JPH0559510A - Manufacture of high strength and high toughness (alpha+beta) type titanium alloy - Google Patents

Manufacture of high strength and high toughness (alpha+beta) type titanium alloy

Info

Publication number
JPH0559510A
JPH0559510A JP24829291A JP24829291A JPH0559510A JP H0559510 A JPH0559510 A JP H0559510A JP 24829291 A JP24829291 A JP 24829291A JP 24829291 A JP24829291 A JP 24829291A JP H0559510 A JPH0559510 A JP H0559510A
Authority
JP
Japan
Prior art keywords
strength
titanium alloy
cooling
range
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24829291A
Other languages
Japanese (ja)
Other versions
JP2606023B2 (en
Inventor
Misao Ishikawa
操 石川
Masakazu Niikura
正和 新倉
Chiaki Ouchi
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3248292A priority Critical patent/JP2606023B2/en
Publication of JPH0559510A publication Critical patent/JPH0559510A/en
Application granted granted Critical
Publication of JP2606023B2 publication Critical patent/JP2606023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To provide a method for manufacturing an (alpha+beta) type titanium alloy excellent in strength, ductility and toughness after aging. CONSTITUTION:The stock for an (alpha+beta) type titanium alloy having a compsn. contg., by weight, 3 to 7% Al and 0.06 to 0.20% O, furthermore contg. at least one kind of V and Mo and at least one kind from among Fe, Cr, Co and Ni as well as satisfying the conditional inequality of 0.4wt.%<=V/15+Mo/10+Fe/3.5+Cr/6.3+Co/7+Ni/9<=1.2wt.% and the balance Ti with inevitable impurities is subjected so soln. treatment in such a manner that it is heated to a temp. in the range of (the beta transformation temp. -150 deg.C) to less than the beta transformation point, is then cooled at a cooling rate in the range of 0.5 to 10 deg.C/sec, and the stock subjected to the soln. treatment in such a manner is subjected to aging treatment at a temp. in the range of 400 to 600 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高強度高靱性α+β
型チタン合金の製造方法、特に、時効後の強度、延性お
よび靱性に優れたα+β型チタン合金の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to high strength and high toughness α + β.
TECHNICAL FIELD The present invention relates to a method for producing a type titanium alloy, and particularly to a method for producing an α + β type titanium alloy having excellent strength, ductility and toughness after aging.

【0002】[0002]

【従来の技術】α+β型チタン合金材を高強度化するた
めの熱処理として、溶体化時効処理が一般に知られてい
る。例えば、R&Dプランニングから昭和62年に発行さ
れた「新素材プロセス総合技術」には、下記からなる溶
体化時効処理方法が開示されている。 即ち、始めに、
α+β型チタン合金材をβ変態点以下のα+βの2相高
温域に加熱、保持し、その後、室温まで冷却することに
よって、チタン合金材に溶体化処理を施し、次に、この
ようにして溶体化処理を施したチタン合金材を、450 〜
600 ℃程度の温度範囲内に加熱、保持し、その後、室温
まで冷却することによって、チタン合金材に時効処理を
施す。更に、同文献には、代表的なα+β型チタン合金
であるTi-6Al-4V合金の溶体化時効後の強度は、質量効
果によって溶体化の冷却速度が低下するにつれて急激に
低下することが開示されている。つまり、溶体化時効処
理後の強度は、溶体化後の冷却速度に支配され、溶体化
後の冷却速度が遅くなると時効後の強度上昇が望めな
い。
2. Description of the Related Art Solution aging treatment is generally known as a heat treatment for strengthening an α + β type titanium alloy material. For example, “New Material Process Comprehensive Technology” issued by R & D Planning in 1987 discloses a solution aging treatment method consisting of the following. That is, first,
The α + β type titanium alloy material is subjected to solution treatment by heating and holding it in a two-phase high temperature region of α + β below the β transformation point, and then cooling to room temperature. The titanium alloy material that has been treated with
The titanium alloy material is aged by heating and holding it in a temperature range of about 600 ° C. and then cooling it to room temperature. Furthermore, it is disclosed in the same document that the strength after solution aging of Ti-6Al-4V alloy, which is a typical α + β titanium alloy, rapidly decreases as the cooling rate of solution heating decreases due to the mass effect. Has been done. That is, the strength after solution aging treatment is governed by the cooling rate after solution treatment, and if the cooling rate after solution treatment becomes slow, the strength increase after aging cannot be expected.

【0003】また、米国規格AMS4965Eには、代表的なα
+β型チタン合金であるTi-6Al-4V合金の溶体化時効処
理方法の規格として、 溶体化処理:955 ±15℃×1〜2h(撹拌水冷)、 時効処理 :485 〜620 ℃×4〜8h(空冷)。 からなる溶体化時効処理方法が開示されている。上記規
格によれば、板厚が15mmの場合の強度の下限値は、105.
6kgf/mm2(0.2%PS)、112.8kgf/mm2(TS) 、そして、延
性の下限値は、10%(El) である。
The American standard AMS4965E has a typical α
As a standard of solution aging treatment method for Ti-6Al-4V alloy, which is + β type titanium alloy, solution treatment: 955 ± 15 ℃ × 1 to 2h (cooling with stirring water), aging treatment: 485 to 620 ℃ × 4 to 8h (Air cooling). A solution aging treatment method is disclosed. According to the above standard, the lower limit of the strength when the plate thickness is 15 mm is 105.
6kgf / mm 2 (0.2% PS), 112.8kgf / mm 2 (TS), and the lower limit of ductility is 10% (El).

【0004】しかしながら、上述した溶体化時効処理方
法は、以下のような問題を有している。即ち、 溶体化処理時の冷却速度が速すぎるためにチタン合金
材に歪が発生して、チタン合金材が変形する。 溶体化温度が高すぎるために、加熱中にチタン合金材
が変形したり、チタン合金材の表面が酸化されやすい。 溶体化後の冷却は水冷により行うが、水冷の冷却速度
は空冷に比べて速いために強度は高くなる反面、切欠き
強度等の靱性や伸び等の延性が劣化する。特に、切欠き
強度は、切欠き部や凹部R部等の応力集中部を有する部
材の低応力破断に関する指標となり、通常は、0.2%PS以
上必要である。しかし、靱性が低いと、切欠き強度は、
0.2%PSより小さくなって低応力で破壊する。
However, the solution aging treatment method described above has the following problems. That is, since the cooling rate during the solution treatment is too fast, the titanium alloy material is distorted, and the titanium alloy material is deformed. Since the solution temperature is too high, the titanium alloy material is likely to be deformed or the surface of the titanium alloy material is easily oxidized during heating. Cooling after solution treatment is performed by water cooling, but since the cooling rate of water cooling is higher than that of air cooling, the strength increases, but the toughness such as notch strength and the ductility such as elongation deteriorate. In particular, the notch strength is an index for low stress fracture of a member having a stress concentration portion such as a notch portion or a recess R portion, and usually 0.2% PS or more is required. However, if the toughness is low, the notch strength is
It becomes smaller than 0.2% PS and breaks with low stress.

【0005】上述した問題を解決するために、特開昭63
-125651 号公報には、Al:2〜5wt.% 、V :5〜12wt.
%、Mo:0.5 〜8wt.%を含有するチタン合金を、650 〜8
50 ℃の範囲内の温度で塑性加工し、次いで、直ちに、
空冷または強制ガス冷却し、そして、400 〜600 ℃の範
囲内の温度で熱処理することからなるα+β型チタン合
金の製造方法(以下、先行技術1という)が開示されて
いる。
In order to solve the above-mentioned problems, Japanese Patent Laid-Open No. 63-63
-125651 publication, Al: 2-5 wt.%, V: 5-12 wt.
%, Mo: 0.5-8 wt.% Titanium alloy containing 650-8%
Plastic working at a temperature in the range of 50 ° C, then immediately
A method for producing an α + β type titanium alloy (hereinafter referred to as Prior Art 1), which comprises air cooling or forced gas cooling and heat treatment at a temperature in the range of 400 to 600 ° C., is disclosed.

【0006】特開昭63-125651 号公報には、チタン合金
を60℃超〜β変態点未満のα+β温度域に加熱、保持
し、次いで、空冷または空冷よりも速い冷却速度で冷却
し、そして、600 〜800 ℃の範囲内の温度で焼鈍するこ
とにより、高い強度および優れた延性を有するα+β型
チタン合金の熱処理方法(以下、先行技術2という)が
開示されている。
Japanese Patent Laid-Open No. 63-125651 discloses that a titanium alloy is heated and held in an α + β temperature range of more than 60 ° C. and below the β transformation point, and then cooled by air or at a cooling rate faster than air cooling, and , A method for heat treatment of an α + β type titanium alloy having high strength and excellent ductility by annealing at a temperature in the range of 600 to 800 ° C. (hereinafter referred to as prior art 2) is disclosed.

【0007】特開昭50-37004号公報には、チタン合金を
(β変態点−60〜150 ℃)のα+β温度領域から空冷よ
り速い速度で冷却し、そして、700 ℃の温度で2時間安
定化焼鈍を行って、切欠きラプチャ強度を向上させるこ
とからなるα+β型チタン合金の熱処理方法(以下、先
行技術3という)が開示されている。
Japanese Patent Laid-Open Publication No. 50-37004 discloses that a titanium alloy is cooled from an α + β temperature range of (β transformation point −60 to 150 ° C.) at a speed faster than air cooling, and is stable at a temperature of 700 ° C. for 2 hours. There is disclosed a heat treatment method for α + β type titanium alloys (hereinafter referred to as prior art 3) which comprises performing chemical annealing to improve notch rupture strength.

【0008】特開昭63-219558 号公報には、Ti-6Al-4V
合金をα+β域またはβ域で加工し、次いで、880 〜10
50℃の範囲内の温度に10分〜8時間保持し、次いで、60
0 〜880 ℃未満の範囲内の温度まで、0.2 ℃/sec以下の
冷却速度で連続的に徐冷し、徐冷後その温度で10分〜8
時間保持し、次いで、空冷または空冷以上の冷却速度で
冷却し、そして、450 〜650 ℃の範囲内の温度で1〜10
時間、時効処理を施して、大型部材の機械的性質の均質
化および高強度化を図ることからなるTi-6Al-4V 合金材
の熱処理方法(以下、先行技術4という)が開示されて
いる。
Japanese Unexamined Patent Publication No. 63-219558 discloses Ti-6Al-4V.
Alloy processed in α + β or β range, then 880-10
Hold at a temperature in the range of 50 ° C for 10 minutes to 8 hours, then 60
It is gradually annealed to a temperature within the range of 0 to less than 880 ℃ at a cooling rate of 0.2 ℃ / sec or less, and then 10 minutes to 8 at that temperature.
Hold for a time, then cool with air cooling or at a cooling rate above air cooling, and 1-10 at a temperature in the range of 450-650 ° C.
A heat treatment method for Ti-6Al-4V alloy material (hereinafter referred to as prior art 4) is disclosed, which comprises homogenizing the mechanical properties and increasing the strength of a large-sized member by performing aging treatment for a time.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た先行技術1〜4は、以下のような問題を有している。
先行技術1は、溶体化処理を省略した単なる直接時効処
理である。このようなα+β型チタン合金の塑性加工
は、通常、α+β域(650 〜850 ℃)で行われ、塑性加
工後、空冷するのは常識的である。さらに、チタン合金
の時効温度は、500 ℃前後であり、熱処理に何ら新しい
改善を施ししているものではない。また、塑性加工まま
の不均一なミクロ組織のままで時効処理を施すために、
熱処理が施されるチタン合金の強度が不均一になる。ま
た、塑性加工量によって時効後の強度が変化するため
に、実際に所望の特性を得るためには、厳密な塑性加工
量のコントロールが必要となり、塑性加工工程が複雑に
なる。さらに、強度以外の靱性や延性のコントロールが
困難である。
However, the above-mentioned prior arts 1 to 4 have the following problems.
Prior art 1 is a mere direct aging treatment in which the solution treatment is omitted. Plastic working of such an α + β titanium alloy is usually performed in the α + β range (650 to 850 ° C.), and it is common sense to air cool after the plastic working. Furthermore, the aging temperature of titanium alloy is around 500 ° C, which is not a new improvement in heat treatment. In addition, in order to perform aging treatment with the non-uniform microstructure as it is plastically worked,
The strength of the heat-treated titanium alloy becomes uneven. Further, since the strength after aging changes depending on the plastic working amount, strict control of the plastic working amount is required to actually obtain desired characteristics, and the plastic working process becomes complicated. Furthermore, it is difficult to control toughness and ductility other than strength.

【0010】先行技術2が開示された公報には、Ti-6Al
-4V 合金の実施例しか開示されておらず、溶体化処理時
の冷却は、水冷と空冷でなされているのみである。従っ
て、実施例によれば、水冷材では熱処理後の強度はかな
り高いが、水冷による変形が問題となる。一方、空冷材
では、冷却速度が遅いので強度が低下して、ASM 規格を
満足しない。
The publication in which the prior art 2 is disclosed is Ti-6Al.
Only the example of the -4V alloy is disclosed, and the cooling during the solution treatment is only performed by water cooling and air cooling. Therefore, according to the example, although the strength of the water-cooled material after heat treatment is considerably high, the deformation due to water cooling becomes a problem. On the other hand, the air-cooled material does not satisfy the ASM standard because the cooling rate is slow and the strength decreases.

【0011】先行技術3は、時効処理温度が700 ℃であ
るために、十分な強度が得られず、強度と靱性とのバラ
ンスが悪い。
In the prior art 3, since the aging temperature is 700 ° C., sufficient strength cannot be obtained and the balance between strength and toughness is poor.

【0012】先行技術4は、溶体化処理時の冷却におい
て、600 から800 ℃未満の範囲内の温度まで、0.2 ℃/s
ec以下の冷却速度で連続的に徐冷するために、先行技術
4が開示された公報に記載された実施例から明らかなよ
うに、強度が低くASM 規格を満足しない。強度が低い理
由は、先行技術4の熱履歴が、上述した引用文献「新素
材プロセス総合技術」に記載されている焼入れ遅延の熱
履歴と類似しているからであると考えられる。従って、
この発明の目的は、高い強度を有し且つ優れた靱性およ
び延性を有し、しかも、溶体化処理時に生じる変形を防
止することができる、α+β型チタン合金の製造方法を
提供することにある。
In the prior art 4, in the cooling during the solution heat treatment, the temperature in the range of 600 to less than 800 ° C. is 0.2 ° C./s.
Since continuous cooling is performed at a cooling rate of ec or less, the strength is low and the ASM standard is not satisfied, as is apparent from the examples described in the publication in which the prior art 4 is disclosed. It is considered that the reason why the strength is low is that the thermal history of the prior art 4 is similar to the thermal history of quenching delay described in the above-cited document "New material process comprehensive technology". Therefore,
An object of the present invention is to provide a method for producing an α + β-type titanium alloy, which has high strength, excellent toughness and ductility, and can prevent deformation that occurs during solution treatment.

【0013】本願発明者等は、上述した問題点を解決す
るために種々研究を行った。先ず、本願発明等は、溶体
化後の冷却時にチタン合金材に生じる変形の防止につい
て調べた。溶体化後のチタン合金材を水冷により冷却す
ると、冷却速度が速くなるので時効後の強度は高くなる
が、焼入れ歪(熱歪)が大きくなる。しかし、チタン合
金材を空冷により冷却すると、複雑な形状の材料の寸法
変化は著しく小さくなった。この原因は、次の通りであ
る。即ち、図1は、水冷および空冷の場合の被冷却材の
寸法と冷却速度との関係を示すグラフであるが、図1か
ら明らかなように、空冷の冷却速度は、水冷の冷却速度
に比べて1/10程度に遅く、このために、溶体化後の冷却
時の熱応力および熱歪の発生が抑制されるからである。
強制ガス冷却、強制空冷、ミスト冷却等によっても歪の
発生は抑制され、これらの場合の冷却速度は、空冷の約
2〜4倍であった。このために、溶体化後の冷却は、空
冷相当の4倍以下冷却速度で行うべきである。ここで、
冷却速度とは、チタン合金材の中心部の冷却速度で、加
熱温度から500 ℃までの平均冷却速度である。また、図
1に示すように、被冷却材の寸法が大きければ冷却速度
は小さく、一方、被冷却材の寸法が小さければ冷却速度
は大きいことがわかる。従って、チタン合金材の寸法に
応じて冷却速度を適当に調整する必要がある。
The inventors of the present application have conducted various studies in order to solve the above-mentioned problems. First, in the present invention and the like, the prevention of deformation of the titanium alloy material during cooling after solution treatment was investigated. When the solution-treated titanium alloy material is cooled by water cooling, the cooling rate becomes faster, so the strength after aging becomes higher, but the quenching strain (thermal strain) becomes larger. However, when the titanium alloy material was cooled by air cooling, the dimensional change of the material having a complicated shape was significantly reduced. The cause is as follows. That is, FIG. 1 is a graph showing the relationship between the size of the material to be cooled and the cooling rate in the case of water cooling and air cooling. As is clear from FIG. 1, the cooling rate of air cooling is higher than that of water cooling. This is because it is as slow as about 1/10, and for this reason, the occurrence of thermal stress and thermal strain during cooling after solution treatment is suppressed.
Generation of strain was also suppressed by forced gas cooling, forced air cooling, mist cooling, etc., and the cooling rate in these cases was about 2 to 4 times that of air cooling. For this reason, the cooling after solution heat treatment should be performed at a cooling rate 4 times or less than that of air cooling. here,
The cooling rate is the cooling rate of the central portion of the titanium alloy material, and is the average cooling rate from the heating temperature to 500 ° C. Further, as shown in FIG. 1, it can be seen that the cooling rate is low when the dimension of the material to be cooled is large, while the cooling rate is high when the dimension of the material to be cooled is small. Therefore, it is necessary to appropriately adjust the cooling rate according to the dimensions of the titanium alloy material.

【0014】次に、溶体化処理時における加熱時にチタ
ン合金材に生じる変形について調べた。加熱時のチタン
合金材の変形を抑制するには、加熱温度を下げてチタン
合金材の変形が起こりにくくすれば良いが、β変態点の
温度が高い場合には、溶体化温度も高くせざるを得ない
(Ti-6Al-4V 合金の場合、β変態点は1000℃であり、通
常加熱温度は、955 ℃である。)。従って、加熱温度を
下げるためには、β変態点下げることが有効である。β
変態点を下げるためには、β安定化元素であるV、Mo、F
e、Cr、Co、Ni等の合金成分を増加すれば良い。
Next, the deformation of the titanium alloy material during heating during the solution treatment was examined. In order to suppress the deformation of the titanium alloy material at the time of heating, it is sufficient to lower the heating temperature so that the deformation of the titanium alloy material does not easily occur, but when the temperature of the β transformation point is high, the solution temperature must be increased. (In the case of Ti-6Al-4V alloy, the β transformation point is 1000 ° C, and the normal heating temperature is 955 ° C.). Therefore, in order to lower the heating temperature, it is effective to lower the β transformation point. β
In order to lower the transformation point, β-stabilizing elements such as V, Mo, F
The alloy components such as e, Cr, Co and Ni may be increased.

【0015】次に、強度と合金元素との関係について調
べた。溶体化時効後の強度は、溶体化後の冷却速度に大
きな影響を受ける。Ti-6Al-4V 合金は、質量効果のため
に冷却速度が低下すると急激な強度の低下を招く。この
原因は、溶体化後の冷却時におけるα相の生成および量
的増加が速いために、冷却速度が遅くなると、時効後の
強度上昇に寄与する相がα相の生成により減少すること
にある。この問題を解決するために検討を行った。この
結果、溶体化時のβ相の安定度を増加させて、冷却中に
おけるα相の生成および増大を抑制すれば、冷却速度が
水冷時より遅くなっても、時効後の強度上昇に寄与する
相が十分に存在するので、時効により強度を上昇させる
ことができるといった知見を得た。この時、時効後の強
度上昇に寄与する相とは、α”マルテンサイト相と残留
β相である。α”相およびβ相は、β安定化元素を適当
に調整することにより、非常に微細な層状構造を形成す
る。この微細な構造を基にして、短時間の時効処理後、
微細なα相およびβ相の混合組織が得られ、析出メカニ
ズムによる強度上昇が得られるのである。即ち、β安定
化元素であるV 、Mo、Fe、Cr、Co、Ni等の合金成分の添
加量を最適化することによって、強度を上昇させること
ができるといった知見を得た。
Next, the relationship between strength and alloying elements was investigated. The strength after solution aging is greatly affected by the cooling rate after solution heat treatment. The Ti-6Al-4V alloy causes a rapid decrease in strength as the cooling rate decreases due to the mass effect. The reason for this is that the α phase is rapidly generated and quantitatively increased during solution cooling, so that when the cooling rate is slow, the phases contributing to the increase in strength after aging are reduced by the α phase generation. .. We examined to solve this problem. As a result, if the stability of the β phase during solution treatment is increased to suppress the formation and increase of the α phase during cooling, it contributes to the increase in strength after aging even if the cooling rate is slower than that during water cooling. Since there are sufficient phases, it was found that the strength can be increased by aging. At this time, the phases that contribute to the increase in strength after aging are the α ”martensite phase and the residual β phase. The α” phase and the β phase are very fine when the β stabilizing element is appropriately adjusted. Form a layered structure. Based on this fine structure, after a short aging treatment,
A fine mixed structure of α phase and β phase is obtained, and strength is increased by the precipitation mechanism. That is, it has been found that the strength can be increased by optimizing the amount of addition of the β-stabilizing alloy elements such as V 2, Mo, Fe, Cr, Co, and Ni.

【0016】各々のβ安定化元素の効果を検討した結
果、以下のことがわかった。即ち、V、Moは、β全率固
溶型のβ安定化元素であり、Tiと脆い化合物を生成しに
くいが、β相の安定化効果は比較的小さい。Moは、Ti中
での拡散効果が遅いために、結晶粒成長を抑制する効果
が大きく、結晶粒を微細化するのに有効な元素である。
また、Fe、Cr、Co、Niは、β共析型元素であり、Tiと脆
い金属間化合物を形成することがあるが、β相の安定化
効果が大きい元素である。しかも、Fe、Co、Niは、拡散
効果が非常に速いために、時効時の強度上昇を速め、時
効時間をβ型チタン合金に比べて短縮するのに有効であ
る。特に、Feは、少量でβ相安定化の効果が大きいこと
から有効な元素である。これらのβ安定化元素を適当に
添加することによって、β相の安定化が高く、しかも、
Tiと脆い金属間化合物を生成しにくい合金組成を見出し
た。
As a result of examining the effect of each β-stabilizing element, the following was found. That is, V and Mo are β-stabilized solid solution β-stabilizing elements, and although they do not easily form a brittle compound with Ti, the β-phase stabilizing effect is relatively small. Since Mo has a slow diffusion effect in Ti, it has a large effect of suppressing the crystal grain growth, and is an element effective for refining the crystal grains.
Further, Fe, Cr, Co, and Ni are β-eutectoid elements, which may form a brittle intermetallic compound with Ti, but have a large β-phase stabilizing effect. Moreover, since Fe, Co, and Ni have a very high diffusion effect, they are effective in accelerating the strength increase during aging and shortening the aging time as compared with the β-type titanium alloy. In particular, Fe is an effective element because it has a large β-phase stabilizing effect even in a small amount. By properly adding these β-stabilizing elements, the β-phase is highly stabilized, and
We have found an alloy composition that does not easily form brittle intermetallic compounds with Ti.

【0017】[0017]

【課題を解決するための手段】この発明は、上述した知
見に基づいてなされたものであり、第1発明は、Al:3
〜7wt.%、O :0.06〜0.20wt.%、を含有し、さらに、V
およびMoのうちの少なくとも一種、および、Fe、Cr、Co
およびNiのうちの少なくとも一種を含有し、且つ、0.4w
t.% ≦V/15+Mo/10 +Fe/3.5+Cr/6.3+Co/7+Ni/9≦1.
2wt.% の条件式を満足し、残部:Tiおよび不可避不純
物、からなる成分組成を有するα+β型チタン合金用素
材を、(β変態点−150 ℃)〜β変態点未満の範囲内の
温度に加熱し、次いで、0.5 ℃/sec〜10℃/secの範囲内
の冷却速度で冷却して、前記素材に溶体化処理を施し、
そして、このようにして溶体化処理を施した前記素材
に、400 〜600 ℃の範囲内の温度で時効処理を施すこと
に特徴を有し、
The present invention was made based on the above-mentioned findings. The first invention is Al: 3.
.About.7 wt.%, O: 0.06 to 0.20 wt.%, And V
And at least one of Mo and Fe, Cr, Co
And at least one of Ni and 0.4w
t.% ≤ V / 15 + Mo / 10 + Fe / 3.5 + Cr / 6.3 + Co / 7 + Ni / 9 ≦ 1.
A material for α + β type titanium alloy that satisfies the conditional expression of 2 wt.% And has a composition consisting of the balance: Ti and unavoidable impurities is heated to a temperature within the range from (β transformation point −150 ° C) to less than β transformation point. Heated, then cooled at a cooling rate in the range of 0.5 ℃ / sec ~ 10 ℃ / sec, the material is subjected to solution treatment,
Then, the material thus solution-treated is characterized in that it is subjected to an aging treatment at a temperature in the range of 400 to 600 ° C.,

【0018】第2発明は、上記成分組成を、Al:3〜7
wt.%、V :2.1 〜5.0wt.% 、Mo:0.85〜3.15wt.%、Fe:
0.85〜3.15wt.%、O :0.06〜0.20wt.%、を含有し、さら
に、Cr、CoおよびNiのうちの少なくとも一種を含有し、
且つ、0.4wt.% ≦V/15+Mo/10 +Fe/3.5+Cr/6.3+Co/7
+Ni/9≦1.2wt.% の条件式を満足し、残部:Tiおよび不
可避不純物からなるものにすることに特徴を有するもの
である。
The second aspect of the present invention is that the above composition is Al: 3 to 7
wt.%, V: 2.1 to 5.0 wt.%, Mo: 0.85 to 3.15 wt.%, Fe:
0.85 to 3.15 wt.%, O: 0.06 to 0.20 wt.%, And further contains at least one of Cr, Co and Ni,
And 0.4wt.% ≦ V / 15 + Mo / 10 + Fe / 3.5 + Cr / 6.3 + Co / 7
It is characterized by satisfying the conditional expression of + Ni / 9 ≦ 1.2 wt.% And making the balance: Ti and unavoidable impurities.

【0019】次に、第1発明において、成分組成を上述
したように限定した理由について説明する。 Al(アルミニウム):Alは、α安定化元素の一つであ
り、α+β型チタン合金には必須の元素である。しか
し、Al含有量が3wt.% 未満では、α+β型チタン合金に
なりにくく、十分な強度が得られない。一方、Al含有量
が7wt.% を超えると、金属間化合物であるTi3Al が生成
しやすく、靱性が著しく低下する。従って、Al含有量
は、3 〜7wt.% の範囲内に限定すべきである。
Next, the reason why the component composition is limited as described above in the first invention will be described. Al (aluminum): Al is one of the α-stabilizing elements and is an essential element for α + β-type titanium alloys. However, if the Al content is less than 3 wt.%, It becomes difficult to form an α + β type titanium alloy, and sufficient strength cannot be obtained. On the other hand, if the Al content exceeds 7 wt.%, Ti 3 Al, which is an intermetallic compound, is likely to be formed, and the toughness is significantly reduced. Therefore, the Al content should be limited to the range of 3 to 7 wt.%.

【0020】O(酸素):Oは、通常のα+β型チタン合
金と同量が望ましいが、O 含有量が0.06wt.%未満では、
十分な強度が得られず、一方、O 含有量が0.20wt.%を超
えると、延性が急激に低下する。従って、O 含有量は、
0.06〜0.20% の範囲内に限定すべきである。
O (oxygen): O is desirable to be the same as that of a normal α + β type titanium alloy, but if the O content is less than 0.06 wt.%,
Sufficient strength cannot be obtained. On the other hand, if the O 2 content exceeds 0.20 wt.%, The ductility sharply decreases. Therefore, the O content is
It should be limited to the range of 0.06 to 0.20%.

【0021】V 、Moのうちの少なくとも一種、および、
Fe、Cr、CoおよびNiのうちの少なくとも一種を含有させ
る理由は、以下の通りである。即ち、V 、Moのうちの少
なくとも一種を含有させることによって、Fe等の添加に
より問題となる脆い金属間化合物の生成が抑制され、一
方、Fe、Cr、CoおよびNiのうちの少なくとも一種を含有
させることによって、β相の安定度を効果的に増大させ
ることができるからである。
At least one of V and Mo, and
The reason for containing at least one of Fe, Cr, Co and Ni is as follows. That is, by containing at least one of V, Mo, the formation of a brittle intermetallic compound which is a problem due to the addition of Fe and the like is suppressed, while containing at least one of Fe, Cr, Co and Ni. By doing so, the stability of the β phase can be effectively increased.

【0022】上記条件式の限定理由について説明する。
β安定化元素であるV 、Mo、Fe、Cr、CoおよびNiについ
てβ相を安定化させるの割合について調べた。この結
果、1wt.% 当たりの各元素の安定化させる割合は、V
は、1/15、Moは、1/10、Feは、1/3.5 、Crは、1/6.3 、
Coは、1/7 、そして、Niは、1/9 であることがわかっ
た。その効果は、Feが最も大きく、V が最も低い。従っ
て、これらの割合と各合金元素との積の和をXで表し、
このX値をβ相の安定度を示す指標にした。X値が0.4
未満であると、溶体化処理の冷却時において、空冷相当
の冷却速度でα相の生成および増大を抑制することがで
きず、このために、時効後の強度上昇が小さい。一方、
X値が1.2 を超えると、β相の安定化が大きくなり過ぎ
るため、溶体化処理後にα”マルテンサイト相が得られ
ず、β相が完全に残留してしまい、短時間の時効処理で
高強度が得られない。また、比重の大きいβ型チタン合
金になるために、α+β型チタン合金のような微細な結
晶粒や優れた強度と延性とのバランスが得られない。従
って、X値は、0.4から1.2 の範囲内に限定した。
The reason for limiting the above conditional expression will be described.
The proportion of β-stabilizing elements V, Mo, Fe, Cr, Co and Ni for stabilizing the β phase was investigated. As a result, the stabilizing ratio of each element per 1 wt.% Is V
Is 1/15, Mo is 1/10, Fe is 1 / 3.5, Cr is 1 / 6.3,
It was found that Co was 1/7 and Ni was 1/9. Fe has the largest effect and V has the lowest effect. Therefore, the sum of the products of these ratios and each alloy element is represented by X,
This X value was used as an index showing the stability of the β phase. X value is 0.4
When the amount is less than the above value, it is not possible to suppress the generation and increase of the α phase at the cooling rate corresponding to the air cooling during the cooling in the solution heat treatment, and therefore the increase in strength after aging is small. on the other hand,
If the X value exceeds 1.2, the β-phase will be excessively stabilized, so that the α ”martensite phase will not be obtained after the solution treatment and the β-phase will remain completely. The strength is not obtained, and because it is a β-type titanium alloy having a large specific gravity, it is not possible to obtain fine crystal grains such as α + β-type titanium alloy and excellent balance between strength and ductility. , Limited to the range of 0.4 to 1.2.

【0023】第2発明において、V 、MoおよびFeを上述
のように限定した理由について説明する。 V (バナジウム):V は、β相を安定化させる効果は小
さいが、β変態点を大きく低下させる重要な元素であ
る。しかしながら、V 含有量が2.1wt.% 未満では、β変
態点の低下が十分でなく、また、β相を安定化する効果
が小さくなる。一方、V 含有量が5.0wt.%を超えると、
β相の安定度が大きくなり過ぎて、強度上昇が十分に得
られず、また、V は効果な元素であるので、コスト高と
なる。従って、V 含有量は、2.1 〜5.0 wt.%の範囲内に
限定すべきである。
In the second invention, the reason why V, Mo and Fe are limited as described above will be explained. V (vanadium): V has a small effect of stabilizing the β phase, but is an important element that significantly lowers the β transformation point. However, if the V content is less than 2.1 wt.%, The β transformation point is not sufficiently lowered, and the effect of stabilizing the β phase becomes small. On the other hand, if the V content exceeds 5.0 wt.%,
The stability of the β-phase becomes too large and the strength cannot be sufficiently increased, and since V is an effective element, the cost becomes high. Therefore, the V content should be limited to the range of 2.1-5.0 wt.%.

【0024】Mo(モリブデン):Moは、β相を安定化さ
せ、粒成長を抑制する効果を有する。しかしながら、Mo
含有量が0.85wt.%未満では、粒が大きくなりやすく、熱
処理により粒が粗大化する。一方、Mo含有量が3.15wt.%
を超えると、時効処理に長時間を要し、且つ、β相が安
定化し過ぎて強度が十分に得られない。従って、Mo含有
量は、0.85〜3.15wt.%の範囲内に限定すべきである。
Mo (Molybdenum): Mo has the effect of stabilizing the β phase and suppressing grain growth. However, Mo
If the content is less than 0.85 wt.%, The grains are likely to become large and the grains are coarsened by the heat treatment. On the other hand, Mo content is 3.15 wt.%
When it exceeds, the aging treatment takes a long time, and the β phase is excessively stabilized, so that sufficient strength cannot be obtained. Therefore, the Mo content should be limited to the range of 0.85 to 3.15 wt.%.

【0025】Fe(鉄):Feは、β相の安定化とβ変態点
の低下に有効な元素である。しかしながら、Fe含有量が
0.85wt.%未満では、上述した効果に作用に所望の効果が
得られない。一方、Fe含有量が3.15wt.%を超えると、β
相が安定化し過ぎて短時間の時効によって、十分な強度
が得られない。また、Tiとの間に脆い金属間化合物が形
成される。従って、Fe含有量は、0.85〜3.15wt.%の範囲
内に限定すべきである。
Fe (Fe): Fe is an element effective for stabilizing the β phase and lowering the β transformation point. However, if the Fe content is
If it is less than 0.85 wt.%, Desired effects cannot be obtained in addition to the above-mentioned effects. On the other hand, when the Fe content exceeds 3.15 wt.%, Β
The phase is too stable and aging for a short time does not provide sufficient strength. In addition, a brittle intermetallic compound is formed with Ti. Therefore, the Fe content should be limited to the range of 0.85 to 3.15 wt.%.

【0026】次に、溶体化温度、溶体化後の冷却速度お
よび時効温度の限定理由について説明する。溶体化温度
がβ変態点−150 ℃未満では、時効後の強度が上昇せ
ず、一方、β変態点以上では、α+βの2相領域でなく
なるため、ミクロ組織が粗大化して、延性が著しく低下
する。従って、溶体化温度は、(β変態点−150 ℃)〜
β変態点未満の範囲内に限定すべきである。なお、溶体
化時間は、通常のチタン合金で行われている時間、即
ち、0.25〜2.0hの範囲内が好ましい。
Next, the reasons for limiting the solution temperature, the cooling rate after solution heat treatment and the aging temperature will be described. When the solution temperature is less than β-transformation point -150 ° C, the strength after aging does not increase. On the other hand, above the β-transformation point, the two-phase region of α + β disappears, and the microstructure coarsens and ductility decreases significantly. To do. Therefore, the solution temperature is (β transformation point -150 ° C) ~
It should be limited to a range below the β transformation point. The solution time is preferably the time used for ordinary titanium alloys, that is, 0.25 to 2.0 hours.

【0027】溶体化後の冷却速度は、熱歪が発生しない
ような冷却速度である空冷相当速度の4倍以下にする必
要がある。また、冷却速度が大きすぎると強度が高くな
りすぎて逆に切欠き強度が低下するので、特に、強度と
靱性とのバランスから10℃/sec 以下にすべきである。
一方、冷却速度が炉冷の場合のように極端に遅い場合に
は、時効後に強度上昇を得にくいので、時効後に強度上
昇が得られ十分な強度が達成できる最低の冷却速度であ
る0.5 ℃/sec以上にすべきである。
The cooling rate after solution treatment must be 4 times or less than the air-cooling equivalent rate which is a cooling rate at which thermal strain does not occur. Further, if the cooling rate is too high, the strength becomes too high and the notch strength decreases conversely. Therefore, it should be 10 ° C./sec or less in view of the balance between strength and toughness.
On the other hand, when the cooling rate is extremely slow as in the case of furnace cooling, it is difficult to obtain the strength increase after aging, so the strength increase is obtained after aging and the minimum cooling rate that can achieve sufficient strength is 0.5 ℃ / Should be more than sec.

【0028】時効温度が400 ℃未満では、温度が低すぎ
て時効後の強度が上昇しない。一方、時効温度が600 ℃
を超えると、強度が上昇してもすぐに軟化する。従っ
て、時効温度は、400 〜600 ℃の範囲内に限定すべきで
ある。図2に時効温度と靱性NTS/O.2%PSおよび引張り強
度TSとの関係を示す。NTS (切欠き強度)/O.2%PS は切
欠き降伏比のことである。図2から明らかなように、時
効温度が400 〜600 ℃の範囲内であると、TSは、110kg/
mm2 以上となり、切欠き降伏比も1以上となる。切欠き
降伏比と延性とは相関関係があり、切欠き降伏比が高く
なると延性が向上する。なお、図2の試験の際に使用し
た本発明チタン合金の成分組成は、後述する実施例1に
おいて使用したものと同一である。溶体化温度は、800
℃、溶体化後の冷却温度は、2 ℃/secであった。
If the aging temperature is less than 400 ° C., the temperature is too low and the strength after aging does not increase. On the other hand, the aging temperature is 600 ℃
When it exceeds, even if the strength is increased, it is immediately softened. Therefore, the aging temperature should be limited to the range of 400 to 600 ° C. Figure 2 shows the relationship between aging temperature, toughness NTS / O.2% PS and tensile strength TS. NTS (notch strength) /O.2%PS is the notch yield ratio. As is clear from Fig. 2, when the aging temperature is in the range of 400 to 600 ℃, TS is 110kg /
mm 2 or more, and the notch yield ratio is 1 or more. There is a correlation between the notch yield ratio and the ductility, and as the notch yield ratio increases, the ductility improves. The component composition of the titanium alloy of the present invention used in the test of FIG. 2 is the same as that used in Example 1 described later. Solution temperature is 800
℃, the cooling temperature after solution heat treatment was 2 ℃ / sec.

【0029】[0029]

【実施例】次に、この発明を実施例によって更に詳細に
説明する。 実施例1 Al:4.5wt.% 、V :3.0wt.% 、Mo:2.0wt.% 、Fe:2.0w
t.% 、0 :0.10wt.%、C :0.02wt.%、N :0.01wt.%、H
:0.01wt.%を含有する、β変態点が900 ℃のα+β型
チタン合金を、α+β温度域に加熱し、圧延して、板厚
15mmの供試板を調製した。次いで、この供試板から70mm
×70mmの大きさの供試片を切り出し、この供試片を800
℃(β変態点−100℃)の温度に1時間加熱して、供試
片に溶体化を施した。次いで、このようにして溶体化を
施した供試片を、表1に示す種々の冷却方法にしたがっ
て冷却した。冷却速度は、供試片の板厚中心に熱電対を
挿入して測定した。制御冷却は、供試片を加熱炉に入れ
たまま炉内の雰囲気温度を所定の冷却速度に制御して冷
却したものである。強制ガス冷却は、真空槽内に置かれ
た供試片にArガスを吹き付けて冷却したものである。撹
拌水冷は、室温に維持した水中に、加熱した供試片を入
れて冷却したものである。次いで、各供試片に時効処理
を510 ℃の温度で3時間施し、各供試片から本発明試験
片No.1〜4 および比較試験片No.5および6 を採取した。
そして、各試験片を平滑引張り試験および切欠き引張り
試験に供した。平滑引張り試験片は、図3に示す形状で
あり、切欠き引張り試験片は、図4に示す形状であっ
た。この結果を図5および表1に示す。
EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 Al: 4.5 wt.%, V: 3.0 wt.%, Mo: 2.0 wt.%, Fe: 2.0 w
t.%, 0: 0.10wt.%, C: 0.02wt.%, N: 0.01wt.%, H
: Α + β type titanium alloy containing 0.01wt.% And β transformation point of 900 ℃ is heated to α + β temperature range and rolled to obtain the sheet thickness.
A 15 mm test plate was prepared. Then, 70 mm from this test plate
Cut out a 70 × 70 mm test piece and
The specimen was solution-heated by heating at a temperature of ℃ (β transformation point -100 ℃) for 1 hour. Then, the test piece thus solution-treated was cooled according to various cooling methods shown in Table 1. The cooling rate was measured by inserting a thermocouple in the center of the plate thickness of the test piece. In the controlled cooling, the test piece is cooled by controlling the atmospheric temperature in the furnace at a predetermined cooling rate while the test piece is kept in the heating furnace. The forced gas cooling is a test piece placed in a vacuum chamber and blown with Ar gas to cool it. The stirring water cooling is a method in which a heated test piece is put in water which is maintained at room temperature and cooled. Then, each test piece was subjected to an aging treatment at a temperature of 510 ° C. for 3 hours, and test pieces Nos. 1 to 4 of the present invention and comparative test pieces Nos. 5 and 6 were sampled from each test piece.
Then, each test piece was subjected to a smooth tensile test and a notch tensile test. The smooth tensile test piece had the shape shown in FIG. 3, and the notch tensile test piece had the shape shown in FIG. The results are shown in FIG. 5 and Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】図5および表1から明らかなように、溶体
化後の冷却速度が速いほど高い強度(0.2%PSおよびTS)
を有することがわかるが、撹拌水冷した比較試験片No.6
は、高い強度を有しているが切欠き強度(NST) が低く、
しかも、切欠き降伏比(NST/0.2%PS)が1.0 未満であり
靱性に劣っていた。比較試験片No.5は、冷却速度が小さ
すぎるために強度が低い。比較試験片No.5および6 は、
AMS 規格4965E 、板厚15mmの下限値(0.2%PS:105.6kgf
/mm2、TS:112.8kgf/mm2、El:10% )を満足していな
い。これに対して、本発明試験片No.1から4 は、何れ
も、高い強度を有し、しかも、切欠き降伏比が1以上の
優れた靱性を有し、AMS 規格を満足していた。
As is clear from FIG. 5 and Table 1, the higher the cooling rate after solution heat treatment, the higher the strength (0.2% PS and TS).
It can be seen that the test piece No. 6 has water
Has high strength but low notch strength (NST),
Moreover, the notch yield ratio (NST / 0.2% PS) was less than 1.0, indicating poor toughness. Comparative test piece No. 5 has low strength because the cooling rate is too low. Comparative test pieces No. 5 and 6
AMS standard 4965E, plate thickness 15mm lower limit (0.2% PS: 105.6kgf
/ mm 2 , TS: 112.8kgf / mm 2 , El: 10%) are not satisfied. On the other hand, all of the test pieces Nos. 1 to 4 of the present invention had high strength and excellent toughness with a notch yield ratio of 1 or more, and satisfied the AMS standard.

【0032】実施例2 表2に示す成分組成を有するα+β型チタン合金を、そ
れぞれα+β温度域に加熱し、圧延し、板厚15mmの供試
板を調製した。これらの合金のβ変態点は、850 から93
0 ℃の範囲内であった。次いで、各供試板から70mm×70
mmの大きさの供試片を切り出し、供試片を(β変態点−
50℃)の温度に1時間加熱して、供試片に溶体化を施
し、次いで、空冷した。なお、後述する比較試験片No.2
用の供試片は、水冷した。次いで、各供試片に時効処理
を510 ℃の温度で1時間施し、各供試片から本発明試験
片No.3〜16および比較試験片No.1、2 および17〜18を採
取した。そして、各試験片を平滑引張り試験および切欠
き引張り試験に供した。平滑引張り試験片および切欠き
引張り試験片の形状は、上述した実施例1におけると同
様であった。なお、比較試験片No.19 は、表2に示す成
分組成を有するβ型チタン合金をβ温度域に加熱し、圧
延して調製した、板厚15mmの供試板から、上述したもの
と同様な寸法の供試片を切り出し、この供試片に、β型
チタン合金の通常の溶体化時効処理(815 ℃の温度に1
時間加熱し、次いで、空冷して溶体化処理を施し、次い
で、510 ℃の温度に14時間加熱して時効処理を施す)を
施したものであった。この試験結果を図6および表3に
示す。
Example 2 α + β type titanium alloys having the composition shown in Table 2 were respectively heated in the α + β temperature range and rolled to prepare test plates with a plate thickness of 15 mm. The β transformation points of these alloys range from 850 to 93.
It was within the range of 0 ° C. Next, 70 mm x 70 from each test plate
A test piece with a size of mm is cut out, and the test piece is
The test piece was subjected to solution treatment by heating to a temperature of 50 ° C. for 1 hour, and then air-cooled. The comparative test piece No. 2 described later
The test piece for use was cooled with water. Then, each test piece was subjected to an aging treatment at a temperature of 510 ° C. for 1 hour, and the test pieces of the present invention Nos. 3 to 16 and the comparative test pieces Nos. 1, 2 and 17 to 18 were sampled from the respective test pieces. Then, each test piece was subjected to a smooth tensile test and a notch tensile test. The shapes of the smooth tensile test piece and the notched tensile test piece were the same as those in Example 1 described above. The comparative test piece No. 19 was prepared by heating a β-type titanium alloy having the composition shown in Table 2 in the β-temperature range and rolling it. A specimen with various dimensions was cut out, and this specimen was subjected to normal solution aging treatment of β-type titanium alloy (1 at a temperature of 815 ° C).
It was heated for an hour, then air-cooled for solution treatment, and then heated at a temperature of 510 ° C. for 14 hours for aging treatment). The test results are shown in FIG. 6 and Table 3.

【0033】[0033]

【表2】 [Table 2]

【0034】図6および表2から明らかなように、比較
試験片No.1および2 は、一般的なTi-6Al-4V 合金であ
る。比較試験片No.1および2 のように、溶体化後の冷却
速度を速くすれば、AMS規格を満足するが、切欠き降伏
比が1以下であり、熱歪が生じた。比較試験片No.1のよ
うに、溶体化後、空冷すると十分な強度が得られず、AM
S 規格を満足しない。この原因は、主にX値が本発明範
囲の下限値を外れて小さいことにある。比較試験片No.1
7 は、X値が0.97で本発明範囲内であり、β安定度は良
好であるが、Al含有量が8.0wt.% と本発明範囲を超えて
大きい。従って、強度は高いが、延性(El 、RA) に劣り
且つ切欠き降伏比が極めて小さい。逆に、Al含有量が本
発明範囲を外れて小さい比較試験片No.18 は、延性(El
、RA) に優れ且つ切欠き降伏比が大きいが、強度が低
い。比較試験片No.19 は、強度は高いが、切欠き強度お
よび切欠き降伏比が小さく靱性に劣っていた。これに対
して、本発明試験片No.3から16は、溶体化後の冷却が空
冷であっても、AMS 規格を満足する強度、靱性、切欠き
強度および切欠き降伏比を有していることがわかった。
As is clear from FIG. 6 and Table 2, the comparative test pieces Nos. 1 and 2 are general Ti-6Al-4V alloys. When the cooling rate after solutionizing was increased as in Comparative Test Nos. 1 and 2, the AMS standard was satisfied, but the notch yield ratio was 1 or less, and thermal strain occurred. Like Comparative Test Specimen No. 1, sufficient strength could not be obtained by air cooling after solution heat treatment.
Does not meet S standard. This is mainly because the X value is small outside the lower limit of the range of the present invention. Comparative test piece No.1
No. 7 had an X value of 0.97, which was within the range of the present invention, and had good β stability, but had a large Al content of 8.0 wt.%, Which is large beyond the range of the present invention. Therefore, although the strength is high, the ductility (El, RA) is poor and the notch yield ratio is extremely small. On the contrary, the comparative test piece No. 18 in which the Al content is out of the range of the present invention has a low ductility (El
, RA) and a high notch yield ratio, but low strength. Comparative test piece No. 19 had a high strength, but had a small notch strength and a notch yield ratio, and was inferior in toughness. On the other hand, the test pieces No. 3 to 16 of the present invention have strength, toughness, notch strength and notch yield ratio satisfying the AMS standard even if the cooling after solution heat treatment is air cooling. I understood it.

【0035】実施例3 実施例1におけると同様な成分組成を有するα+β型チ
タン合金の供試片に、表3に示す種々の溶体化時効処理
を施して、種々の試験片を調製した。溶体化の冷却は空
冷であった。次いで、各試験片から本発明試験片No.2〜
5 、9 〜12および比較試験片No.1、6 〜8 および13を採
取した。そして、各試験片を平滑引張り試験および切欠
き引張り試験に供した。試験片は、実施例1におけると
同様な形状であった。この結果を表3に示す。
Example 3 Various specimens were prepared by subjecting α + β type titanium alloy specimens having the same composition as in Example 1 to various solution aging treatments shown in Table 3. Solution cooling was air cooling. Then, the present invention test piece No. 2 ~ from each test piece
5, 9 to 12 and comparative test pieces No. 1, 6 to 8 and 13 were sampled. Then, each test piece was subjected to a smooth tensile test and a notch tensile test. The test piece had the same shape as in Example 1. The results are shown in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】表3から明らかなように、比較試験片No.1
のように、溶体化温度が低い場合には、強度が低い。溶
体化温度がβ変態点以上である比較試験片No.6および7
は、延性(El 、RA) が著しく劣化していた。比較試験片
No.8のように、時効温度が低過ぎると十分な強度が得ら
れず、一方、比較試験片No.13 のように、時効温度が高
過ぎても十分な強度が得られない。これに対して、本発
明試験片No.2〜5 および9 〜12は、何れも、強度、延性
および靱性共に優れていた。
As is clear from Table 3, the comparative test piece No. 1
When the solution temperature is low, the strength is low. Comparative test pieces No. 6 and 7 whose solution temperature is β transformation point or higher
Had markedly deteriorated ductility (El, RA). Comparative test piece
As in No. 8, if the aging temperature is too low, sufficient strength cannot be obtained, while as in the comparative test piece No. 13, sufficient strength cannot be obtained even if the aging temperature is too high. On the other hand, the test pieces Nos. 2 to 5 and 9 to 12 of the present invention were all excellent in strength, ductility and toughness.

【0038】[0038]

【発明の効果】以上説明したように、この発明によれ
ば、熱歪の発生を抑制するような遅い溶体化後の冷却で
あっても、β安定化元素の含有量を最適化し且つ溶体化
時効処理条件を最適化することによって、時効後の強
度、延性および靱性に優れたα+β型チタン合金を製造
することができるといった有用な効果がもたらされる。
As described above, according to the present invention, the content of the β-stabilizing element is optimized and the solution treatment is performed even if the cooling is performed after the slow solution treatment that suppresses the occurrence of thermal strain. By optimizing the aging treatment conditions, a useful effect such that an α + β type titanium alloy having excellent strength, ductility and toughness after aging can be produced is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】水冷および空冷の場合の被冷却材の寸法と冷却
速度との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a dimension of a material to be cooled and a cooling rate in the case of water cooling and air cooling.

【図2】時効温度とNTS/O.2%PSおよびTSとの関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between aging temperature and NTS / O.2% PS and TS.

【図3】平滑引張り試験片の形状を示す正面図である。FIG. 3 is a front view showing the shape of a smooth tensile test piece.

【図4】切欠き引張り試験片の形状を示す正面図であ
る。
FIG. 4 is a front view showing the shape of a notched tensile test piece.

【図5】溶体化後の冷却速度とNTS/O.2%PSおよびTSとの
関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the cooling rate after solution heat treatment and NTS / O.2% PS and TS.

【図6】X値とNTS/O.2%PSおよびTSとの関係を示すグラ
フである。
FIG. 6 is a graph showing the relationship between the X value and NTS / O.2% PS and TS.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月11日[Submission date] September 11, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】 第2発明は、上記成分組成を、Al:3〜
7wt.%、V :2.1 〜5.0wt.% 、Mo:0.85〜3.15wt.%、F
e:0.85〜3.15wt.%、O :0.06〜0.20wt.%、を含有し、
且つ、0.4wt.% ≦V/15+Mo/10 +Fe/3.5≦1.2wt.%の条
件式を満足し、残部:Tiおよび不可避不純物からなるも
のにすることに特徴を有するものである。第3発明は、
上記成分組成を、Al:3〜7wt.%、V :2.1 〜5.0wt.%
、Mo:0.85〜3.15wt.%、Fe:0.85〜3.15wt.%、O :0.0
6〜0.20wt.%、を含有し、さらに、Cr、CoおよびNiのう
ちの少なくとも一種を含有し、且つ、0.4wt.% ≦V/15+
Mo/10 +Fe/3.5+Cr/6.3+Co/7+Ni/9≦1.2wt.% の条件
式を満足し、残部:Tiおよび不可避不純物からなるもの
にすることに特徴を有するものである。
A second aspect of the invention is the composition of the above components, Al: 3 to
7 wt.%, V: 2.1 to 5.0 wt.%, Mo: 0.85 to 3.15 wt.%, F
e: 0.85 to 3.15 wt.%, O: 0.06 to 0.20 wt.%,
Further, it is characterized in that the conditional expression of 0.4 wt.% ≤ V / 15 + Mo / 10 + Fe / 3.5 ≤ 1.2 wt.% Is satisfied, and the balance: Ti and unavoidable impurities. The third invention is
The above component composition is Al: 3 to 7 wt.%, V: 2.1 to 5.0 wt.%
, Mo: 0.85 to 3.15 wt.%, Fe: 0.85 to 3.15 wt.%, O: 0.0
6 to 0.20 wt.%, And further contains at least one of Cr, Co and Ni, and 0.4 wt.% ≤V / 15 +
It is characterized by satisfying the conditional expression of Mo / 10 + Fe / 3.5 + Cr / 6.3 + Co / 7 + Ni / 9 ≦ 1.2 wt.% And making the balance: Ti and inevitable impurities.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】O(酸素):Oは、通常のα+β型チタン合
金と同量が望ましいが、O 含有量が0.06wt.%未満では、
十分な強度が得られず、一方、O 含有量が0.20wt.%を超
えると、靱性が急激に低下する。従って、O 含有量は、
0.06〜0.20% の範囲内に限定すべきである。
O (oxygen): O is desirable to be the same as that of a normal α + β type titanium alloy, but if the O content is less than 0.06 wt.%,
Sufficient strength cannot be obtained. On the other hand, if the O 2 content exceeds 0.20 wt.%, The toughness drops sharply. Therefore, the O content is
It should be limited to the range of 0.06 to 0.20%.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】[0030]

【表1】 [Table 1]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Name of item to be corrected] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】[0033]

【表2】 [Table 2]

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0036】[0036]

【表3】 [Table 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Al:3〜7wt.%、 O :0.06〜0.20wt.%、 を含有し、さらに、V およびMoのうちの少なくとも一
種、および、Fe、Cr、CoおよびNiのうちの少なくとも一
種を含有し、且つ、下記条件式(1) 、 0.4wt.% ≦V/15+Mo/10 +Fe/3.5+Cr/6.3+Co/7+Ni/9≦1.2wt.% ---(1) を満足し、 残部:Tiおよび不可避不純物、 からなる成分組成を有するα+β型チタン合金用素材
を、(β変態点−150℃)〜β変態点未満の範囲内の温
度に加熱し、次いで、0.5 ℃/sec〜10℃/secの範囲内の
冷却速度で冷却して、前記素材に溶体化処理を施し、そ
して、このようにして溶体化処理を施した前記素材に、
400 〜600 ℃の範囲内の温度で時効処理を施すことを特
徴とする、高強度高靱性α+β型チタン合金の製造方
法。
1. Al: 3 to 7 wt.%, O: 0.06 to 0.20 wt.%, And at least one of V and Mo and at least one of Fe, Cr, Co and Ni. It contains one type and satisfies the following conditional expression (1), 0.4wt.% ≤ V / 15 + Mo / 10 + Fe / 3.5 + Cr / 6.3 + Co / 7 + Ni / 9≤1.2wt.% --- (1), The balance: Ti and unavoidable impurities, the material for α + β type titanium alloy having a compositional composition is heated to a temperature within the range of (β transformation point −150 ° C.) to less than β transformation point, and then 0.5 ° C./sec. The material is subjected to solution treatment by cooling at a cooling rate within the range of 10 ° C./sec, and the material thus solution-treated,
A method for producing a high strength and high toughness α + β type titanium alloy, characterized by performing an aging treatment at a temperature in the range of 400 to 600 ° C.
【請求項2】 Al:3〜7wt.%、 V :2.1 〜5.0wt.% 、 Mo:0.85〜3.15wt.%、 Fe:0.85〜3.15wt.%、 O :0.06〜0.20wt.%、 を含有し、さらに、Cr、CoおよびNiのうちの少なくとも
一種を含有し、且つ、下記条件式(1) 、 0.4wt.% ≦V/15+Mo/10 +Fe/3.5+Cr/6.3+Co/7+Ni/9≦1.2wt.% ---(1) を満足し、 残部:Tiおよび不可避不純物、 からなる成分組成を有するα+β型チタン合金用素材
を、(β変態点−150℃)〜β変態点未満の範囲内の温
度に加熱し、次いで、0.5 ℃/sec〜10℃/secの範囲内の
冷却速度で冷却して、前記素材に溶体化処理を施し、そ
して、このようにして溶体化処理を施した前記素材に、
400 〜600 ℃の範囲内の温度で時効処理を施すことを特
徴とする、高強度高靱性α+β型チタン合金の製造方
法。
2. Al: 3 to 7 wt.%, V: 2.1 to 5.0 wt.%, Mo: 0.85 to 3.15 wt.%, Fe: 0.85 to 3.15 wt.%, O: 0.06 to 0.20 wt.%, In addition, containing at least one of Cr, Co and Ni, and the following conditional expression (1), 0.4wt.% ≦ V / 15 + Mo / 10 + Fe / 3.5 + Cr / 6.3 + Co / 7 + Ni / 9 ≦ 1.2wt.% --- (1), the balance: Ti and unavoidable impurities, the material composition for α + β type titanium alloys with the composition of () is in the range of (β transformation point -150 ° C) to less than β transformation point. The material was subjected to solution treatment, and then subjected to the solution treatment in this manner by cooling to a temperature within the range and then cooling at a cooling rate within the range of 0.5 ° C / sec to 10 ° C / sec. In the material,
A method for producing a high strength and high toughness α + β type titanium alloy, characterized by performing an aging treatment at a temperature in the range of 400 to 600 ° C.
JP3248292A 1991-09-02 1991-09-02 Method for producing high strength and high toughness α + β type titanium alloy Expired - Fee Related JP2606023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3248292A JP2606023B2 (en) 1991-09-02 1991-09-02 Method for producing high strength and high toughness α + β type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3248292A JP2606023B2 (en) 1991-09-02 1991-09-02 Method for producing high strength and high toughness α + β type titanium alloy

Publications (2)

Publication Number Publication Date
JPH0559510A true JPH0559510A (en) 1993-03-09
JP2606023B2 JP2606023B2 (en) 1997-04-30

Family

ID=17175923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3248292A Expired - Fee Related JP2606023B2 (en) 1991-09-02 1991-09-02 Method for producing high strength and high toughness α + β type titanium alloy

Country Status (1)

Country Link
JP (1) JP2606023B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150274A (en) * 1993-12-01 1995-06-13 Orient Watch Co Ltd Titanium alloy and its production
EP0683242A1 (en) * 1994-03-23 1995-11-22 Nkk Corporation Method for making titanium alloy products
US5759484A (en) * 1994-11-29 1998-06-02 Director General Of The Technical Research And Developent Institute, Japan Defense Agency High strength and high ductility titanium alloy
EP1302554A1 (en) * 2000-07-19 2003-04-16 Otkrytoe Aktsionernoe Obschestvo Verkhnesaldinskoe Metallurgicheskoe Proizvodstvennoe Obiedinenie (Oao Vsmpo) Titanium alloy and method for heat treatment of large-sized semifinished materials of said alloy
JP2006111935A (en) * 2004-10-15 2006-04-27 Sumitomo Metal Ind Ltd NEAR beta-TYPE TITANIUM ALLOY
JP2006213973A (en) * 2005-02-04 2006-08-17 Nippon Steel Corp TITANIUM ALLOY WIRE ROD MADE OF Ti-3Al-2.5V HAVING EXCELLENT COLD WORKABILITY AND HAVING TENSILE STRENGTH OF >620 TO <700 MPa
JP2010229458A (en) * 2009-03-26 2010-10-14 Nippon Steel Corp HIGH-STRENGTH alpha+beta TYPE TITANIUM ALLOY SUPERIOR IN TOUGHNESS, AND METHOD FOR MANUFACTURING THE SAME
JP2013001946A (en) * 2011-06-15 2013-01-07 Nippon Steel & Sumitomo Metal Corp Titanium alloy member having bidirectional shape-memory characteristic, and manufacturing method therefor
JP2013533386A (en) * 2010-07-19 2013-08-22 エイティーアイ・プロパティーズ・インコーポレーテッド Alpha / beta titanium alloy processing
JP2013541635A (en) * 2010-08-05 2013-11-14 テイタニウム メタルス コーポレイシヨン Low cost α-β titanium alloy with good ballistic and mechanical properties
JP2015148016A (en) * 2015-03-11 2015-08-20 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation LOW COST α-β TITANIUM ALLOY HAVING GOOD PROJECTILE PATH AND MECHANICAL PROPERTIES
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN115449665A (en) * 2022-07-08 2022-12-09 重庆大学 Titanium alloy and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264411B2 (en) 2004-04-09 2009-05-20 新日本製鐵株式会社 High strength α + β type titanium alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134124A (en) * 1989-10-19 1991-06-07 Agency Of Ind Science & Technol Titanium alloy excellent in erosion resistance and production thereof
JPH03294442A (en) * 1990-04-13 1991-12-25 Sumitomo Metal Ind Ltd High toughness titanium alloy and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134124A (en) * 1989-10-19 1991-06-07 Agency Of Ind Science & Technol Titanium alloy excellent in erosion resistance and production thereof
JPH03294442A (en) * 1990-04-13 1991-12-25 Sumitomo Metal Ind Ltd High toughness titanium alloy and its manufacture

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150274A (en) * 1993-12-01 1995-06-13 Orient Watch Co Ltd Titanium alloy and its production
EP0663453A1 (en) * 1993-12-01 1995-07-19 Orient Watch Co., Ltd. Titanium alloy and method for production thereof
US5509979A (en) * 1993-12-01 1996-04-23 Orient Watch Co., Ltd. Titanium alloy and method for production thereof
US5658403A (en) * 1993-12-01 1997-08-19 Orient Watch Co., Ltd. Titanium alloy and method for production thereof
EP0683242A1 (en) * 1994-03-23 1995-11-22 Nkk Corporation Method for making titanium alloy products
US5516375A (en) * 1994-03-23 1996-05-14 Nkk Corporation Method for making titanium alloy products
US5759484A (en) * 1994-11-29 1998-06-02 Director General Of The Technical Research And Developent Institute, Japan Defense Agency High strength and high ductility titanium alloy
EP1302554A1 (en) * 2000-07-19 2003-04-16 Otkrytoe Aktsionernoe Obschestvo Verkhnesaldinskoe Metallurgicheskoe Proizvodstvennoe Obiedinenie (Oao Vsmpo) Titanium alloy and method for heat treatment of large-sized semifinished materials of said alloy
EP1302554A4 (en) * 2000-07-19 2004-12-08 Otkrytoe Aktsionernoe Obschest Titanium alloy and method for heat treatment of large-sized semifinished materials of said alloy
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US7910052B2 (en) 2004-10-15 2011-03-22 Sumitomo Metal Industries, Ltd. Near β-type titanium alloy
JP2006111935A (en) * 2004-10-15 2006-04-27 Sumitomo Metal Ind Ltd NEAR beta-TYPE TITANIUM ALLOY
JP2006213973A (en) * 2005-02-04 2006-08-17 Nippon Steel Corp TITANIUM ALLOY WIRE ROD MADE OF Ti-3Al-2.5V HAVING EXCELLENT COLD WORKABILITY AND HAVING TENSILE STRENGTH OF >620 TO <700 MPa
JP2010229458A (en) * 2009-03-26 2010-10-14 Nippon Steel Corp HIGH-STRENGTH alpha+beta TYPE TITANIUM ALLOY SUPERIOR IN TOUGHNESS, AND METHOD FOR MANUFACTURING THE SAME
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
JP2017128807A (en) * 2010-07-19 2017-07-27 エイティーアイ・プロパティーズ・エルエルシー Treatment of alpha/beta titanium alloy
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
JP2013533386A (en) * 2010-07-19 2013-08-22 エイティーアイ・プロパティーズ・インコーポレーテッド Alpha / beta titanium alloy processing
JP2013541635A (en) * 2010-08-05 2013-11-14 テイタニウム メタルス コーポレイシヨン Low cost α-β titanium alloy with good ballistic and mechanical properties
US9631261B2 (en) 2010-08-05 2017-04-25 Titanium Metals Corporation Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
JP2013001946A (en) * 2011-06-15 2013-01-07 Nippon Steel & Sumitomo Metal Corp Titanium alloy member having bidirectional shape-memory characteristic, and manufacturing method therefor
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
JP2015148016A (en) * 2015-03-11 2015-08-20 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation LOW COST α-β TITANIUM ALLOY HAVING GOOD PROJECTILE PATH AND MECHANICAL PROPERTIES
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN115449665A (en) * 2022-07-08 2022-12-09 重庆大学 Titanium alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2606023B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JP2606023B2 (en) Method for producing high strength and high toughness α + β type titanium alloy
EP1340825B1 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
EP0683242B1 (en) Method for making titanium alloy products
JPH10195563A (en) Ti alloy excellent in heat resistance and treatment thereof
EP3775307B1 (en) High temperature titanium alloys
US11920231B2 (en) Creep resistant titanium alloys
WO2022123812A1 (en) Method for manufacturing austenitic stainless steel strip
JPH09165655A (en) Austenitic stainless steel for high temperature apparatus and is production
KR102332018B1 (en) High temperature titanium alloy and method for manufacturing the same
JP6065168B1 (en) Titanium sheet and manufacturing method thereof
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
CN114086086A (en) Nano-phase carbon-nitrogen composite particle enhanced invar alloy wire and preparation method thereof
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JP2001064754A (en) Tool steel with excellent weldability and machinability and suppressed secular change, and die using the same
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
KR102459460B1 (en) high-strength ferrite alloys and its manufacturing methods
RU2772153C1 (en) Creep-resistant titanium alloys
JPH05339688A (en) Production of molding material for casting metal
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JPS6365042A (en) Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture
JPH09263891A (en) Iron-nickel alloy material, having high strength and low thermal expansion and excellent in punchability, and its production
JPH02221356A (en) Production of aluminum alloy stock for heat radiation bar
JPH11264054A (en) Maraging steel free from cobalt and titanium
JPS62127442A (en) Titanium alloy and its production
CN117802335A (en) Technological method for reducing yield ratio of Al-Mg-Si-Cu-Mn aluminum alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080213

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110213

LAPS Cancellation because of no payment of annual fees