定時に装着する装着部
8と、サンプルの透過光を検出する透過光検出器9と、
サンプルからの反射光を検出する反射光検出器10と、
からなる。そして、この検出部ユニット2では、透過光
検出器9で透過光を検出するときには、サンプル容器は
透明のものを装着部8に装着し、反射光検出器10で反
射光を検出するときには、サンプル容器は反射部を有す
るものを装着部8に装着する。
The detection unit 2 includes a mounting unit 8 for mounting a sample container containing a sample to be measured at the time of measurement, a transmitted light detector 9 for detecting transmitted light of the sample,
A reflected light detector 10 for detecting reflected light from the sample;
Consists of. In the detection unit 2, when the transmitted light detector 9 detects the transmitted light, a transparent sample container is attached to the attachment portion 8, and when the reflected light detector 10 detects the reflected light, the sample A container having a reflection part is mounted on the mounting part 8.

【0021】次に、このように構成する装置の制御処理
系について、図2を参照して説明する。
Next, the control processing system of the apparatus thus constructed will be described with reference to FIG.

【0022】制御回路7は、その入力側に、透過光検出
器9、反射光検出器10などを接続する。さらに、制御
回路7の出力側には、光源3、回折格子駆動用モータ5
などを接続する。制御回路7は、図示しない通信入出力
部を介してコンピュータ本体のCPU11に接続する。
CPU11は、後述のように脂肪酸を測定するための各
種の処理をする。CPU11には、メモリ12のほか
に、入力装置としてキーボード13、出力装置として表
示装置14をそれぞれ接続する。
The control circuit 7 has a transmitted light detector 9, a reflected light detector 10, etc. connected to its input side. Further, on the output side of the control circuit 7, the light source 3 and the diffraction grating driving motor 5 are provided.
And so on. The control circuit 7 is connected to the CPU 11 of the computer main body via a communication input / output unit (not shown).
The CPU 11 performs various types of processing for measuring fatty acids as described below. In addition to the memory 12, a keyboard 13 as an input device and a display device 14 as an output device are connected to the CPU 11.

【0023】次に、以上の構成から装置による脂肪酸度
の測定例について説明する。
Next, an example of measuring the fatty acid content by the apparatus having the above constitution will be described.

【0024】まず、測定対象となる穀物サンプルとして
玄米を粉砕せずに粒のままサンプル容器に諸定量充填し
たのち、そのサンプル容器を検出部ユニット2の装着部
8に装着する。次に、分光装置本体1、および検出部ユ
ニット2を動作状態にする。すると、光源3から放射す
る近赤外線は、反射鏡4を経由して回折格子6に到達
し、ここで分光されたのちサンプルに到達する。そし
て、サンプルからの反射光を、反射光検出器10で検出
する。
First, as a grain sample to be measured, brown rice is not crushed but is packed into the sample container in a fixed amount as it is, and then the sample container is mounted on the mounting portion 8 of the detection unit 2. Next, the spectroscopic device body 1 and the detection unit 2 are put into operation. Then, the near-infrared rays emitted from the light source 3 reach the diffraction grating 6 via the reflecting mirror 4, are dispersed here, and then reach the sample. Then, the reflected light from the sample is detected by the reflected light detector 10.

【0025】一方、回折格子6の回転に伴ってサンプル
を通過する近赤外線の波長が変わるので、反射光検出器
10には、波長に応じた信号が連続的に検出される。
On the other hand, since the wavelength of near infrared rays passing through the sample changes with the rotation of the diffraction grating 6, the reflected light detector 10 continuously detects a signal corresponding to the wavelength.

【0026】次に、この反射光検出器10の検出結果に
基づき、近赤外線の各波長に対する吸光度(近赤外線吸
収スペクトル)を求めたのち、その吸光度を1次微分し
た1次微分吸光度、またはその吸光度を2次微分した2
次微分吸光度を算出する。
Next, based on the detection result of the reflected light detector 10, the absorbance (near infrared absorption spectrum) for each wavelength of near infrared rays is obtained, and then the first derivative of the absorbance, or the first derivative absorbance The second derivative of the absorbance
Calculate the second derivative absorbance.

【0027】引き続き、例えばその算出した2次微分吸
光度のうち、脂肪酸の含有量の指標となる波長が133
4nmと1420nmとの吸光度に基づき、あらかじめ
求めてある検量線により脂肪酸度を求める
Subsequently, for example, in the calculated second derivative absorbance, the wavelength serving as an index of the fatty acid content is 133.
Based on the absorbance at 4 nm and 1420 nm, the degree of fatty acid is calculated by a calibration curve that is calculated in advance.

【0028】[0028]

【発明の効果】以上説明したように本発明は、近赤外線
を利用して脂肪酸を測定するにあたり、特定の波長の近
赤外線の反射光、またはその透過光を使用すると、サン
プルが非粉砕の形態であっても、脂肪酸の測定を高精度
で行えることを見出したものである。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, when fatty acid is measured using near infrared rays, when reflected light of near infrared rays of a specific wavelength or its transmitted light is used, the sample is in a non-pulverized form. Even then, it has been found that fatty acid can be measured with high accuracy.

【0029】従って、本発明では、穀物サンプルを非粉
砕の形態で脂肪酸の高精度の測定できるようになり、真
の非破壊測定が実現できる。さらに本発明では、穀物サ
ンプルを非粉砕の形態で測定できるので、粉砕処理に伴
って生ずる粉塵の飛散や冷却などが問題とならず、その
測定が円滑かつ迅速にできる。
Therefore, according to the present invention, it becomes possible to measure a fatty acid with high precision in a non-crushed form of a grain sample, and a true non-destructive measurement can be realized. Further, in the present invention, since the grain sample can be measured in a non-crushed form, the scattering and cooling of dust generated by the crushing process does not pose a problem, and the measurement can be performed smoothly and quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施した脂肪酸の測定装置の構成例
を示す図である。
FIG. 1 is a diagram showing a configuration example of a fatty acid measuring apparatus in which the method of the present invention is carried out.

【図2】その装置の制御処理系の一例を示すブロック図
である。
FIG. 2 is a block diagram showing an example of a control processing system of the apparatus.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非粉砕の穀物サンプルに近赤外線を照射
し、そのサンプルの透過光または反射光から脂肪酸を吸
収する特定波長の吸光度を検出し、その検出吸光度に基
づき穀物サンプル中の脂肪酸を測定する近赤外線による
脂肪酸度の測定法。
1. A non-crushed grain sample is irradiated with near-infrared rays, the absorbance of a specific wavelength that absorbs fatty acid is detected from the transmitted light or reflected light of the sample, and the fatty acid in the grain sample is measured based on the detected absorbance. Measuring method of fatty acid degree by near infrared ray.
【請求項2】前記反射光を使用するときには、前記特定
波長には少なくとも1334±20nmを含むことを特
徴とする第1項記載の近赤外線による脂肪酸度の測定
法。
2. The method for measuring fatty acid content by near infrared rays according to claim 1, wherein when the reflected light is used, the specific wavelength includes at least 1334 ± 20 nm.
【請求項3】前記透過光を使用するときには、前記特定
波長には少なくとも930±20nmを含むことを特徴
とする第1項記載の近赤外線による脂肪酸度の測定法。
3. The method for measuring fatty acid content by near-infrared ray according to claim 1, wherein when the transmitted light is used, the specific wavelength includes at least 930 ± 20 nm.
JP25041491A 1991-09-03 1991-09-03 Measurement method of degree of fatty acid by means of near infrared ray Withdrawn JPH0560683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25041491A JPH0560683A (en) 1991-09-03 1991-09-03 Measurement method of degree of fatty acid by means of near infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25041491A JPH0560683A (en) 1991-09-03 1991-09-03 Measurement method of degree of fatty acid by means of near infrared ray

Publications (1)

Publication Number Publication Date
JPH0560683A true JPH0560683A (en) 1993-03-12

Family

ID=17207536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25041491A Withdrawn JPH0560683A (en) 1991-09-03 1991-09-03 Measurement method of degree of fatty acid by means of near infrared ray

Country Status (1)

Country Link
JP (1) JPH0560683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175403A (en) * 2009-01-29 2010-08-12 Satake Corp Method for computing absorbance by approximate expression

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175403A (en) * 2009-01-29 2010-08-12 Satake Corp Method for computing absorbance by approximate expression
CN101858855A (en) * 2009-01-29 2010-10-13 株式会社佐竹 Method for computing absorbance by approximate expression

Similar Documents

Publication Publication Date Title
Pasikatan et al. Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials
EP0743513B1 (en) Spectrometry and Optical Measuring Method and Apparatus
Burger et al. Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements: Application to pharmaceutical powders
US6748251B2 (en) Method and apparatus for detecting mastitis by using visual light and/or near infrared lights
EP0250070A1 (en) Optical analysis method and apparatus having programmable rapid random wavelength access
JPH0749309A (en) Light scattering type component concentration measuring apparatus and method
CN109115682B (en) Spectrometer for detecting liquid and solid components and detection method thereof
JPH0560683A (en) Measurement method of degree of fatty acid by means of near infrared ray
JPH1183628A (en) Device for measuring optical characteristic of soil
US5373358A (en) Excitation wavelength sweeping type raman spectroscopic apparatus
CN114034658B (en) Device and method for detecting sandstone degree of dolomite
WO1985003575A1 (en) Optical analysis instrument having rotating optical standards
JP2757021B2 (en) Near infrared spectroscopy
JPH06229913A (en) Measuring method for content of component of grain and the like
RU2113711C1 (en) Infrared humidity meter of dry products and materials
JP2967888B2 (en) Temperature estimation method by near infrared spectroscopy
Gandhi et al. Infrared (IR) Spectroscopy
WO1996001417A1 (en) Spectrophotometric equipment and use thereof
JPH05273119A (en) Diffuse reflected light extracting method and diffuse reflection spectrophotometric method
JPH0763674A (en) Measuring method of sugar content of vegetables or fruits
JP3245941B2 (en) Grain mixing ratio determination device using near-infrared light
JPH04132939A (en) Optical type grain analysis device
JPH075138A (en) Grain taste evaluation method
JPH07134100A (en) Near infrared spectral analysis method
JP3511678B2 (en) Near infrared spectrometer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203