JPH0559455A - Method for controlling strip temperature in induction heating of strip - Google Patents

Method for controlling strip temperature in induction heating of strip

Info

Publication number
JPH0559455A
JPH0559455A JP3217424A JP21742491A JPH0559455A JP H0559455 A JPH0559455 A JP H0559455A JP 3217424 A JP3217424 A JP 3217424A JP 21742491 A JP21742491 A JP 21742491A JP H0559455 A JPH0559455 A JP H0559455A
Authority
JP
Japan
Prior art keywords
strip
temperature
induction
heat
plate temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3217424A
Other languages
Japanese (ja)
Other versions
JP2503332B2 (en
Inventor
Tatsuo Sakano
野 辰 夫 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3217424A priority Critical patent/JP2503332B2/en
Publication of JPH0559455A publication Critical patent/JPH0559455A/en
Application granted granted Critical
Publication of JP2503332B2 publication Critical patent/JP2503332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To achieve the high control accuracy with less labor by calculating the applied power with specific equations under consideration of radiation heat spontaneous heat from the strip at the time of controlling the strip temp. with multi-step induction heating in a continuous annealing line. CONSTITUTION:At the time of controlling the strip temp. with the multi-step induction heating in the high speed continuous annealing line, the applied power Pi is calculated with equations I-III and the strip temp. at the outlet side of the heater is controlled to the aimed value. In equations, rj, etaj: applied power distribution ratio (constant) in each heater and synthetic efficiency, rho, t, w, v: density, thickness, width and passing speed of the strip, alpha, beta: overall coefficient of heat transfer of the strip, L1, L3: lengths of the non-heating parts at the front face and the rear face of the induction coil part (free running parts at inlet and outlet sides), L2: length of the coil part, Tg: atmospheric temp., TE: indicated value in a strip thermometer at the outlet side, TD: the aimed strip temp. at the outlet side, TL, TH: the predicted strip temp. at the inlet and the outlet of the coil, F(T), CP(T): strip temp. polynominals for heat content and sp. heat of the strip, N: number of the steps of the heaters.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば鋼帯の連続焼
鈍ライン(C,A,P,L)やブリキライン等におい
て、誘導加熱(インダクションヒ−ティング)によりス
トリップを昇温する際の板温制御方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate for heating a strip by induction heating (induction heating) in a continuous annealing line (C, A, P, L) or a tin plate line of a steel strip. The present invention relates to a temperature control method.

【0002】[0002]

【従来技術】特開昭61−249621号公報に開示の
如く、ストリップの目標昇温量を得るための投入電力の
算出方法は、ある基準通板速度における必要投入電力を
昇温量,板厚,板幅の関数として与えておき、これによ
り、実通板サイズ,目標昇温量に対応する基準投入電力
を求め、これに実通板速度と基準通板速度の比を乗じ
て、目標投入電力を得ていた。
2. Description of the Related Art As disclosed in Japanese Patent Application Laid-Open No. 61-249621, a method of calculating electric power to obtain a target amount of temperature rise of a strip is as follows. , Which is given as a function of the strip width, by which the reference input power corresponding to the actual strip size and the target temperature rise is calculated, and the target input power is multiplied by the ratio of the actual strip speed and the reference strip speed. I was getting power.

【0003】[0003]

【発明が解決しようとする課題】所定の昇温量を得るた
めの投入電力と通板速度との関係は、比例要素(通板速
度の増減に対し、ストリップの単位体積当りの投入エネ
ルギを一定に保つためには、通板速度に比例した投入電
力が必要)の値が大きいとはいえ、反比例要素(ストリ
ップがインダクションヒ−ティングゾ−ンを通過する際
は、うず電流による発熱と同時に、周囲への放熱が起き
ており、放熱は該ゾ−ン通過時間が短いほど小さい。即
ち、通板速度が大きいほど放熱補償分の電力は小さくて
よい)も存在する。
The relationship between the input electric power and the strip passing speed for obtaining a predetermined amount of temperature rise is proportional to the proportional energy (the input energy per unit volume of the strip is constant as the strip passing speed increases and decreases. Although the value of the input power that is proportional to the strip running speed is large in order to maintain the value, the inverse proportional element (when the strip passes through the induction heating zone, heat generated by the eddy current and There is also a heat dissipation to the heat sink, and the heat dissipation is smaller as the zone passing time is shorter (that is, the power for heat dissipation compensation may be smaller as the plate passing speed is higher).

【0004】冷薄用連続焼鈍ラインやブリキラインのよ
うに、通板速度レンジが比較的狭いラインでは、反比例
要素を無視しても実用上さしつかえなかったが、ブリキ
用連続焼鈍ラインのように通板速度レンジが広いライン
では、反比例要素を考慮しないと、制御精度が得られな
い。
In a line having a relatively narrow strip speed range, such as a continuous annealing line for cooling and thinning, and a tin line, it could be practically used even if the inverse proportional factor was ignored. On a line with a wide strip speed range, control accuracy cannot be obtained without considering the inverse proportional element.

【0005】また、加熱装置の回路定数の経時変化によ
り、加熱効率が変化するので、制御精度を維持するため
には、基準投入電力計算式に補正係数(効率係数)を導
入し、かつ制御精度を常に監視して、この補正係数を最
適値に保つ必要があり、多大な労力を必要とした。本発
明は高い制御精度を少い労力で達成しうる板温制御方法
を提供することを目的とする。
Further, since the heating efficiency changes due to the change of the circuit constant of the heating device with time, in order to maintain the control accuracy, a correction coefficient (efficiency coefficient) is introduced into the reference input power calculation formula, and the control accuracy is increased. It is necessary to constantly monitor and maintain this correction coefficient at an optimum value, which requires a great deal of labor. An object of the present invention is to provide a plate temperature control method capable of achieving high control accuracy with a small amount of labor.

【0006】[0006]

【課題を解決するための手段】(1) 本願発明では、
連続焼鈍ラインにおいて、多段インダクションヒ−タに
よる板温制御を実施するに当り、インダクションコイル
部の前面及び後面の非加熱部(空走部)におけるストリ
ップからの放熱と、インダクションコイル部でのストリ
ップ自発熱及び放熱を考慮したモデル式を用い、ストリ
ップの板厚,板幅,通板速度,入側板温又は、出側目標
板温が変化した際にインダクションヒ−タの投入電力が
該モデル式で求まる値になる様制御することにより、イ
ンダクションヒ−タ出側での板温を目標値に制御する。
(1) In the present invention,
In the continuous annealing line, when performing the plate temperature control by the multi-stage induction heater, heat radiation from the strip in the non-heated part (idling part) on the front and rear surfaces of the induction coil and the strip itself in the induction coil part Using a model formula that considers heat generation and heat dissipation, the input power of the induction heater is changed by the model formula when the strip thickness, strip width, strip speed, inlet side plate temperature, or outlet side target plate temperature changes. By controlling so as to obtain the value obtained, the plate temperature on the outlet side of the induction heater is controlled to the target value.

【0007】(2) 本願発明の一実施態様では、操業
上、ストリップの板厚,板幅,通板速度及び出側目標板
温の変化がない時は、モデル式の微分形を用い、一定周
期毎にインダクションヒ−タの投入電力を修正して、板
温を目標値に制御する。
(2) In one embodiment of the present invention, when there is no change in the strip thickness, strip width, strip running speed, and delivery side target strip temperature during operation, the differential form of the model formula is used to maintain a constant value. The input power of the induction heater is corrected every cycle to control the plate temperature to the target value.

【0008】(3) また本願発明の一実施態様では、
制御精度の維持・向上を図るため、制御中の実績デ−タ
(インダクションヒ−タ投入電力,入側板温,出側板
温,板厚,板幅,通板速度)より、逐次型最小二乗法を
用いて、モデル式の各パラメ−タ(各インダクションヒ
−タの総合効率及び加熱部におけるストリップの総括放
熱係数)のオンライン適応修正を行う。
(3) In one embodiment of the present invention,
In order to maintain and improve control accuracy, iterative least squares method is used based on actual data during control (induction heater input power, inlet side plate temperature, outlet side plate temperature, plate thickness, plate width, plate passing speed) Is used to perform online adaptive correction of each parameter of the model formula (total efficiency of each induction heater and overall heat dissipation coefficient of strip in heating section).

【0009】また操業上、インダクションヒ−タによる
ストリップの加熱を行わない時の実績デ−タ(入側板
温,出側板温,板厚,板幅,通板速度)より、モデル式
のパラメ−タ(空走部でのストリップ総括放熱係数)の
オンライン適応修正を行う。
In operation, the model-type parameters are determined from the actual data (inlet plate temperature, outlet plate temperature, plate thickness, plate width, plate passing speed) when the strip is not heated by the induction heater. Online correction of data (total strip heat dissipation coefficient in idle section) is performed.

【0010】即ち、本願発明は、インダクションヒ−テ
ィングゾ−ンにおけるストリップの放熱を考慮したモデ
ル式に基づき、板温フィ−ドフォワ−ド制御及び板温フ
ィ−ドバック制御を行うとともに、モデル式のパラメ−
タをオンラインで学習することにより通板速度レンジの
広いラインにおいても、メンテナンスフリ−な板温制御
を実現するものである。
That is, according to the present invention, the plate temperature feedforward control and the plate temperature feedback control are performed based on the model formula in consideration of the heat radiation of the strip in the induction heating zone, and the parameter of the model formula is used. −
By learning the parameters online, it is possible to realize maintenance-free plate temperature control even in a line with a wide plate passing speed range.

【0011】[0011]

【作用】 以下、一実施例に基づいて説明する。[Operation] Hereinafter, description will be given based on an embodiment.

【0012】図1は、本発明を一態様で実施する装置の
機能ブロックを示す。フィ−ドフォワ−ド投入電力計算
3は、異種コイル(ストリップ)の境界点がインダクシ
ョンヒ−ティングゾ−ンに到達した時及び通板速度変化
検出時に起動され、ストリップ情報2や出側目標板温1
より、投入電力目標値Pi を計算し、加熱装置6へ設定
する。
FIG. 1 shows functional blocks of an apparatus for implementing the invention in one aspect. The feed-forward input power calculation 3 is started when the boundary points of different types of coils (strips) reach the induction heating zone and when the passage speed change is detected, and the strip information 2 and the output side target plate temperature 1 are calculated.
Then, the input power target value P i is calculated and set in the heating device 6.

【0013】投入電力目標値Pi の計算においては、イ
ンダクションヒ−ティングにおける加熱・放熱プロセス
が図2の如きであり、図2の13が、インダクションヒ
−ティングによる発熱量であり、これにより投入電力目
標値が定まる。図2において、入側空走部および出側空
走部の放熱量11及び14は、伝熱理論より求められ、
入側空走部の放熱量11は、入側空走部の始点のストリ
ップ温度TL と終点の温度TH に対応して次のように求
まる。
In the calculation of the input power target value P i , the heating / heat radiating process in induction heating is as shown in FIG. 2, and 13 in FIG. 2 is the amount of heat generated by induction heating. The power target value is set. In FIG. 2, the heat radiation amounts 11 and 14 of the inlet side idle part and the outlet side idle part are obtained from the heat transfer theory,
The heat radiation amount 11 of the entrance side idle running portion is obtained as follows corresponding to the strip temperature T L at the start point and the end temperature T H of the entrance side idle running portion.

【0014】 QE −QL =2・α・(Tg −Ts )L1 /(ρ・t・v), Ts =Tg −(TL −TE )/Ln〔(Tg −TE )/(Tg −TL )〕 =(TE −TL )・CP(TE ) より、 TL =Tg +(TE −Tg )・exp〔−2・α・L1 /(ρ・t・v・CP (TE ))〕 ・・・(1) QH −QD =2・α・(Tg −Ts ′)L3 /(ρ・t・v), Ts ′=Tg −(TD −TE )/Ln 〔(Tg −TH )/(Tg −TD )〕 =(TH −TD )・CP (TD) より、 TH =Tg +(TD −Tg )・exp〔2・α・L3 /(ρ・t・v・CP (TD ))〕 ・・・(2) 但し、QE :インダクションヒ−ティングゾ−ン入口の
ストリップ含熱量, QL :インダクションコイル入口のストリップ含熱量, QH :インダクションコイル出口のストリップ含熱量, QD :インダクションヒ−ティングゾ−ン出口のストリ
ップ含熱量, TE :インダクションヒ−ティングゾ−ン入口板温, TL :インダクションコイル入口板温, TH :インダクションコイル出口板温, TD :インダクションヒ−ティングゾ−ン出口板温, Tg :雰囲気温度, α:ストリップの総括熱伝達係数, ρ:ストリップの密度, t:ストリップの板厚, v:ストリップの通板速度, L1 :入側空走部長さ, L3 :出側空走部長さ, CP (T):板温T時のストリップ比熱。
Q E −Q L = 2 · α · (T g −T s ) L 1 / (ρ · t · v), T s = T g − ( TL −T E ) / Ln [(T g −T E ) / (T g −T L )] = (T E −T L ) · C P (T E ), T L = T g + (T E −T g ) · exp [−2 · α・ L 1 / (ρ ・ t ・ v ・ C P (T E ))] ・ ・ ・ (1) Q H −Q D = 2 ・ α ・ (T g −T s ′) L 3 / (ρ ・ t · v), T s' = T g - (T D -T E) / L n [(T g -T H) / ( T g -T D) ] = (T H -T D) · C P ( From T D ), T H = T g + (T D −T g ) ・ exp [2 ・ α ・ L 3 / (ρ ・ t ・ v ・ C P (T D ))] (2) , Q E: induction heat - Tinguzo - down inlet strip含熱amount, Q L: strip含熱amount of inlet induction coil, Q H: strip含熱amount of induction coil outlet, Q D: induction heat - Tinguzo - the emission outlet strip含熱amount, T E: Induction heat - Tinguzo - down inlet plate temperature, T L: induction coil inlet plate temperature, T H: induction coil outlet plate temperature, T D: Induction heat - Tinguzo - emission outlet plate temperature, T g: Atmospheric temperature, α: Overall heat transfer coefficient of strip, ρ: Density of strip, t: Strip thickness, v: Strip passing speed, L 1 : Inlet idle running length, L 3 : Outgoing idle Length, C P (T): Specific heat of strip at plate temperature T.

【0015】また、図2に示す加熱部でのストリップ放
熱量12も同様にして求まる。 ΔQ=2・β・L2 (Tg −Ts ″)/(ρ・t・v), Ts ″=Tg −(TH −TL )/Ln〔(Tg −TL )/(Tg −TH )〕 =2・β・L2 (TH −TL )/{ρ・t・v・Ln〔(Tg −TL )/(Tg −TH )〕} ・・・(3) 但し、 β:ストリップ総括熱伝達係数, L2 :インダクションコイル部長さ。
Further, the strip heat radiation amount 12 in the heating portion shown in FIG. 2 can be similarly obtained. ΔQ = 2 · β · L 2 (T g -T s ") / (ρ · t · v), T s" = T g - (T H -T L) / Ln [(T g -T L) / (T g -T H)] = 2 · β · L 2 ( T H -T L) / {ρ · t · v · Ln [(T g -T L) / ( T g -T H) ]}・ (3) where β is the overall heat transfer coefficient of the strip, and L 2 is the length of the induction coil.

【0016】(1),(2),(3)式より投入電力目標値P
は、次式により求まる。
Input power target value P is obtained from the equations (1), (2) and (3).
Is calculated by the following equation.

【0017】[0017]

【数3】 [Equation 3]

【0018】但し、 ri :第i番目インダクションコイルへの投入電力配分
比率, ηi :第i番目インダクションコイルの総合効率, w:ストリップの板幅, F(T):板温T時のストリップ含熱量。
However, r i : ratio of input power to the i-th induction coil, η i : total efficiency of the i-th induction coil, w: strip width, F (T): strip at strip temperature T Heat content.

【0019】図1の、フィ−ドバック投入電力修正量計
算4は、通板速度変化も、異種コイルの境界の到来もな
い時に一定周期で起動され、出側板温偏差(実績板温−
目標板温)に基づいて投入電力修正量ΔPを計算し、投
入電力実績値に加算して投入電力目標値を得、加熱装置
6へ設定する。投入電力修正量ΔPの計算に当っては、
(4)式の微分形である次の(5)式を用いる。
The feedback input power correction amount calculation 4 of FIG. 1 is started at a constant cycle when there is no change in the strip running speed and the arrival of the boundary between different coils, and the output side plate temperature deviation (actual plate temperature-
The input power correction amount ΔP is calculated based on the target plate temperature) and added to the actual input power value to obtain the input power target value, which is set in the heating device 6. When calculating the input power correction amount ΔP,
The following equation (5), which is the differential form of equation (4), is used.

【0020】[0020]

【数4】 [Equation 4]

【0021】但し、 Gfb :フィ−ドバックゲイン, β:ストリップ総括熱伝達係数, ΔTD :板温偏差。However, G fb : Feedback gain, β: Overall heat transfer coefficient of strip, ΔT D : Plate temperature deviation.

【0022】(1)〜(5)式に表われるパラメ−タα,β,
ηi は経時変化し制御精度に影響を及ぼすため、図1
の、5において入側板温実績,出側板温実績,投入電力
実績,通板速度実績等に基づき、逐次型最小二乗法を用
いて、オンライン適応修正を行う。
The parameters α, β, expressed by the equations (1) to (5),
Since η i changes over time and affects control accuracy,
In No. 5, on-line adaptive correction is performed by using the recursive least squares method based on the input side plate temperature actual result, the output side plate temperature actual result, the input power actual result, the plate passing speed actual result, and the like.

【0023】[0023]

【発明の効果】以上の如く、本発明によるストリップの
インダクションヒ−ティングにおける板温制御方法を用
いれば、通板速度レンジの広い連続焼鈍ラインにおいて
も、制御精度を悪化させることなくしかも、メンテナン
スフリ−を実現することができる。
As described above, when the strip temperature control method for strip induction heating according to the present invention is used, even in a continuous annealing line having a wide strip speed range, control accuracy is not deteriorated, and maintenance-free is achieved. -Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】ストリップのインダクションヒ−ティングにお
ける板温制御の全体機能を示すブロック図である。
FIG. 1 is a block diagram showing the overall function of plate temperature control in strip induction heating.

【図2】インダクションヒ−ティングゾ−ンにおけるス
トリップの単位体積当りの含熱量の変化を表わすグラフ
であり、横軸はストリップの位置、縦軸はストリップの
含熱量を示す。
FIG. 2 is a graph showing a change in heat content per unit volume of a strip in an induction heating zone, where the horizontal axis represents the position of the strip and the vertical axis represents the heat content of the strip.

【符号の説明】[Explanation of symbols]

1:出側目標板温 2:ストリップ情報(板厚,板幅・・・) 3:フィ−ドフォ−ド投入電力計算 4:フィ−ドバック投入電力修正量計算 5:モデル式パラメ−タ学習 6:加熱装置 7:入側板温計 8:出側板温計 9:加熱コイル 11:入側空走部ストリップ放熱量 12:加熱部ストリップ放熱量 13:インダクションヒ−ティングによる発熱量 14:出側空走部ストリップ放熱量 1: Output side target plate temperature 2: Strip information (plate thickness, plate width, etc.) 3: Feed-forward input power calculation 4: Feed-back input power correction amount calculation 5: Model formula parameter learning 6 : Heating device 7: Inlet plate thermometer 8: Outlet plate thermometer 9: Heating coil 11: Inlet side strip heat dissipation amount 12: Heating part strip heat dissipation amount 13: Induction heating heat generation amount 14: Outlet air temperature Running strip heat dissipation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】連続焼鈍ラインにおいて、多段インダクシ
ョンヒ−タによる板温制御を実施するに当り、インダク
ションコイル部の前面及び後面の非加熱部におけるスト
リップからの放熱と、インダクションコイル部でのスト
リップ自発熱及び放熱を考慮した下式を用いてインダク
ションヒ−タの投入電力Pi を算出し、 【数1】 但し、 TL =Tg +(TE −Tg )・exp〔−2・α・L1 /(ρ・t・v・CP (TE ))〕, TH =Tg +(TD −Tg )・exp〔2・α・L3 /(ρ・t・v・CP (TD ))〕, Pi :各インダクションヒ−タの投入電力, ri :各インダクションヒ−タの投入電力配分比率(定
数), ηi :各インダクションヒ−タの総合効率, ρ:ストリップ密度, t:ストリップ板厚, w:ストリップ板幅, v:ストリップ通板速度, α,β:ストリップ総括熱伝達係数, L1 :前面の非加熱部(入側空走部)の長さ, L2 :インダクションコイル部長さ, L3 :後面の非加熱部(出側空走部)の長さ, Tg :雰囲気温度, TE :入側板温計指示値, TD :出側目標板温, TL :インダクションコイル入口板温予測値, TH :インダクションコイル出口板温予測値, F(T):ストリップ含熱量の板温多項式, CP (T):ストリップ比熱の板温多項式, N:インダクションヒ−タ−段数、 インダクションヒ−タの投入電力を該Pi としてインダ
クションヒ−タ出側での板温を目標値に制御することを
特徴とする、ストリップの誘導加熱における板温制御方
法。
1. When performing plate temperature control by a multi-stage induction heater in a continuous annealing line, heat is radiated from the strip in the non-heated portion of the front and rear surfaces of the induction coil section and the strip itself is cut in the induction coil section. The input power P i of the induction heater is calculated by using the following equation in consideration of heat generation and heat radiation, and However, T L = T g + (T E −T g ) · exp [−2 · α · L 1 / (ρ · t · v · C P (T E ))], T H = T g + (T D −T g ) · exp [2 · α · L 3 / (ρ · t · v · C P (T D ))], P i : input power of each induction heater, r i : each induction heater Input power distribution ratio (constant), η i : Total efficiency of each induction heater, ρ: Strip density, t: Strip plate thickness, w: Strip plate width, v: Strip passing speed, α, β: Overall heat transfer coefficient of strip, L 1 : Length of non-heated part (inlet side idle part) on the front face, L 2 : Induction coil part length, L 3 : Length of non-heated part (outlet side idle part) on the rear surface is, T g: ambient temperature, T E: entrance side temperature gauge readings, T D: exit-side target plate temperature, T L: induction coil inlet plate temperature prediction value, T H: induction coil outlet plate temperature prediction , F (T): Strip含熱amount of sheet temperature polynomial, C P (T): sheet temperature polynomial strip specific heat, N: Induction heat - data - number, induction heat - induction heat input power of the motor as the P i A plate temperature control method in induction heating of a strip, characterized in that the plate temperature on the output side of the tape is controlled to a target value.
【請求項2】操業上、ストリップの板厚t,板幅w,通
板速度v及び出側目標板温TD の変化がない時は、下式
により一定周期毎にインダクションヒ−タの投入電力P
i を修正して、 【数2】 但し ΔPi :各インダクションヒ−タ投入電力修正
量, Gfb :フィ−ドバックゲイン(定数), ΔFD :インダクションヒ−タ出側板温偏差(目標板温
一実績板温)、 板温を目標値に制御することを特徴とする請求項1のス
トリップの誘導加熱における板温制御方法。
2. In operation, when there is no change in strip thickness t, strip width w, strip passing speed v, and outlet target strip temperature T D , the induction heater is turned on at regular intervals according to the following equation. Electric power P
Modify i to However [Delta] P i: the induction heat - motor input power correction amount, G fb: Fi --back gain (constant), [Delta] F D: Induction heat - data delivery side temperature deviation (target metal temperature one actual plate temperature), the target plate temperature The method according to claim 1, wherein the strip temperature is controlled to a value.
【請求項3】制御中のインダクションヒ−タ投入電力P
i ,入側板温TE ,出側板温TD ,板厚t,板幅w,通
板速度v等の実績デ−タより、逐次型最小二乗法を用い
て、各インダクションヒ−タ総合効率ηi 及びストリッ
プ総括熱伝達係数βのオンライン適応修正を行い、ま
た、操業上、インダクションヒ−タによるストリップの
加熱を行わない時の実績デ−タ入側板温TE ,出側板温
D ,板幅w,通板速度vより、非加熱部のストリップ
総括熱伝達係数αをオンラインで逐次修正することを特
徴とする請求項1の、ストリップの誘導加熱における板
温制御方法。
3. An induction heater input power P under control.
i , the inlet side plate temperature T E , the outlet side plate temperature T D , the plate thickness t, the plate width w, the passing speed v, and the like. η i and the strip total heat transfer coefficient β are online adaptively corrected, and the actual data when the strip is not heated by the induction heater during operation are data input side plate temperature T E , output side plate temperature T D , The strip temperature control method for induction heating of strip according to claim 1, wherein the strip total heat transfer coefficient α of the non-heated portion is successively corrected online on the basis of the strip width w and the strip passing speed v.
JP3217424A 1991-08-28 1991-08-28 Strip temperature control method for induction heating of strip Expired - Lifetime JP2503332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3217424A JP2503332B2 (en) 1991-08-28 1991-08-28 Strip temperature control method for induction heating of strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3217424A JP2503332B2 (en) 1991-08-28 1991-08-28 Strip temperature control method for induction heating of strip

Publications (2)

Publication Number Publication Date
JPH0559455A true JPH0559455A (en) 1993-03-09
JP2503332B2 JP2503332B2 (en) 1996-06-05

Family

ID=16703998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3217424A Expired - Lifetime JP2503332B2 (en) 1991-08-28 1991-08-28 Strip temperature control method for induction heating of strip

Country Status (1)

Country Link
JP (1) JP2503332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143216A (en) * 2018-02-22 2019-08-29 富士電子工業株式会社 Heat treatment system
JP2021109990A (en) * 2020-01-08 2021-08-02 Jfeスチール株式会社 Plate temperature control method, heating control device and method for producing metal plate
US11466340B2 (en) 2016-01-28 2022-10-11 Jfe Steel Corporation Steel sheet temperature control device and temperature control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312709A (en) * 1976-07-22 1978-02-04 Nippon Steel Corp Uniform heating method for end parts of long-sized material in induction heating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312709A (en) * 1976-07-22 1978-02-04 Nippon Steel Corp Uniform heating method for end parts of long-sized material in induction heating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466340B2 (en) 2016-01-28 2022-10-11 Jfe Steel Corporation Steel sheet temperature control device and temperature control method
JP2019143216A (en) * 2018-02-22 2019-08-29 富士電子工業株式会社 Heat treatment system
JP2021109990A (en) * 2020-01-08 2021-08-02 Jfeスチール株式会社 Plate temperature control method, heating control device and method for producing metal plate

Also Published As

Publication number Publication date
JP2503332B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JP3336135B2 (en) Method and apparatus for providing instructions to a process
US11032938B2 (en) Temperature control device and control method thereof
WO2017130508A1 (en) Steel sheet temperature control device and temperature control method
KR101956365B1 (en) System for control temperature pattern of strip in continuous annealing line and the method of the same
WO2003085142A1 (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
JP2503332B2 (en) Strip temperature control method for induction heating of strip
TWI754979B (en) Method of controlling a cooling device in a rolling train
JP4975235B2 (en) Material temperature control system in continuous strip material processing line
US3446273A (en) Control system
JPH0742515B2 (en) Induction heating control method for ERW pipe welds
JP5000361B2 (en) Method, apparatus, and computer program for controlling plate temperature in continuous processing line
JP2715739B2 (en) Control method of alloying furnace in alloying hot-dip galvanized steel sheet manufacturing facility
JP2001291576A (en) Output control device used for induction heating device
Guo et al. A model study of thermal characteristics of decarburization annealing furnace for silicon steel strip
JP3767663B2 (en) Heating control method of induction heating device
JP2676927B2 (en) Reflow equipment
JP2019151864A (en) Steel sheet temperature prediction method, steel sheet temperature prediction device, and steel sheet temperature control method
JP2523991B2 (en) Control method for induction heating device
JP6935159B1 (en) Simulation method of processing state of strip
JPH0636931B2 (en) Temperature control method for rolling and cooling wire rods and bars
JPS60151709A (en) Temperature controller for industrial furnace
TWI391186B (en) Material temperature control system in continuous strip material treatment line
JP2005068553A (en) Heat treatment apparatus and method for producing steel
JP2003114725A (en) Temperature regulator, and heat treatment device
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960206