JPH0556651A - Pulse-width modulation control circuit for three-phase inverter - Google Patents

Pulse-width modulation control circuit for three-phase inverter

Info

Publication number
JPH0556651A
JPH0556651A JP3209664A JP20966491A JPH0556651A JP H0556651 A JPH0556651 A JP H0556651A JP 3209664 A JP3209664 A JP 3209664A JP 20966491 A JP20966491 A JP 20966491A JP H0556651 A JPH0556651 A JP H0556651A
Authority
JP
Japan
Prior art keywords
phase
circuit
line voltage
voltage
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3209664A
Other languages
Japanese (ja)
Inventor
Satoshi Ichiki
敏 一木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3209664A priority Critical patent/JPH0556651A/en
Publication of JPH0556651A publication Critical patent/JPH0556651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To decrease the total switching number of a switching element while reducing an error section contained in pulse width by continuing a period when either one pair of line-to-line voltage displays positive voltage and one pair of other two pairs displays negative voltage while being alternated at every one third of one period. CONSTITUTION:Since a 0-2pi/3 phase signal circuit 21 transmits a signal over AND elements 31 and 34 and 37 during a period from a time A to a time B, an R-S line-to-line voltage pattern signal outputted from an R-S line-to-line voltage pattern generating circuit 17 is transmitted over an R-phase PWM circuit 14 through the AND element 31 and an OR element 44. Consequently, an R-phase bridge circuit constituting a three-phase inverter 3 is PWM-controlled by a signal from the R-phase PWM circuit 14. Since a negative-voltage clamp command signal is sent to an S-phase PWM circuit 15 through the AND element 34 and an OR element 45 from a negative-voltage clamp command generating circuit 12, an S-phase bridge circuit is clamped at negative voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、スイッチング素子を
3相ブリッジ接続し、パルス幅変調制御により3相交流
電力を出力する3相インバータのパルス幅変調制御回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse width modulation control circuit for a three-phase inverter that connects switching elements in a three-phase bridge and outputs three-phase AC power by pulse width modulation control.

【0002】[0002]

【従来の技術】図3は3相インバータの一般的な回路を
示した主回路接続図である。この図3に示すように、ス
イッチング素子としてのトランジスタをブリッジ接続し
て構成しているR相ブリッジ回路4と、S相ブリッジ回
路5と、T相ブリッジ回路6とを並列接続することで3
相インバータ3を形成している。実際は各トランジスタ
に、それぞれ帰還ダイオードを逆並列接続してインバー
タを構成するのであるが、この帰還ダイオードは本発明
とは無関係につき、これの図示と説明は省略する。この
3相インバータ3へ直流電源1から平滑コンデンサ2を
介して直流電力を供給し、この3相インバータ3を構成
している各トランジスタを順次オン・オフ制御すれば、
負荷7へ交流電力を供給することが出来る。ここでこの
トランジスタを、正弦波信号と高周波数のキャリア波と
の大小関係を比較する(即ちパルス幅変調制御する)こ
とで得られるパルス列に従ってオン・オフ制御すれば、
良好な正弦波形の交流電力を出力出来ることは周知であ
る。尚、キャリア波の周波数は、スイッチング素子が許
容出来る範囲で極力高い値にすることが望ましい。
2. Description of the Related Art FIG. 3 is a main circuit connection diagram showing a general circuit of a three-phase inverter. As shown in FIG. 3, by connecting in parallel the R-phase bridge circuit 4, the S-phase bridge circuit 5, and the T-phase bridge circuit 6, which are configured by bridge-connecting transistors as switching elements,
The phase inverter 3 is formed. Actually, each transistor is connected in parallel with a feedback diode to form an inverter. However, this feedback diode is irrelevant to the present invention, and therefore, illustration and description thereof are omitted. By supplying DC power from the DC power supply 1 to the three-phase inverter 3 through the smoothing capacitor 2, and sequentially controlling the ON / OFF of each transistor constituting the three-phase inverter 3,
AC power can be supplied to the load 7. If this transistor is on / off controlled according to the pulse train obtained by comparing the magnitude relationship between the sine wave signal and the high frequency carrier wave (that is, pulse width modulation control),
It is well known that a good sinusoidal AC power can be output. It is desirable that the frequency of the carrier wave be as high as possible within a range that the switching element can tolerate.

【0003】[0003]

【発明が解決しようとする課題】ところで図3に示す3
相インバータ3は、直流電力を3相交流電力を変換する
べく、R,S,T各相毎にパルス幅変調(以下ではPW
Mと略記する)制御を行っていた。PWM制御を行うに
は、トランジスタ等のスイッチング素子を高頻度でオン
・オフしなければならないが、一般にスイッチング素子
はオン状態で損失を発生するのは勿論であるが、特にそ
のターンオン時とターンオフ時における損失が大であ
る。それ故より高いキャリア周波数でPWM制御すれ
ば、スイッチング素子の発生損失はますます増大する不
具合がある。又、PWM制御により得られるパルスの幅
に誤差分が含まれるのはやむを得ないことであるが、こ
の誤差分のために当該3相インバータ3が出力する交流
の正弦波形に歪みを生じる不具合もある。
[Problems to be Solved by the Invention]
The phase inverter 3 performs pulse width modulation (PW in the following description) for each phase of R, S, and T in order to convert DC power into three-phase AC power.
(Abbreviated as M). In order to perform PWM control, switching elements such as transistors must be turned on and off at high frequency, but in general switching elements cause loss in the on state, but especially at the time of turn-on and turn-off. The loss in is large. Therefore, if the PWM control is performed at a higher carrier frequency, the loss generated in the switching element is further increased. Although it is unavoidable that the pulse width obtained by the PWM control includes an error component, this error component also causes a problem in that the AC sine waveform output by the three-phase inverter 3 is distorted. ..

【0004】そこでこの発明の目的は、3相インバータ
をPWM制御する際に、キャリア周波数を低下させるこ
となく、この3相インバータを構成しているスイッチン
グ素子の合計スイッチング回数を減少させると共に、P
WM制御により得られるパルス幅に含まれる誤差分が影
響する度合いを低減させようとするものである。
Therefore, an object of the present invention is to reduce the total number of times of switching of the switching elements constituting the three-phase inverter without lowering the carrier frequency during PWM control of the three-phase inverter, and to reduce the P
It is intended to reduce the degree of influence of the error component included in the pulse width obtained by the WM control.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めにこの発明のパルス幅変調制御回路は、スイッチング
素子をブリッジ接続した回路の3組を並列に接続して直
流電源に接続し、パルス幅変調制御によりこれらスイッ
チング素子をオン・オフして、直流電力を3相交流電力
に変換する3相インバータのパルス幅変調制御回路にお
いて、前記3相インバータが出力する3組の線間電圧の
うちの何れか1組の線間電圧が正の電圧を呈し、残り2
組のうちのいずれか1組の線間電圧が負の電圧を呈する
2π/3なる期間毎に、この正の線間電圧の発生に関与
する2つの相と、負の線間電圧の発生に関与する2つの
相とに共通の相に対応した前記ブリッジ回路の正極側又
は負極側いずれかのスイッチング素子をオンにすると共
に、残り2つの相に対応した前記ブリッジ回路のスイッ
チング素子は、前記正の線間電圧と負の線間電圧を発生
するべくパルス幅変調動作を行うか、或いは、前記3相
インバータが出力する3組の線間電圧のうちの何れか1
組の線間電圧が正の電圧を呈し、残り2組のうちのいず
れか1組の線間電圧が負の電圧を呈し、且つ残余1組の
線間電圧の振幅は、前記正の線間電圧の振幅と、負の線
間電圧の振幅とを上回ることが無いπ/3なる期間毎
に、この正の線間電圧の発生に関与する2つの相と、負
の線間電圧の発生に関与する2つの相とに共通の相に対
応した前記ブリッジ回路の正極側と負極側のスイッチン
グ素子を交互にオンすると共に、残り2つの相に対応し
た前記ブリッジ回路のスイッチング素子は、前記正の線
間電圧と負の線間電圧を発生するべくパルス幅変調動作
を行うものとする。
In order to achieve the above object, a pulse width modulation control circuit according to the present invention is configured so that three sets of circuits in which switching elements are bridge-connected are connected in parallel and connected to a DC power source, In a pulse width modulation control circuit for a three-phase inverter that turns on / off these switching elements by width modulation control to convert DC power into three-phase AC power, among the three sets of line voltage output by the three-phase inverter. The line voltage of any one of the above shows a positive voltage, and the remaining 2
In every 2π / 3 period in which the line voltage of any one of the sets exhibits a negative voltage, two phases involved in the generation of the positive line voltage and the generation of the negative line voltage are generated. While turning on either the positive side or the negative side of the bridge circuit corresponding to the phase common to the two phases involved, the switching elements of the bridge circuit corresponding to the remaining two phases are Pulse width modulation operation is performed to generate the line voltage and the negative line voltage, or one of the three sets of line voltages output by the three-phase inverter.
The line voltage of the pair exhibits a positive voltage, the line voltage of any one of the remaining two sets exhibits a negative voltage, and the amplitude of the line voltage of the remaining one set has the positive line voltage. For each period of π / 3 in which the amplitude of the voltage and the amplitude of the negative line voltage are not exceeded, there are two phases involved in the generation of the positive line voltage and the generation of the negative line voltage. The switching elements on the positive side and the negative side of the bridge circuit corresponding to the phase common to the two phases involved are alternately turned on, and the switching elements of the bridge circuit corresponding to the remaining two phases are A pulse width modulation operation is performed to generate a line voltage and a negative line voltage.

【0006】[0006]

【作用】3相インバータが出力する3組の線間電圧のう
ちのいずれか1組は正の電圧を呈し、他の2組のうちの
1組は負の電圧を呈する期間が1周期の1/3毎に交代し
ながら継続する。この時、3組の線間電圧の和が零とな
る交流条件から、残り1組の線間電圧は自動的に定ま
る。ここで正の線間電圧の出力に関与している2つの相
と、負の線間電圧の出力に関与している2つの相とに共
通している相を正電圧又は負電圧のいずれかにクランプ
すると共に、残りの2相は、前記正の線間電圧と負の線
間電圧を出力するようにPWM制御させればよい。
[Operation] One of the three sets of line voltages output by the three-phase inverter exhibits a positive voltage, and one of the other two sets exhibits a negative voltage. Continue every 3 turns. At this time, the remaining one set of line voltage is automatically determined from the AC condition where the sum of the three sets of line voltage becomes zero. Here, the phase common to the two phases involved in the output of the positive line voltage and the two phases involved in the output of the negative line voltage is either a positive voltage or a negative voltage. And the remaining two phases may be PWM-controlled so as to output the positive line voltage and the negative line voltage.

【0007】図4は図3に図示の3相インバータで本発
明の第1の原理を説明する動作説明図であって、図4
はR相−S相の線間電圧波形、図4はS相−T相の線
間電圧波形、図4はT相−R相の線間電圧波形、図4
はR相ブリッジ回路4の動作の説明、図4はS相ブ
リッジ回路5の動作の説明、図4はT相ブリッジ回路
6の動作の説明を、1周期を1/3 毎に区分して表してい
る。
FIG. 4 is an operation explanatory view for explaining the first principle of the present invention with the three-phase inverter shown in FIG.
Is an R phase-S phase line voltage waveform, FIG. 4 is an S phase-T phase line voltage waveform, FIG. 4 is a T phase-R phase line voltage waveform, FIG.
Shows the operation of the R-phase bridge circuit 4, FIG. 4 shows the operation of the S-phase bridge circuit 5, and FIG. 4 shows the operation of the T-phase bridge circuit 6 by dividing one cycle into 1/3. ing.

【0008】この図4において、位相が零(A時点)か
ら 2π/3(B時点)までの期間は、R相−S相の線間電
圧が正でS相−T相の線間電圧が負である。よってこれ
ら両線間電圧に共通しているS相に対応してS相ブリッ
ジ回路5を負電圧にクランプするのであるが、R相ブリ
ッジ回路4は、図4のA点からB点までに図示してい
る正の線間電圧を出力するべくPWM制御動作し、T相
ブリッジ回路6は図4のA点からB点までに図示して
いる負の線間電圧を出力するべくPWM制御動作する。
その結果、T相−R相の線間電圧は、自動的に図4の
A点からB点までに図示している電圧となる。位相が 2
π/3(B時点)から 4π/3(C時点)までの期間はT相
ブリッジ回路6を負電圧にクランプし、位相が 4π/3
(C時点)から 2π(D時点)までの期間はR相ブリッ
ジ回路4を負電圧にクランプし、残りの相に対応したブ
リッジ回路をそれぞれ適切な電圧を出力するようにPW
M制御動作させればよい。即ち3相ブリッジ回路のうち
の1相分は負電圧にクランプした状態にあり、2相分の
ブリッジ回路がPWM制御動作することで3相交流電力
を出力することが出来る。
In FIG. 4, the line voltage between the R phase and the S phase is positive and the line voltage between the S phase and the T phase is between the phase zero (time A) and 2π / 3 (time B). It is negative. Therefore, the S-phase bridge circuit 5 is clamped to a negative voltage corresponding to the S-phase common to both line voltages, but the R-phase bridge circuit 4 is shown from the point A to the point B in FIG. The PWM control operation is performed to output the positive line voltage shown, and the T-phase bridge circuit 6 performs the PWM control operation to output the negative line voltage shown from point A to point B in FIG. ..
As a result, the T-phase to R-phase line voltage automatically becomes the voltage shown from point A to point B in FIG. Phase 2
During the period from π / 3 (time B) to 4π / 3 (time C), the T-phase bridge circuit 6 is clamped to a negative voltage, and the phase is 4π / 3.
During the period from (time point C) to 2π (time point D), the R-phase bridge circuit 4 is clamped to a negative voltage, and the bridge circuits corresponding to the remaining phases output PW to output appropriate voltages.
The M control operation may be performed. That is, one phase of the three-phase bridge circuit is clamped to a negative voltage, and the three-phase AC power can be output by the PWM control operation of the two-phase bridge circuit.

【0009】図5は図3に図示の3相インバータで本発
明の第2の原理を説明する動作説明図であって、図5
はR相−S相の線間電圧波形、図5はS相−T相の線
間電圧波形、図5はT相−R相の線間電圧波形、図5
はR相ブリッジ回路の動作の説明、図5はS相ブリ
ッジ回路の動作の説明、図5はT相ブリッジ回路の動
作の説明を、1周期を1/6 毎に区分して表している。
FIG. 5 is an operation explanatory view for explaining the second principle of the present invention with the three-phase inverter shown in FIG.
Is a line voltage waveform of R phase-S phase, FIG. 5 is a line voltage waveform of S phase-T phase, FIG. 5 is a line voltage waveform of T phase-R phase, FIG.
Shows the operation of the R-phase bridge circuit, FIG. 5 shows the operation of the S-phase bridge circuit, and FIG. 5 shows the operation of the T-phase bridge circuit by dividing one cycle into 1/6.

【0010】この図5において、例えば位相がπ/6(G
時点)からπ/2(H時点)までの期間は、R相−S相の
線間電圧が正でS相−T相の線間電圧が負である。よっ
てこれら両線間電圧に共通しているS相に対応してS相
ブリッジ回路5を負電圧にクランプするのであるが、R
相ブリッジ回路4は、図5のG点からH点までに図示
している正の線間電圧を出力するべくPWM制御動作
し、T相ブリッジ回路6は図5のG点からH点までに
図示している負の線間電圧を出力するべくPWM制御動
作する。その結果、T相−R相の線間電圧は、自動的に
図5のG点からH点までに図示している電圧となるの
は、前述した図4の場合と同じであるが、この図5で
は、1周期を1/6 毎に区分することで、正電圧を呈する
線間電圧の振幅と、負電圧を呈する線間電圧の振幅と
が、常に残りの線間電圧の振幅を下回ることが無いよう
にしている。即ち、線間電圧の振幅が大きい相のブリッ
ジ回路がPWM制御動作を行うときのパルス幅は、線間
電圧の振幅が小さい相のパルス幅よりも広いので、誤差
分のパルス幅に占める割合が小さくなり、3相インバー
タ3が出力する交流電力の波形歪みを抑制することが出
来る。
In FIG. 5, for example, the phase is π / 6 (G
During the period from (time point) to π / 2 (time point H), the R-phase to S-phase line voltage is positive and the S-phase to T-phase line voltage is negative. Therefore, the S-phase bridge circuit 5 is clamped to a negative voltage corresponding to the S-phase which is common to both the line voltages.
The phase bridge circuit 4 performs PWM control operation to output the positive line voltage shown from the G point to the H point in FIG. 5, and the T phase bridge circuit 6 operates from the G point to the H point in FIG. The PWM control operation is performed to output the negative line voltage shown in the figure. As a result, the line voltage of the T phase-R phase automatically becomes the voltage shown from the point G to the point H in FIG. 5, as in the case of FIG. 4 described above. In FIG. 5, by dividing one cycle into 1/6, the amplitude of the line voltage exhibiting a positive voltage and the amplitude of the line voltage exhibiting a negative voltage are always lower than the amplitude of the remaining line voltage. I try not to have any. That is, since the pulse width when the bridge circuit of the phase with the large amplitude of the line voltage performs the PWM control operation is wider than the pulse width of the phase with the small amplitude of the line voltage, the ratio of the pulse width for the error is It becomes smaller, and the waveform distortion of the AC power output by the three-phase inverter 3 can be suppressed.

【0011】次の1/6 周期、即ちπ/2(H時点)から 5
π/6(J時点)までの期間はR相−S相の線間電圧が正
で、且つその振幅はS相−T相の線間電圧を下回ること
が無い。又、T相−R相の線間電圧は負でその振幅もS
相−T相の線間電圧を下回ることが無い。よってこの期
間ではR相ブリッジ回路4を正電圧にクランプし、S相
ブリッジ回路5とT相ブリッジ回路6とをPWM制御動
作させる。以下1/6 周期毎に、クランプする相は正電圧
クランプと負電圧クランプとを交互に行い、残りの2相
はPWM制御動作を行う。
From the next 1/6 period, that is, π / 2 (time H), 5
During the period up to π / 6 (time point J), the R-phase to S-phase line voltage is positive, and its amplitude does not fall below the S-phase to T-phase line voltage. In addition, the line voltage of T phase-R phase is negative and its amplitude is S
It does not fall below the line-to-phase line voltage. Therefore, in this period, the R-phase bridge circuit 4 is clamped to a positive voltage, and the S-phase bridge circuit 5 and the T-phase bridge circuit 6 are PWM-controlled. In every 1/6 cycle, the positive and negative voltage clamps are alternately performed for the clamped phase, and the PWM control operation is performed for the remaining two phases.

【0012】[0012]

【実施例】図1は本発明の第1実施例を表した回路図で
あって、図4で既述の本発明の第1の原理を説明する動
作説明に対応している。この図1に示す第1実施例回路
は、負電圧クランプ指令発生回路12、R相PWM回路
14、S相PWM回路15、T相PWM回路16、R−
S線間電圧パターン発生回路17、S−T線間電圧パタ
ーン発生回路18、T−R線間電圧パターン発生回路1
9、 1/3周期毎の位相信号を発生する3組の位相信号回
路21、22、23と、9個のAND素子、及び3個の
OR素子とを備えている。
1 is a circuit diagram showing a first embodiment of the present invention, and corresponds to the operation explanation for explaining the first principle of the present invention described above with reference to FIG. The first embodiment circuit shown in FIG. 1 includes a negative voltage clamp command generation circuit 12, an R-phase PWM circuit 14, an S-phase PWM circuit 15, a T-phase PWM circuit 16, and R-.
S line voltage pattern generation circuit 17, S-T line voltage pattern generation circuit 18, TR line voltage pattern generation circuit 1
It is provided with three sets of phase signal circuits 21, 22, and 23 that generate phase signals for every 9, 1/3 cycle, nine AND elements, and three OR elements.

【0013】この図1の動作を以下に説明する。即ち、
図4の動作説明図に示している時点Aから時点Bまでの
期間では、 0〜 2π/3位相信号回路21がAND素子3
1と34と37とへ信号を送出しているので、R−S線
間電圧パターン発生回路17が出力するR−S線間電圧
パターン信号が、AND素子31とOR素子44とを経
てR相PWM回路14に与えられるので、3相インバー
タ3を構成しているR相ブリッジ回路4はこのR相PW
M回路14からの信号でPWM制御される。又、負電圧
クランプ指令発生回路12からはAND素子34とOR
素子45とを経て負電圧クランプ指令信号がS相PWM
回路15へ与えられるので、3相インバータ3を構成し
ているS相ブリッジ回路5は負電圧にクランプされる。
更に、S−T線間電圧パターン発生回路18が出力する
S−T線間電圧パターン信号が、AND素子37とOR
素子46とを経てT相PWM回路16に与えられるの
で、3相インバータ3を構成しているT相ブリッジ回路
6はこのT相PWM回路16からの信号でPWM制御さ
れる。
The operation of FIG. 1 will be described below. That is,
During the period from time A to time B shown in the operation explanatory diagram of FIG. 4, the 0 to 2π / 3 phase signal circuit 21 is operated by the AND element 3
Since the signals are sent to 1 to 34 and 37, the R-S line voltage pattern signal output from the R-S line voltage pattern generation circuit 17 passes through the AND element 31 and the OR element 44 and becomes the R phase. Since it is given to the PWM circuit 14, the R-phase bridge circuit 4 which constitutes the three-phase inverter 3 has the R-phase PW.
PWM control is performed by a signal from the M circuit 14. Further, from the negative voltage clamp command generation circuit 12, the AND element 34 and OR
Negative voltage clamp command signal passes through element 45 and S phase PWM
Since it is given to the circuit 15, the S-phase bridge circuit 5 forming the three-phase inverter 3 is clamped to a negative voltage.
Further, the ST line voltage pattern signal output from the ST line voltage pattern generation circuit 18 is ORed with the AND element 37.
Since it is given to the T-phase PWM circuit 16 via the element 46, the T-phase bridge circuit 6 forming the three-phase inverter 3 is PWM-controlled by the signal from the T-phase PWM circuit 16.

【0014】時点Bから時点Cまでの期間は、 2π/3〜
4π/3位相信号回路22がAND素子32と35と38
とへ信号を送出し、次いで時点Cから時点Dまでの期間
は、4π/3〜 2π位相信号回路23がAND素子33と
36と39とへ信号を送出するので、OR素子44はA
ND素子31、32、33を経由して来た信号をR相P
WM回路14に与え、R相ブリッジ回路4はこのR相P
WM回路14の出力信号で制御される。同様にOR素子
45はAND素子34、35、36を経由して来た信号
をS相PWM回路15に与え、OR素子46はAND素
子37、38、39を経由して来た信号をT相PWM回
路16に与えるので、S相ブリッジ回路5とT相ブリッ
ジ回路6もこれらS相PWM回路15とT相PWM回路
16が出力する信号で制御される。
The period from time B to time C is 2π / 3-
The 4π / 3 phase signal circuit 22 includes AND elements 32, 35 and 38.
During the period from the time point C to the time point D, the 4π / 3 to 2π phase signal circuit 23 sends a signal to the AND elements 33, 36 and 39, so that the OR element 44 outputs A
The signal coming through the ND elements 31, 32 and 33 is transferred to the R phase P
The R-phase bridge circuit 4 supplies this to the WM circuit 14
It is controlled by the output signal of the WM circuit 14. Similarly, the OR element 45 gives the signal coming through the AND elements 34, 35, 36 to the S-phase PWM circuit 15, and the OR element 46 gives the signal coming through the AND elements 37, 38, 39 in the T phase. Since it is given to the PWM circuit 16, the S-phase bridge circuit 5 and the T-phase bridge circuit 6 are also controlled by the signals output from the S-phase PWM circuit 15 and the T-phase PWM circuit 16.

【0015】図2は本発明の第2実施例を表した回路図
であって、図5で既述の本発明の第2の原理を説明する
動作説明に対応している。この図2に示す第2実施例回
路には、正電圧クランプ指令発生回路11、負電圧クラ
ンプ指令発生回路12、R相PWM回路14、S相PW
M回路15、T相PWM回路16、R−S線間電圧パタ
ーン発生回路17、S−T線間電圧パターン発生回路1
8、T−R線間電圧パターン発生回路19、 1/6周期毎
の位相信号を発生する6組の位相信号回路24、25、
26、27、28、29と、18個のAND素子、及び
3個のOR素子とを備えている。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention, and corresponds to the operation explanation for explaining the second principle of the present invention described above with reference to FIG. The circuit of the second embodiment shown in FIG. 2 includes a positive voltage clamp command generation circuit 11, a negative voltage clamp command generation circuit 12, an R phase PWM circuit 14, and an S phase PW.
M circuit 15, T-phase PWM circuit 16, R-S line voltage pattern generation circuit 17, S-T line voltage pattern generation circuit 1
8, T-R line voltage pattern generation circuit 19, 6 sets of phase signal circuits 24, 25 for generating a phase signal for each 1/6 cycle,
26, 27, 28, 29, 18 AND elements, and 3 OR elements.

【0016】この図2に示している第2実施例回路は、
1周期を 1/6毎に区分し、この区分に対応した信号を出
力するために、6組の位相信号回路即ち、−π/6〜π/6
位相信号回路24、π/6〜π/2位相信号回路25、π/2
〜 5π/6位相信号回路26、5π/6〜 7π/6位相信号回
路27、 7π/6〜 3π/2位相信号回路28及び 3π/2〜
11π/6位相信号回路29を備えると共に、これらに対応
して18個のAND素子を備えていることと、負電圧ク
ランプ指令発生回路12の他に正電圧クランプ指令発生
回路11を備えて、正電圧クランプと負電圧クランプと
を交互に行う点が、図1で前述した第1実施例回路と異
なっているが、それ以外は同じである。従って図2に図
示の第2実施例回路の動作説明は省略する。
The circuit of the second embodiment shown in FIG.
One cycle is divided into 1/6, and in order to output the signal corresponding to this division, there are 6 sets of phase signal circuits, namely -π / 6 to π / 6.
Phase signal circuit 24, π / 6 to π / 2 Phase signal circuit 25, π / 2
~ 5π / 6 phase signal circuit 26, 5π / 6 ~ 7π / 6 phase signal circuit 27, 7π / 6 ~ 3π / 2 phase signal circuit 28 and 3π / 2 ~
The 11π / 6 phase signal circuit 29 is provided, and 18 AND elements corresponding to these are provided, and the positive voltage clamp command generation circuit 11 is provided in addition to the negative voltage clamp command generation circuit 12, 1 is different from the circuit of the first embodiment described above with reference to FIG. 1 in that the voltage clamp and the negative voltage clamp are alternately performed, but the other points are the same. Therefore, the description of the operation of the second embodiment circuit shown in FIG. 2 is omitted.

【0017】[0017]

【発明の効果】この発明の請求項1によれば、スイッチ
ング素子をブリッジ接続した3組のブリッジ回路で3相
インバータを構成し、1周期の 1/3の期間毎に、この3
組のブリッジ回路のうちの1組は常に正電圧か負電圧に
クランプしてパルス幅変調制御動作は行わず、他の2組
のブリッジ回路のみがパルス幅変調制御する動作を交代
して順次行って3相交流電力を出力するようにしている
ので、キャリア周波数が従来と同じであっても、3相イ
ンバータ全体のスイッチング回数を従来よりも減らすこ
とが出来る。その結果、スイッチング素子が動作する際
に発生するスイッチング損失を、従来よりも低減出来る
効果が得られる。更にこの発明の請求項2によれば、1
周期の 1/6の期間毎に、3組のブリッジ回路のうちの1
組は正電圧クランプと負電圧クランプとを交互に行って
パルス幅変調制御動作は行わず、他の2組のブリッジ回
路のみがパルス幅変調制御する動作を交代して順次行っ
て3相交流電力を出力するようにしているので、前述し
た請求項1と同様の効果が得られるが、更にこの請求項
2においては、電圧振幅の大きい部分でパルス幅変調制
御を行うようにしているので、パルス幅変調制御時に発
生する誤差分のパルス幅に対する割合を相対的に小さく
出来るので、3相インバータが出力する正弦波交流電力
の波形歪みを抑制出来る効果も併せて得られる。
According to the first aspect of the present invention, a three-phase inverter is constituted by three sets of bridge circuits in which switching elements are bridge-connected, and the three-phase inverter is provided every 1/3 period of one cycle.
One of the bridge circuits of the set is always clamped to a positive voltage or a negative voltage and the pulse width modulation control operation is not performed, and only the other two bridge circuits alternately perform the pulse width modulation control operation. Since the three-phase AC power is output as a result, even if the carrier frequency is the same as the conventional one, the number of switching operations of the entire three-phase inverter can be reduced as compared with the conventional one. As a result, it is possible to obtain an effect that the switching loss generated when the switching element operates can be reduced as compared with the conventional case. Further, according to claim 2 of the present invention, 1
One of three sets of bridge circuits every 1/6 period
The pair alternately performs positive voltage clamp and negative voltage clamp and does not perform the pulse width modulation control operation, and only the other two sets of bridge circuits alternately perform the pulse width modulation control operation and sequentially perform the three-phase AC power. However, since the pulse width modulation control is performed in the portion where the voltage amplitude is large, the pulse width modulation control is performed. Since the ratio of the error amount generated during the width modulation control to the pulse width can be made relatively small, the effect of suppressing the waveform distortion of the sine wave AC power output by the three-phase inverter can be obtained together.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を表した回路図FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】3相インバータの一般的な回路を示した主回路
接続図
FIG. 3 is a main circuit connection diagram showing a general circuit of a three-phase inverter.

【図4】図3に図示の3相インバータで本発明の第1の
原理を説明する動作説明図
FIG. 4 is an operation explanatory view explaining the first principle of the present invention with the three-phase inverter shown in FIG.

【図5】図3に図示の3相インバータで本発明の第2の
原理を説明する動作説明図
FIG. 5 is an operation explanatory view explaining the second principle of the present invention with the three-phase inverter shown in FIG.

【符号の説明】[Explanation of symbols]

3 3相インバータ 4 R相ブリッジ回路 5 S相ブリッジ回路 6 T相ブリッジ回路 11 正電圧クランプ指令発生回路 12 負電圧クランプ指令発生回路 14 R相PWM回路 15 S相PWM回路 16 T相PWM回路 17 R−S線間電圧パターン発生回路 18 S−T線間電圧パターン発生回路 19 T−R線間電圧パターン発生回路 21 0〜 2π/3位相信号回路 22 2π/3〜 4π/3位相信号回路 23 4π/3〜 2π位相信号回路 24 −π/6〜π/6位相信号回路 25 π/6〜π/2位相信号回路 26 π/2〜 5π/6位相信号回路 27 5π/6〜 7π/6位相信号回路 28 7π/6〜 3π/2位相信号回路 29 3π/2〜11π/6位相信号回路 3 3 phase inverter 4 R phase bridge circuit 5 S phase bridge circuit 6 T phase bridge circuit 11 Positive voltage clamp command generation circuit 12 Negative voltage clamp command generation circuit 14 R phase PWM circuit 15 S phase PWM circuit 16 T phase PWM circuit 17 R -S line voltage pattern generation circuit 18 S-T line voltage pattern generation circuit 19 T-R line voltage pattern generation circuit 21 0 to 2π / 3 phase signal circuit 22 2π / 3 to 4π / 3 phase signal circuit 23 4π / 3 to 2π phase signal circuit 24 −π / 6 to π / 6 phase signal circuit 25 π / 6 to π / 2 phase signal circuit 26 π / 2 to 5π / 6 phase signal circuit 27 5π / 6 to 7π / 6 phase Signal circuit 28 7π / 6 to 3π / 2 phase signal circuit 29 3π / 2 to 11π / 6 phase signal circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】スイッチング素子をブリッジ接続した回路
の3組を並列に接続して直流電源に接続し、パルス幅変
調制御によりこれらスイッチング素子をオン・オフし
て、直流電力を3相交流電力に変換する3相インバータ
のパルス幅変調制御回路において、 前記3相インバータが出力する3組の線間電圧のうちの
何れか1組の線間電圧が正の電圧を呈し、残り2組のう
ちのいずれか1組の線間電圧が負の電圧を呈する2π/
3なる期間毎に、この正の線間電圧の発生に関与する2
つの相と、負の線間電圧の発生に関与する2つの相とに
共通の相に対応した前記ブリッジ回路の正極側又は負極
側いずれかのスイッチング素子をオンにすると共に、残
り2つの相に対応した前記ブリッジ回路のスイッチング
素子は、前記正の線間電圧と負の線間電圧を発生するべ
くパルス幅変調動作を行うことを特徴とする3相インバ
ータのパルス幅変調制御回路。
1. Three sets of circuits in which switching elements are bridge-connected are connected in parallel and connected to a DC power supply, and these switching elements are turned on / off by pulse width modulation control to convert DC power into three-phase AC power. In the pulse width modulation control circuit of the three-phase inverter for converting, any one of the three line voltages output from the three-phase inverter exhibits a positive voltage, and the remaining two sets of line voltages Any one pair of line voltage exhibits a negative voltage of 2π /
Is involved in the generation of this positive line voltage every 3 periods
One of the switching elements on the positive side or the negative side of the bridge circuit corresponding to the phase common to the two phases involved in the generation of the negative line voltage is turned on, and the remaining two phases are turned on. A pulse width modulation control circuit for a three-phase inverter, wherein the corresponding switching element of the bridge circuit performs a pulse width modulation operation to generate the positive line voltage and the negative line voltage.
【請求項2】スイッチング素子をブリッジ接続した回路
の3組を並列に接続して直流電源に接続し、パルス幅変
調制御によりこれらスイッチング素子をオン・オフし
て、直流電力を3相交流電力に変換する3相インバータ
のパルス幅変調制御回路において、 前記3相インバータが出力する3組の線間電圧のうちの
何れか1組の線間電圧が正の電圧を呈し、残り2組のう
ちのいずれか1組の線間電圧が負の電圧を呈し、且つ残
余1組の線間電圧の振幅は、前記正の線間電圧の振幅
と、負の線間電圧の振幅とを上回ることが無いπ/3な
る期間毎に、この正の線間電圧の発生に関与する2つの
相と、負の線間電圧の発生に関与する2つの相とに共通
の相に対応した前記ブリッジ回路の正極側と負極側のス
イッチング素子を交互にオンすると共に、残り2つの相
に対応した前記ブリッジ回路のスイッチング素子は、前
記正の線間電圧と負の線間電圧を発生するべくパルス幅
変調動作を行うことを特徴とする3相インバータのパル
ス幅変調制御回路。
2. Three sets of circuits in which switching elements are bridge-connected are connected in parallel and connected to a DC power source, and these switching elements are turned on / off by pulse width modulation control to convert DC power into three-phase AC power. In the pulse width modulation control circuit of the three-phase inverter for converting, any one of the three line voltages output from the three-phase inverter exhibits a positive voltage, and the remaining two sets of line voltages Any one set of line voltages exhibits a negative voltage, and the remaining one set of line voltages does not exceed the positive line voltage amplitude and the negative line voltage amplitude. For each period of π / 3, the positive electrode of the bridge circuit corresponding to a phase common to the two phases involved in the generation of the positive line voltage and the two phases involved in the generation of the negative line voltage. Side and negative side switching elements are alternately turned on, The pulse width modulation control of the three-phase inverter is characterized in that the switching element of the bridge circuit corresponding to two phases performs a pulse width modulation operation to generate the positive line voltage and the negative line voltage. circuit.
JP3209664A 1991-08-22 1991-08-22 Pulse-width modulation control circuit for three-phase inverter Pending JPH0556651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209664A JPH0556651A (en) 1991-08-22 1991-08-22 Pulse-width modulation control circuit for three-phase inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209664A JPH0556651A (en) 1991-08-22 1991-08-22 Pulse-width modulation control circuit for three-phase inverter

Publications (1)

Publication Number Publication Date
JPH0556651A true JPH0556651A (en) 1993-03-05

Family

ID=16576563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209664A Pending JPH0556651A (en) 1991-08-22 1991-08-22 Pulse-width modulation control circuit for three-phase inverter

Country Status (1)

Country Link
JP (1) JPH0556651A (en)

Similar Documents

Publication Publication Date Title
CA2337921C (en) Pwm controlled power conversion device
EP2683066A1 (en) LLC balancing
JPS60156270A (en) Drive controller of power converter
JP2008048550A (en) Matrix converter
JP2004120979A (en) Power converter
JP2005295640A (en) Method and device for controlling pwm cycloconverter
JP3630621B2 (en) PWM control type power converter
JPH0556651A (en) Pulse-width modulation control circuit for three-phase inverter
JP7051600B2 (en) Multi-stage transducer control device
JP3070314B2 (en) Inverter output voltage compensation circuit
JPH049036B2 (en)
JP4389415B2 (en) Control method of direct frequency conversion circuit
JP4503937B2 (en) Control device for power converter
JP6868927B1 (en) 3-pulse PWM control method for three-phase inverter
JP3246584B2 (en) AC / DC converter
EP3982530A1 (en) Power conversion device
JP3505715B1 (en) Combined AC power supply
JP4931558B2 (en) Switching power supply
JPH074066B2 (en) Control circuit for 3-phase inverter
JPH04172972A (en) Pwm power converting device
JPS62181674A (en) Pulse width modulation type inverter apparatus
JP3801834B2 (en) Control method of direct frequency conversion circuit
JP3381590B2 (en) Thyristor converter
JPH0426369A (en) Pulse width modulating inverter and uninterruptive power unit
JPS60167685A (en) Frequency converter utilizing self-extinguishing element