JPH0555581B2 - - Google Patents

Info

Publication number
JPH0555581B2
JPH0555581B2 JP62288346A JP28834687A JPH0555581B2 JP H0555581 B2 JPH0555581 B2 JP H0555581B2 JP 62288346 A JP62288346 A JP 62288346A JP 28834687 A JP28834687 A JP 28834687A JP H0555581 B2 JPH0555581 B2 JP H0555581B2
Authority
JP
Japan
Prior art keywords
alloy
magnetization
magnet
coercive force
koe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62288346A
Other languages
Japanese (ja)
Other versions
JPS64247A (en
JPH01247A (en
Inventor
Toshio Mukai
Tatsuo Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62-288346A priority Critical patent/JPH01247A/en
Priority claimed from JP62-288346A external-priority patent/JPH01247A/en
Publication of JPS64247A publication Critical patent/JPS64247A/en
Publication of JPH01247A publication Critical patent/JPH01247A/en
Publication of JPH0555581B2 publication Critical patent/JPH0555581B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、R2Co17金属間化合物(ただし、R
はSmを主体とする希土類金属)を主体とし、着
磁性にすぐれたR−Co−Cu−Fe−Zr−B系永久
磁石材料及びその製造方法に関するものである。 本系磁石はR2Co17型と総称されるが、その代
表であるSm2Co17型磁石は高磁気特性を示すため
に小型で高性能を要求される電磁変換機器(モー
ター等)に広範に使用されている。 〔従来の技術〕 Sm2Co17型のSm−Co−Cu−Fe−Zr系永久磁
石は少量のZrの添加によつて高性能化が達成さ
れた磁石である(特公昭55−48094号公報)。従来
のSmCo5型磁石に比較してSm2Co17型磁石はその
保有する飽和磁化が大きく、高い磁気特性が得ら
れる。しかしながら、Sm2Co17型磁石は、磁壁の
ピンニングによつて保磁力が発生するために、逆
磁区の発生が保磁力を決めるタイプのSmCo5
磁石に比較して着磁性がよくない。したがつて、
実用上着磁磁場の大きさに限界があるような場合
には、Sm2Co17型磁石の性能を十分に発揮できな
い場合がある。例えば、リング状磁石に多極着磁
をする場合には、着磁性のよいSmCo5型磁石の
方がSm2Co17型磁石よりも高い表面磁束密度を与
えるという報告がある(野口他、第9回日本応用
磁気学会学術講演概要集、1985、35頁)。種々の
磁石部品の性能としてSm2Co17型磁石がすぐれる
ためには、その磁石の着磁性を改善しなければな
らない。従来、この問題に取り組み有効な手段を
示した報告はない。 〔発明が解決しようとする問題点〕 種々の磁石部品の着磁において通常得られる着
磁磁場は20〜25kOeである。したがつて、磁石の
磁気特性はその着磁磁場で十分に発揮されるもの
でなければならない。 Sm2Co17型磁石のSm−Co−Cu−Fe−Zr系に
おいては、低Cu(10wt%以下)、高Fe(15wt%以
上)の成分系で高特性が得られる。本発明者らは
重量百分率(wt%)でCo−25.5wt%Sm−6wt%
Cu−(17〜21)wt%Fe−2wt%Zrで表わされる合
金の異方性ボンド磁石の高性能化を計る過程で、
保磁力iHcと最大エネルギー積(BH)maxが最
大となる熱処理条件のもとでは着磁性が著しく悪
くなることを見い出した。これは、上記熱処理条
件のもとでは本系合金特有の微細セル組織(セル
間隔〜50nm)以外に粗大な析出相(zonal
structure、以下X相、〜0.5μm)が出現したた
めであることをつきとめた。Xiao Yaofuと
Zhang Zhengyiの報告(Proc.8th Inter.
Workshop on Rare−Earth Magnets and
Their Applications、1985、P257)に示される
ように、このX相はSmCo5型の結晶構造(或い
は本発明者らの研究によればSm2Co7型の結晶構
造)を有し、強い磁壁のピンニングサイトとして
働く。微細セル組織はセル内部のSm2(CoFe)17
相とセル境界のSm(CoCu)5相で構成される。そ
の両相の相境界は磁壁のピンニングサイトとして
働くことは周知であるが、X相はその相境界より
も強い磁壁のピンニングを行うと考えられる。事
実、Xiao YaofuとZhang Zhengyiの上記文献に
よればX相が出現する場合には保磁力は30kOe以
上に達している。したがつてこのような場合には
20−25kOeの着磁磁場では十分に本系磁石の特性
を引き出すことができない。本発明は、上記した
X相の出現を抑制し、もつて着磁性を改善するこ
とを目的とする。 〔問題点を解決するための手段〕 本発明の要旨とするところは、下記のとおりで
ある。 (1) 重量百分率(wt%)でR(ただしRはSmを
主体とする希土類元素):23〜28%、Cu:4〜
10%、Fe:15〜25%、Zr:0.2〜5%、B:
0.005〜0.06%、残部がCo並びに不可避的不純
物からなることを特徴とする永久磁石材料。 (2) 重量百分率(wt%)でR(ただしRはSmを
主体とする希土類元素)が23〜28%、Cuが4
〜10%、Feが15〜25%、Zrが0.2〜5%、Bが
0.005〜0.06%、残部がCo並びに不可避的不純
物からなる合金溶湯を、板厚3mm以下の薄板に
直接連続鋳造急冷処理を行うことを特徴とする
永久磁石材料の製造方法。 以下、本発明を詳細に説明する。 合金中の析出は微量元素の添加によつて影響を
受けることが多い。また合金の冷却条件によつて
も左右される。本発明者らは、Sm−Co−Cu−
Fe−Zr合金に微量のBを添加し、板厚3mm以下
の薄板に直接連続鋳造急冷処理を行うことにより
X相の析出が抑制されることを新たに見い出し
た。ここで、Bの添加量は微量であるので飽和磁
化の低下はほとんどない。したがつて、B添加に
よつて磁気特性を損うことなく着磁性を改善する
ことができる。 以下、本発明の磁石合金R−Co−Cu−Fe−Zr
−B系の成分について言及する。 本発明のR−Co−Cu−Fe−Zr−B系において
RはSmを主体とする希土類元素であるが、それ
が23wt%未満では十分な保磁力が得られず、
28wt%超では飽和磁化が低い。Cuは4wt%未満
では十分な保磁力が得られず、10wt%超では飽
和磁化が低くなる。Feは15wt%未満では飽和磁
化の十分に高いものが得られず、25wt%超では
保磁力が低い。Zrは特公昭55−48094号公報によ
り公知のごとく低Cuで高Feの本系磁石合金にお
いては0.2〜5wt%の範囲で添加する必要がある。
すなわち、Zrが0.2wt%未満では十分な保磁力が
得られず、5wt%超では飽和磁化の低下が著し
い。本発明の主眼となるBは、0.005wt%未満で
は着磁性改善の効果が少く、0.06wt%超では飽和
磁化(すなわち残留磁化)の低下が無視できない
ほど大きくなる。 BをSm2Co17系磁石合金に添加した例は特開昭
55−115304号公報、特開昭56−44741号公報、特
公昭59−10562号公報、特開昭60−238436号公報、
特開昭60−238437号公報記載のものなどがある
が、いずれも保磁力を高める目的でBを添加して
おり、本発明のように着磁性の改善を狙つたもの
ではない。又、前記公知文献においてはBの添加
量が著しく多い。本発明はこれらの発明と異つ
て、Sm−Co−Cu−Fe−Zr−B系合金溶湯を又
ロールなどの公知の薄板直接連続鋳造装置によつ
て鋳造し、水冷を施して板厚3mm以下の薄板状急
冷鋳片を製造した。それによつて、添加したBが
均一にマトリツクスに分散することになり、極小
量の添加量で効果的にX相の析出を防止すること
を可能にしたものである。通常の徐冷法による合
金鋳塊の場合は、Bは結晶粒界に化合物として晶
出(又は析出)し、着磁性改善の効果は少ない。 〔作用〕 微量のBの添加はSm2Co17型磁石合金における
X相の析出を抑制し、もつて着磁性を改善する。
第1図にSm−Co−Cu−Fe−Zr合金Sとそれに
0.03wt%のBを添加した合金Tとの最大印加磁界
(着磁磁場)24kOeにおける減磁曲線を示す。実
施例に詳しく説明するが、合金Sの場合は着磁が
不十分であるものが、合金Tにおいてはほぼ完全
に着磁が行なわれている。第2図に合金SとTの
光学顕微鏡によるミクロ組織を示す。図から微量
のBの添加によつて粒内のX相の析出が抑制され
ているのがわかる。 〔実施例〕 実施例 1 第1表に示す成分のSm−Co−Cu−Fe−Zr合
金Sとそれに0.03wt%のBを添加した合金Tを高
周波真空溶解により溶製した。次にAr雰囲気中
で高周波誘導加熱により合金鋳片を再溶解し、直
径300mmの銅製ロール2本を並設した双ロール式
薄板連続鋳造装置を用い、ロール回転速度
20RPMにて連続鋳造し、ガイドロール直下より
水冷して板厚1.5mmの薄板直接鋳造材を得た。
[Industrial Application Field] The present invention relates to R 2 Co 17 intermetallic compounds (However, R
The present invention relates to an R-Co-Cu-Fe-Zr-B permanent magnet material that is mainly composed of rare earth metals (mainly Sm) and has excellent magnetization properties, and a method for manufacturing the same. This type of magnet is collectively known as the R 2 Co 17 type, and the representative Sm 2 Co 17 type magnet exhibits high magnetic properties and is widely used in electromagnetic conversion devices (motors, etc.) that require small size and high performance. used in [Prior art] The Sm 2 Co 17 type Sm-Co-Cu-Fe-Zr permanent magnet is a magnet whose performance has been improved by adding a small amount of Zr (Japanese Patent Publication No. 55-48094). ). Compared to conventional SmCo 5 type magnets, Sm 2 Co 17 type magnets have larger saturation magnetization and can provide higher magnetic properties. However, since coercive force is generated by pinning domain walls, Sm 2 Co 17 type magnets have poor magnetization compared to SmCo 5 type magnets whose coercive force is determined by the generation of reversed magnetic domains. Therefore,
In cases where there is a practical limit to the magnitude of the magnetizing magnetic field, the performance of the Sm 2 Co 17 type magnet may not be fully demonstrated. For example, when magnetizing a ring-shaped magnet with multiple poles, there is a report that a SmCo 5 type magnet with good magnetization provides a higher surface magnetic flux density than an Sm 2 Co 17 type magnet (Noguchi et al., vol. Abstracts of the 9th Japanese Society of Applied Magnetics Academic Lectures, 1985, p. 35). In order for Sm 2 Co 17 type magnets to have excellent performance in various magnetic components, the magnetizability of the magnets must be improved. So far, there have been no reports that have addressed this problem and shown effective means. [Problems to be Solved by the Invention] The magnetizing magnetic field normally obtained in magnetizing various magnetic components is 20 to 25 kOe. Therefore, the magnetic properties of the magnet must be sufficiently exhibited by its magnetizing magnetic field. In the Sm-Co-Cu-Fe-Zr system of the Sm 2 Co 17 type magnet, high characteristics can be obtained with a component system of low Cu (10 wt% or less) and high Fe (15 wt% or more). In weight percentage (wt%), we
In the process of improving the performance of an anisotropic bonded magnet made of an alloy represented by Cu-(17~21)wt%Fe-2wt%Zr,
It was found that under heat treatment conditions where the coercive force iHc and maximum energy product (BH)max are maximized, the magnetizability deteriorates significantly. Under the above heat treatment conditions, in addition to the fine cell structure (cell spacing ~50 nm) peculiar to this alloy, coarse precipitated phases (zonal
It was found that this was due to the appearance of a structure (hereinafter referred to as X phase, ~0.5 μm). With Xiao Yaofu
Report by Zhang Zhengyi (Proc.8th Inter.
Workshop on Rare−Earth Magnets and
The _ _ Works as a pinning site. The fine cell structure is Sm 2 (CoFe) 17 inside the cell.
Consists of five Sm (CoCu) phases and cell boundaries. It is well known that the phase boundary between the two phases acts as a pinning site for the domain wall, but it is thought that the X phase performs stronger pinning of the domain wall than the phase boundary. In fact, according to the above-mentioned article by Xiao Yaofu and Zhang Zhengyi, when the X phase appears, the coercive force reaches 30 kOe or more. Therefore, in such a case
A magnetizing magnetic field of 20−25 kOe cannot sufficiently bring out the characteristics of this magnet. The present invention aims to suppress the appearance of the above-mentioned X phase and thereby improve magnetization. [Means for Solving the Problems] The gist of the present invention is as follows. (1) Weight percentage (wt%) of R (R is a rare earth element mainly composed of Sm): 23-28%, Cu: 4-28%
10%, Fe: 15-25%, Zr: 0.2-5%, B:
A permanent magnet material characterized by comprising 0.005 to 0.06%, the remainder consisting of Co and inevitable impurities. (2) In terms of weight percentage (wt%), R (R is a rare earth element mainly composed of Sm) is 23 to 28%, and Cu is 4%.
~10%, Fe 15~25%, Zr 0.2~5%, B
A method for producing a permanent magnet material, which comprises directly continuous casting and quenching of a molten alloy consisting of 0.005 to 0.06%, the balance being Co and inevitable impurities, into a thin plate with a thickness of 3 mm or less. The present invention will be explained in detail below. Precipitation in alloys is often influenced by the addition of trace elements. It also depends on the cooling conditions of the alloy. The present inventors have discovered that Sm-Co-Cu-
It has been newly discovered that the precipitation of the X phase can be suppressed by adding a small amount of B to the Fe-Zr alloy and performing direct continuous casting quenching treatment on a thin plate with a thickness of 3 mm or less. Here, since the amount of B added is very small, there is almost no decrease in saturation magnetization. Therefore, by adding B, the magnetization can be improved without impairing the magnetic properties. Below, the magnet alloy R-Co-Cu-Fe-Zr of the present invention
- The components of the B system will be mentioned. In the R-Co-Cu-Fe-Zr-B system of the present invention, R is a rare earth element mainly composed of Sm, but if it is less than 23 wt%, sufficient coercive force cannot be obtained.
If it exceeds 28wt%, the saturation magnetization is low. If Cu is less than 4wt%, sufficient coercive force cannot be obtained, and if it exceeds 10wt%, the saturation magnetization becomes low. If Fe is less than 15 wt%, a sufficiently high saturation magnetization cannot be obtained, and if it exceeds 25 wt%, the coercive force is low. Zr needs to be added in the range of 0.2 to 5 wt% in the present magnet alloy with low Cu and high Fe, as known from Japanese Patent Publication No. 55-48094.
That is, if Zr is less than 0.2 wt%, a sufficient coercive force cannot be obtained, and if it exceeds 5 wt%, the saturation magnetization decreases significantly. When B, which is the focus of the present invention, is less than 0.005 wt%, the effect of improving magnetization is small, and when it exceeds 0.06 wt%, the decrease in saturation magnetization (that is, residual magnetization) becomes so large that it cannot be ignored. An example of adding B to a Sm 2 Co 17- based magnet alloy is given in JP-A-Sho.
55-115304, JP 56-44741, JP 59-10562, JP 60-238436,
There are those described in JP-A-60-238437, but all of them have B added for the purpose of increasing coercive force, and are not intended to improve magnetizability like the present invention. Further, in the above-mentioned known literature, the amount of B added is extremely large. The present invention differs from these inventions in that a molten Sm-Co-Cu-Fe-Zr-B alloy is cast using a known direct continuous thin plate casting device such as a roll, and water-cooled to form a sheet with a thickness of 3 mm or less. A thin plate-like rapidly cooled slab was manufactured. This allows the added B to be uniformly dispersed in the matrix, making it possible to effectively prevent the precipitation of the X phase with a minimal amount of addition. In the case of an alloy ingot produced by a normal slow cooling method, B crystallizes (or precipitates) as a compound at grain boundaries, and has little effect on improving magnetization. [Function] The addition of a small amount of B suppresses the precipitation of the X phase in the Sm 2 Co 17 type magnet alloy, thereby improving the magnetizability.
Figure 1 shows Sm-Co-Cu-Fe-Zr alloy S and its
The demagnetization curve at the maximum applied magnetic field (magnetizing magnetic field) of 24 kOe with alloy T added with 0.03 wt% B is shown. As will be explained in detail in Examples, alloy S was insufficiently magnetized, but alloy T was almost completely magnetized. FIG. 2 shows the microstructures of alloys S and T as measured by an optical microscope. The figure shows that the addition of a small amount of B suppresses the precipitation of the X phase within the grains. [Examples] Example 1 Sm-Co-Cu-Fe-Zr alloy S having the components shown in Table 1 and alloy T to which 0.03 wt% of B was added were melted by high frequency vacuum melting. Next, the alloy slab was remelted by high-frequency induction heating in an Ar atmosphere, and then cast using a twin-roll continuous thin plate casting machine equipped with two copper rolls with a diameter of 300 mm installed side by side.
Continuous casting was performed at 20 RPM and water cooling was performed directly below the guide roll to obtain a thin directly cast material with a thickness of 1.5 mm.

【表】 合金S、Tそれぞれについて最適の溶体化温度
(Sは1150℃、Tは1130℃)を決め、その温度で
合金薄板を16時間溶体化した。溶体化後急冷し、
時効処理として850℃で1時間保持後に400℃まで
1℃/minで冷却した。次に合金薄板を粗粉砕後
に、ボールミルによつて微粉砕し、粉砕粒子の粒
径が平均90μmになるように調整した。この粉末
にエポキシ樹脂を2.6wt%添加して混練し、その
混練物を16kOeの磁場中にて4ton/cm2の圧力で試
験片形状(10×10×20mm)に圧縮成形した。成形
体を熱硬化させ、自記磁束計により磁気特性を測
定した。第1図に、最大印加磁場(着磁磁場)
24KOeにおける減磁曲線を示す。図から明らか
なように、B添加合金Tの方がB無添加の合金S
よりも残留磁束密度Brが1.1kG高い。第2表に、
着磁磁場24kOeにおける磁気特性を60kOeのパル
ス着磁を行つて測定した磁気特性と比較して示
す。60kOeのパルス着磁を行うと合金SとTの間
でBrと(BH)maxにほとんど差がなくなる。合
金Sは着磁性が悪く、24kOeの着磁磁場では
(BH)maxの飽和値(14.3MGOe)の72%しか得
られていない。一方、Bを添加した合金Tでは、
24kOeの着磁磁場において(BH)maxの飽和値
(14.1MGOe)が得られており極めて着磁性がよ
い。 第2図aは合金S(B:0%)、同bは合金T
(B:0.03%)の時効処理後の光学顕微鏡写真で
ある。合金Sにおいては前述のごとく着磁性を悪
くするX相が結晶粒内に出現しているが、合金T
ではそれが見られない。
[Table] The optimum solution temperature for each of alloys S and T (1150°C for S and 1130°C for T) was determined, and the alloy thin plate was solution-treated at that temperature for 16 hours. After solution treatment, the solution is rapidly cooled.
As an aging treatment, it was held at 850°C for 1 hour and then cooled to 400°C at a rate of 1°C/min. Next, the thin alloy plate was coarsely ground and then finely ground using a ball mill to adjust the particle size of the ground particles to be 90 μm on average. 2.6 wt % of epoxy resin was added to this powder and kneaded, and the kneaded product was compression molded into a test piece shape (10 x 10 x 20 mm) at a pressure of 4 ton/cm 2 in a magnetic field of 16 kOe. The molded body was heat-cured, and its magnetic properties were measured using a self-recording magnetometer. Figure 1 shows the maximum applied magnetic field (magnetizing magnetic field)
The demagnetization curve at 24KOe is shown. As is clear from the figure, B-added alloy T is better than B-free alloy S.
The residual magnetic flux density Br is 1.1kG higher. In Table 2,
The magnetic properties at a magnetizing magnetic field of 24 kOe are compared with those measured by pulse magnetization at 60 kOe. When 60 kOe pulse magnetization is performed, there is almost no difference in Br and (BH)max between alloys S and T. Alloy S has poor magnetization, and only 72% of the (BH)max saturation value (14.3 MGOe) was obtained in a magnetizing field of 24 kOe. On the other hand, in alloy T containing B,
The saturation value of (BH)max (14.1 MGOe) was obtained in a magnetizing magnetic field of 24 kOe, and the magnetization property is extremely good. Figure 2 a shows alloy S (B: 0%), and figure 2 b shows alloy T.
(B: 0.03%) is an optical micrograph after aging treatment. In alloy S, as mentioned above, the X phase that deteriorates magnetization appears in the crystal grains, but in alloy T
You can't see that.

【表】 実施例 2 着磁性に及ぼすBの添加量の効果を調べた。
Co−25.5wt%Sm−6wt%Cu−19wt%Fe−2wt%
Zr合金をベースにBの添加量を変えた合金を溶
製した。実施例1と同様の方法でボンド磁石を作
製し、磁気特性を評価した。ここで、溶体化温度
はおのおのの合金組成で最高の保磁力を出す温度
を選び、溶体化時間は8時間とした。時効条件は
実施例1と同じである。 第3図に着磁磁場が24kOeと60kOeの場合の磁
気特性を示す。Bの添加量が0.015〜0.03wt%に
おいて、高い(BH)maxを維持したまま着磁性
が改善されている。ここで、Bの添加によつて保
磁力は減少する。 実施例 3 Feの含有量の異る合金を溶製し、B添加の効
果を調べた。すなわち、Co−25.5wt%Sm−6wt
%Cu−(17〜21)wt%Fe−2wt%Zr合金とそれら
に0.03wt%のBを添加した合金を溶製し、実施例
1と同様の方法でボンド磁石を作製した。ここで
溶体化温度はそれぞれの組成で最高の保磁力を出
す温度とし、溶体化時間は8時間とした。 第4図に着磁磁場が24kOeと60kOeの場合の磁
気特性の結果を示す。Fe含有量が変化した場合
でもBの添加によつて着磁性が改善されている。 実施例 4 第1表に示す成分の合金を用いて以下の手順に
従つて焼結磁石を作製した。まず、実施例1と同
様の方法で作製した合金薄板からボールミル粉砕
によつて微細合金粉を得、それを16kOeの磁場中
にて2ton/cm2の圧力で圧縮成形した。次に、成形
体を1160〜1220℃の範囲の最適温度で1時間焼結
し、引き続き1110〜1160℃の範囲の最適温度で16
時間溶体化した。溶体化後の時効処理として、
850℃で1〜4時間保定し、その後1℃/minで
400℃まで冷却した。850℃での保定時間を長くす
ることによつて保磁力が向上する。得られた保磁
力iHcに対して残留磁束密度Brを示すと第5図の
ようになる。図には、着磁磁場Hmが24kOeと
60kOeの場合のBrを示した。Hmが60kOeの場合
には、ほぼ完全に着磁されており、B添加の有無
によつてBrに差はない。一方、Hmが24kOeの場
合には、保磁力が高くなるに従つて着磁が不完全
になり、Brが低下する。一般に着磁性は保磁力
によつて異なるために、より適性に磁石の着磁性
を評価するためには、同程度の保磁力を有する磁
石においてBrを比較する必要がある。第5図の
Hmが24kOeの場合から明らかなように、同程度
の保磁力の所でBの添加によつて1〜1.5kG高い
Brが得られており、著しく着磁性が改善されて
いる。保磁力として約10kOeを示す条件での合金
S(B無添加)とT(0.03%B添加)の磁気特性を
第3表に示す。表から明らかなように、B添加合
金においては著しく着磁性が改善されているのみ
ならず、B添加による減磁曲線の角形性の改善に
より高い(BH)maxが得られている。B無添加
合金の場合に着磁性が悪い理由は、ボンド磁石と
同様に焼結磁石においても第2図に示すようなX
相が出現しているためである。見かけ上保磁力が
同じでもX相のような強い磁壁のピンニングサイ
トがある場合には、着磁性が著しく悪くなる。B
添加はX相の出現を抑制し、均一な微細セル組織
を実現することにより着磁性を向上させる。
[Table] Example 2 The effect of the amount of B added on magnetizability was investigated.
Co−25.5wt% Sm−6wt% Cu−19wt% Fe−2wt%
We produced alloys based on Zr alloys with varying amounts of B added. A bonded magnet was produced in the same manner as in Example 1, and its magnetic properties were evaluated. Here, the solution temperature was selected to give the highest coercive force for each alloy composition, and the solution time was 8 hours. The aging conditions are the same as in Example 1. Figure 3 shows the magnetic properties when the magnetizing magnetic field is 24 kOe and 60 kOe. When the amount of B added is 0.015 to 0.03 wt%, the magnetization is improved while maintaining a high (BH)max. Here, the addition of B reduces the coercive force. Example 3 Alloys with different Fe contents were melted and the effect of B addition was investigated. That is, Co−25.5wt% Sm−6wt
%Cu-(17-21)wt%Fe-2wt%Zr alloy and an alloy in which 0.03wt% of B was added were melted and bonded magnets were produced in the same manner as in Example 1. Here, the solution temperature was set to the temperature that produced the highest coercive force for each composition, and the solution time was set to 8 hours. Figure 4 shows the results of magnetic properties when the magnetizing magnetic field is 24 kOe and 60 kOe. Even when the Fe content changes, the magnetization is improved by adding B. Example 4 A sintered magnet was produced using an alloy having the components shown in Table 1 according to the following procedure. First, a fine alloy powder was obtained by ball milling a thin alloy plate produced in the same manner as in Example 1, and compression molded at a pressure of 2 tons/cm 2 in a magnetic field of 16 kOe. The compact is then sintered at an optimum temperature in the range of 1160-1220°C for 1 hour, followed by sintering at an optimum temperature in the range of 1110-1160°C for 16 hours.
Time solution. As an aging treatment after solution treatment,
Hold at 850℃ for 1 to 4 hours, then at 1℃/min.
Cooled to 400°C. The coercive force is improved by increasing the holding time at 850°C. The residual magnetic flux density Br is shown in FIG. 5 with respect to the obtained coercive force iHc. In the figure, the magnetizing magnetic field Hm is 24kOe.
Br at 60kOe is shown. When Hm is 60 kOe, it is almost completely magnetized, and there is no difference in Br depending on whether B is added or not. On the other hand, when Hm is 24 kOe, as the coercive force increases, magnetization becomes incomplete and Br decreases. In general, magnetizability differs depending on coercive force, so in order to more appropriately evaluate the magnetizability of magnets, it is necessary to compare Br in magnets with similar coercive forces. Figure 5
As is clear from the case where Hm is 24kOe, the addition of B increases the coercive force by 1 to 1.5kG at the same coercive force.
Br was obtained, and the magnetizability was significantly improved. Table 3 shows the magnetic properties of alloys S (no B added) and T (0.03% B added) under conditions that exhibit a coercive force of about 10 kOe. As is clear from the table, the B-added alloy not only has significantly improved magnetization, but also has a high (BH)max due to the improvement in the squareness of the demagnetization curve due to B addition. The reason why magnetization is poor in the case of B-free alloys is that, like bonded magnets, sintered magnets also have X as shown in Figure 2.
This is because a phase has appeared. Even if the apparent coercive force is the same, if there is a pinning site of a strong domain wall such as in the X phase, the magnetization becomes significantly worse. B
The addition suppresses the appearance of the X phase and improves magnetization by realizing a uniform fine cell structure.

〔発明の効果〕〔Effect of the invention〕

本発明による微量のBの添加によつてSm2Co17
型磁石の着磁性は著しく改善された。実施例で取
り上げた異方性のボンド磁石は、リング状磁石と
なし半径方向に異方性をもたせることができるの
で近年その用途が広がりつつある。ここで、リン
グの円周方向に多極に着磁する場合には、着磁磁
場の大きさもおのずと制限されるが、本発明の着
磁性のよい磁石合金を用いることによりその問題
は解消される。 本発明の磁石合金を用いて焼結磁石を作製した
場合にも著しく着磁性が改善され、実際の磁石部
品の着磁が容易になることが期待される。
By adding a trace amount of B according to the present invention, Sm 2 Co 17
The magnetization of the molded magnet was significantly improved. The anisotropic bonded magnet used in the examples is a ring-shaped magnet and can have anisotropy in the radial direction, so its uses have been expanding in recent years. Here, when magnetizing a ring with multiple poles in the circumferential direction, the magnitude of the magnetizing magnetic field is naturally limited, but this problem can be solved by using the magnetic alloy of the present invention with good magnetization properties. . It is expected that when a sintered magnet is produced using the magnet alloy of the present invention, the magnetization properties will be significantly improved, and the magnetization of actual magnetic components will become easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSm−Co−Cu−Fe−Zr合金とそれに
Bを添加した合金の減磁曲線を示す図、第2図
a,bはB添加によつてX相の析出が抑制される
ことを示す金属組織顕微鏡写真、第3図は着磁性
に及ぼすB添加量の効果を示す図、第4図はFe
の添加量の異る合金におけるB添加の効果を示す
図、第5図は焼結磁石におけるB添加の効果を示
す図である。
Figure 1 shows the demagnetization curves of the Sm-Co-Cu-Fe-Zr alloy and the alloy to which B is added, and Figures 2 a and b show that the addition of B suppresses the precipitation of the X phase. Figure 3 is a diagram showing the effect of B addition amount on magnetizability, Figure 4 is a metallographic micrograph showing Fe.
FIG. 5 is a diagram showing the effect of B addition in alloys with different amounts of addition. FIG. 5 is a diagram showing the effect of B addition in a sintered magnet.

Claims (1)

【特許請求の範囲】 1 重量百分率(wt%)でR(ただしRはSmを
主体とする希土類元素):23〜28%、Cu:4〜10
%、Fe:15〜25%、Zr:0.2〜5%、B:0.005〜
0.06%、残部がCo並びに不可避的不純物からなる
ことを特徴とする永久磁石材料。 2 B:0.015〜0.03%である特許請求の範囲第
1項記載の永久磁石材料。 3 重量百分率(wt%)でR(ただしRはSmを
主体とする希土類元素)が23〜28%、Cuが4〜
10%、Feが15〜25%、Zrが0.2〜5%、Bが0.005
〜0.06%、残部がCo並びに不可避的不純物からな
る合金溶湯を、板厚3mm以下の薄板に直接連続鋳
造急冷処理を行うことを特徴とする永久磁石材料
の製造方法。 4 Bが0.015〜0.03%であることを特徴とする
特許請求の範囲第3項記載の永久磁石材料の製造
方法。
[Claims] 1. R (R is a rare earth element mainly composed of Sm) in weight percentage (wt%): 23 to 28%, Cu: 4 to 10
%, Fe: 15-25%, Zr: 0.2-5%, B: 0.005-
A permanent magnetic material characterized by comprising 0.06% and the balance consisting of Co and inevitable impurities. 2. The permanent magnet material according to claim 1, wherein B: 0.015 to 0.03%. 3 In terms of weight percentage (wt%), R (R is a rare earth element mainly composed of Sm) is 23 to 28%, and Cu is 4 to 28%.
10%, Fe 15-25%, Zr 0.2-5%, B 0.005
A method for producing a permanent magnet material, which comprises directly continuous casting and quenching of a molten alloy consisting of ~0.06% Co and the balance being Co and unavoidable impurities into a thin plate with a thickness of 3 mm or less. 4. The method for producing a permanent magnet material according to claim 3, wherein B is 0.015 to 0.03%.
JP62-288346A 1987-03-12 1987-11-17 Permanent magnet material and its manufacturing method Granted JPH01247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62-288346A JPH01247A (en) 1987-03-12 1987-11-17 Permanent magnet material and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-57529 1987-03-12
JP5752987 1987-03-12
JP62-288346A JPH01247A (en) 1987-03-12 1987-11-17 Permanent magnet material and its manufacturing method

Publications (3)

Publication Number Publication Date
JPS64247A JPS64247A (en) 1989-01-05
JPH01247A JPH01247A (en) 1989-01-05
JPH0555581B2 true JPH0555581B2 (en) 1993-08-17

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946718B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9366930B2 (en) 2002-05-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device with capacitor elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115304A (en) * 1979-02-28 1980-09-05 Daido Steel Co Ltd Permanent magnet material
JPS5644741A (en) * 1979-09-18 1981-04-24 Hitachi Metals Ltd Permanent magnet alloy
JPS58182802A (en) * 1982-04-21 1983-10-25 Pioneer Electronic Corp Preparation of permanent magnet
JPS59153873A (en) * 1983-02-19 1984-09-01 Tdk Corp Heat treatment of permanent magnet material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115304A (en) * 1979-02-28 1980-09-05 Daido Steel Co Ltd Permanent magnet material
JPS5644741A (en) * 1979-09-18 1981-04-24 Hitachi Metals Ltd Permanent magnet alloy
JPS58182802A (en) * 1982-04-21 1983-10-25 Pioneer Electronic Corp Preparation of permanent magnet
JPS59153873A (en) * 1983-02-19 1984-09-01 Tdk Corp Heat treatment of permanent magnet material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946718B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8946717B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9366930B2 (en) 2002-05-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device with capacitor elements

Also Published As

Publication number Publication date
JPS64247A (en) 1989-01-05

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
EP0134304B1 (en) Permanent magnets
WO2009137983A1 (en) Sintered ndfeb rare earth permanent magnetic material and its manufacturing method
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH07122413A (en) Rare earth permanent magnet and manufacture thereof
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JPH02101146A (en) Nd-fe-b-type sintered magnet excellent in heat treatment characteristic
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
US5230749A (en) Permanent magnets
US5186761A (en) Magnetic alloy and method of production
JPS62241304A (en) Rare earth permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH0555581B2 (en)
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPH04293206A (en) Pare earth elements-fe-b based anisotropic permanent magnet
JPH04143221A (en) Production of permanent magnet
JP3380575B2 (en) RB-Fe cast magnet
JP3536943B2 (en) Alloy for rare earth magnet and method for producing the same
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JP2746111B2 (en) Alloy for permanent magnet
JPH01247A (en) Permanent magnet material and its manufacturing method
JPH0536494B2 (en)
JP2743114B2 (en) R-Fe-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JPH1088295A (en) Alloy for rare earth-iron-boron type bond magnet