JPH0555580B2 - - Google Patents

Info

Publication number
JPH0555580B2
JPH0555580B2 JP20889486A JP20889486A JPH0555580B2 JP H0555580 B2 JPH0555580 B2 JP H0555580B2 JP 20889486 A JP20889486 A JP 20889486A JP 20889486 A JP20889486 A JP 20889486A JP H0555580 B2 JPH0555580 B2 JP H0555580B2
Authority
JP
Japan
Prior art keywords
wire
ball
bonding
ingot
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20889486A
Other languages
Japanese (ja)
Other versions
JPS6365036A (en
Inventor
Tooru Tanigawa
Shoji Shiga
Masaaki Kurihara
Kozo Okuda
Ichiro Kaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61208894A priority Critical patent/JPS6365036A/en
Publication of JPS6365036A publication Critical patent/JPS6365036A/en
Publication of JPH0555580B2 publication Critical patent/JPH0555580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01037Rubidium [Rb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012066N purity grades, i.e. 99.9999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Abstract

PURPOSE:To manufacture a fine copper wire excellent in deformability and having high wire strength, by subjecting an ingot having a specific composition consisting of Ti, Na, etc., and Cu and cast under vacuum or under nonoxidizing atmosphere to wire drawing and to annealing treatment under proper conditions. CONSTITUTION:The ingot consisting of 0.2-2,000ppm, in total, of 0.1-50ppm Ti and 0.1-1,000ppm of at least one element among Na, K, Rb, Cs, Be, Sr, Ba, Y, Zr, Mo, W, Ag, Zn, Ga, Tl, and Sn and the balance Cu is cast under vacuum or nonoxidizing atmosphere. It is desirable to use pure copper of >=99.999wt% purity, preferably of >=99.9999%, as the above Cu. The above ingot is repeatedly subjected to wire drawing and annealing treatment to be formed into the prescribed wire diameter. At this time, at least final draft is regulated to 70-99.99%, and then elongation is also regulated to 2-20% by means of annealing treatment or by further application of working at 1-5% draft. In this way, the fine copper wire combining excellent deformability with high wire strength, causing neither softening at ordinary temp. nor sag of loop, having superior shape of ball and suitable for ball bonding wire can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、半導体製造に用いられるボンデイン
グワイヤ用銅細線に関する。 (従来の技術) ICやトランジスタ等の半導体の製造において、
Siチツプ上の回路素子と外部の電源への接続や、
外部との情報のやりとりを行うために、回路素子
に接続したパツドと、半導体のリード間に線径15
〜100μmの金やアルミニウムあるいはアルミニ
ウム合金等の細線が用いられている。 (発明が解決しようとする問題点) このうち、アルミニウムやアルミニウム合金は
電源との接合は同種金属で行える利点を有し、安
価であるけれどもボールボンドが困難であり、生
産性に劣る超音波を用いるウエツジボンドが行わ
れているのみならず、さらに耐食性に劣るため
に、樹脂封止型の半導体では透湿水によるワイヤ
の腐食が生じるので、一部の気密封止型半導体に
専ら使用されている。 一方、金は耐食性に優れ、生産性の高いボール
ボンデイングを利用できる等の利点を有し、樹脂
封止型の半導体を中心に広く利用されている。し
かしながら、素材である金が著しく高価であるば
かりか、電極パツドのアルミニウムやアルミニウ
ム合金と脆弱なAl−Auの金属間化合物を形成し
たり、あるいは透湿水の存在下でアルミニウムと
電食対を形成してアルミニウムを腐食せしめる等
により、電気回路の断線を生じることが知られて
いる。特に半導体の高度集積化によつて熱発生に
よる温度上昇やチツプ面積の増大による透湿水経
路の短縮とともに多ピン化による信頼性の大幅な
低下が懸念される。 このために金に代替でき、かつ、特性的にも金
に劣らないワイヤの開発が望まれていた。 このために、銅のワイヤが提案されているけれ
ども、その変形能が金に劣り、パツド下にクラツ
クを生じたり、電極のアルミニウムとの接合が不
十分であるという問題点を生じている。特に高集
積ICでは、電極パツド下にSiO2等の脆い絶縁層
が存在する例が多く、金に匹敵するかまたはそれ
以上の変形能を有する銅ワイヤの開発が期待され
ていた。 (問題点を解決するための手段) 本発明は上記に鑑みて鋭意検討の結果成された
ものであり、 (1) 0.1〜50ppmのTiと0.1〜1000ppmの、Na、
K、Rb、Cs、Be、Sr、Ba、Y、Mo、W、
Ag、Zn、Ga、Tl及びSnから成る群から選ば
れた少なくとも1種の元素とを合計で0.2〜
2000ppm含有し、残部純度99.999重量%以上の
Cuから成ることを特徴とするボンデイングワ
イヤ用銅細線、 (2) 真空または非酸化性雰囲気下で鋳造された
0.1〜50ppmのTiと0.1〜1000ppmの、Na、K、
Rb、Cs、Be、Sr、Ba、Y、Mo、W、Ag、
Zn、Ga、Tl及びSnから成る群から選ばれた少
なくとも1種の元素とを合計で0.2〜2000ppm
含有し、残部純度99.999重量%以上のCuから成
る鋳塊を、伸線加工と焼鈍処理を繰り返して所
定の線径にするに当り、少なくとも最終加工率
を70〜99.99%とし、焼鈍処理により2〜20%
の伸びとすることを特徴とするボンデイングワ
イヤ用銅細線の製造方法、 を提供するものである。 本発明の銅細線の製造は、非酸化性雰囲気、も
しくは真空中で前記組成の銅合金の鋳塊ビレツト
を鋳造した後、必要に応じて熱間加工を行い、そ
の後伸線加工と焼鈍を繰り返して所定線径とした
後、最終焼鈍を行つて所定の性能とする工程によ
り行うことができる。この際少なくとも焼鈍前の
最終加工率を70〜99.99%、好ましくは90〜99.95
%とし、さらに150〜400℃の温度で所定時間焼鈍
して伸びを2〜20%、好ましくは6〜16%に調整
すると、より優れた特性とすることができる。ま
た、焼鈍により細線の特性を発現する代わりに、
過剰に焼鈍した後、1〜5%の加工率の伸線加工
を行つて同様の特性としてもよい。 半導体素子とインナーリード間のワイヤボンデ
イングはボールボンデイングされる例が多い。 ボールボンデイングにおいて、細線はH2炎又
は放電により先端をメルトしてボールを形成され
るがボールが真球に近く偏芯していないこと、ボ
ールが電極であるアルミニウムパツドに容易に接
合すること、ワイヤのループが適当な高さを保持
すること、ステツチ側の接合が十分であること等
が必要とされる。 銅は純度の向上により、変形能が優れたものと
できるけれども、常温軟化し易くループのダレを
生じたりすること、ロツトによる特性のバラツキ
を生じ易いこと、またボールボンデイング時に電
極パツドのアルミニウムと接合しない、ボール浮
き現象を生じ易いことなどの欠点を有していた。 また、従来Ti単独でも、ボンデイング特性の
改善効果が知られているけれども、Tiそれ自身
O2やN2と反応し易く、そのため特性のバラツキ
が大きいこと、またTiの添加によつて伸び(El)
が大きく変化することが欠点として知られてい
た。 本発明によれば、0.1〜50ppmのTiと0.1〜
1000ppm、好ましくは0.1〜100ppmの、Na、K、
Rb、Cs、Be、Sr、Ba、Y、Mo及びWから成る
群から選ばれた少なくとも1種又は2種以上の元
素を合計で0.2〜200ppm添加することにより、上
記に述べた欠点を解消できるばかりではなく、チ
ツプの機械的損傷を防止するために、低荷重、低
超音波出力を要求される高集積ICに対するボー
ルボンドでも金に匹敵する以上のボンデイング特
性を得ることができる。 以上の効果は、Na、K、Rb、Cs、Be、Sr、
Ba、Y、Mo及びWをベースの銅に添加後、Ti
を添加すること及び、99.999%以上、好ましくは
99.9999%以上の純銅を使用することにより一層
発現できる。 なお、Na、K、Rb、Cs、Be、Sr、Ba、Y、
Mo及びWの添加量は0.1〜100ppm、Tiとの合計
で0.1〜200ppmとするのが好ましいが、各々0.1
〜1000ppm、0.1〜2000ppmでも一部の機種に十
分使用することが可能である。 銅細線については以上のボール及びステツチ側
ボンデイング性と共にループ形状やワイヤ強度が
実用的に重要である。これらの特性には、ワイヤ
の機械的特性が関与するけれども半導体の種類
や、ボンデイング方式及び装置条件によつて要求
される特性は異なる。しかしながら、伸びが著し
く小さいと、ループ高さが大きくなり、ワイヤ間
でのシヨートを引起こす原因となる他、ワイヤ変
形能が小さく、ステツチボンドを行うに高荷重、
高超音波出力を必要とするほど、ボンデイング性
が低下する。一方、伸びが著しく大きいと、ルー
プ高さが低くなり、チツプとの接触を招く危険が
ある他、ステツチボンドでのワイヤ潰れが大きく
なり、ネツク部が脆弱となり易い。また、ボンド
後のワイヤテイルが不均一となり、ボール形成が
行えない事態が生じることとなる。 このため、前記の機械的特性が実用上有効であ
る。これらの特性を実用的に安定して有利に発現
するためには、製造工程、特に最終伸線工程での
加工率が特に重要であり、前記加工範囲が必要と
される。 (実施例) 次に本発明を実施例に基づきさらに詳しく説明
する。 実施例 1 真空溶解炉を用いて99.9996%の純銅に添加元
素を加え第1表の実験No.1〜23に示した合金組成
の鋳塊(25mm×140mm)ビレツトを鋳造した。こ
のビレツトを面削して約20mm(直径)×100mm(長
さ)とした後、熱間圧延で直径約10mmとし、その
後直径8mmまで皮ムキを入れて伸線を行つた。 さらに92%の加工率での伸線と、350℃での真
空焼鈍を繰り返して、直径25μmのワイヤとし
た。最後にアルゴン雰囲気中250〜400℃の温度と
した走間焼鈍炉で焼鈍を行い、伸び約15%前後に
したワイヤを製造した。この実験No.1〜23で得ら
れたワイヤの機械的特性を第2表に示した。同表
中Blは破断強度、Elは伸びである。 ワイヤ仲の酸素量はいずれも5ppm以下であつ
た。
(Industrial Application Field) The present invention relates to a fine copper wire for bonding wire used in semiconductor manufacturing. (Conventional technology) In the manufacture of semiconductors such as ICs and transistors,
Connection of circuit elements on Si chip to external power supply,
In order to exchange information with the outside world, a wire with a diameter of 15 mm is placed between the pad connected to the circuit element and the lead of the semiconductor.
A thin wire of ~100 μm made of gold, aluminum, or aluminum alloy is used. (Problems to be solved by the invention) Of these, aluminum and aluminum alloys have the advantage that they can be bonded to the power source using the same metal, and although they are inexpensive, ball bonding is difficult, and ultrasonic waves are less productive. Not only is wedge bonding used, but it is also used exclusively for some hermetically sealed semiconductors, as wires are corroded by permeable water in resin-sealed semiconductors due to poor corrosion resistance. . On the other hand, gold has advantages such as excellent corrosion resistance and the ability to use highly productive ball bonding, and is widely used mainly in resin-sealed semiconductors. However, not only is the material gold extremely expensive, but it also forms fragile Al-Au intermetallic compounds with the aluminum or aluminum alloy of the electrode pad, or causes electrolytic corrosion with aluminum in the presence of permeable water. It is known that this formation causes corrosion of aluminum, leading to breakage of electrical circuits. In particular, with the high degree of integration of semiconductors, there are concerns that the temperature will rise due to heat generation, the moisture permeable path will be shortened due to an increase in the chip area, and reliability will significantly decrease due to the increase in the number of pins. For this reason, it has been desired to develop a wire that can replace gold and has properties comparable to gold. For this reason, copper wire has been proposed, but its deformability is inferior to that of gold, causing problems such as cracks occurring under the pad and insufficient bonding to the aluminum of the electrode. In particular, in highly integrated ICs, there are many cases where a brittle insulating layer such as SiO 2 exists under the electrode pad, and there were expectations for the development of copper wire with deformability comparable to or better than that of gold. (Means for Solving the Problems) The present invention was achieved as a result of intensive studies in view of the above. (1) 0.1 to 50 ppm of Ti, 0.1 to 1000 ppm of Na,
K, Rb, Cs, Be, Sr, Ba, Y, Mo, W,
At least one element selected from the group consisting of Ag, Zn, Ga, Tl, and Sn in a total of 0.2~
Contains 2000ppm, balance purity 99.999% by weight or more
Copper thin wire for bonding wire characterized by consisting of Cu, (2) cast in vacuum or non-oxidizing atmosphere
0.1~50ppm Ti and 0.1~1000ppm Na, K,
Rb, Cs, Be, Sr, Ba, Y, Mo, W, Ag,
At least one element selected from the group consisting of Zn, Ga, Tl and Sn in a total of 0.2 to 2000 ppm
When an ingot consisting of copper with a balance purity of 99.999% by weight or more is repeatedly drawn and annealed to a predetermined wire diameter, the final processing rate is at least 70 to 99.99%, and the annealing process ~20%
The present invention provides a method for manufacturing a thin copper wire for bonding wire, which is characterized by an elongation of . The production of the thin copper wire of the present invention involves casting an ingot billet of copper alloy with the above composition in a non-oxidizing atmosphere or vacuum, then hot working if necessary, and then repeating wire drawing and annealing. This can be carried out by a step of final annealing to obtain a predetermined performance after the wire has a predetermined diameter. At this time, the final processing rate before annealing is at least 70 to 99.99%, preferably 90 to 99.95.
%, and further annealing at a temperature of 150 to 400° C. for a predetermined period of time to adjust the elongation to 2 to 20%, preferably 6 to 16%, can provide better properties. In addition, instead of developing fine wire characteristics through annealing,
After excessive annealing, wire drawing may be performed at a processing rate of 1 to 5% to obtain similar characteristics. Ball bonding is often used for wire bonding between semiconductor elements and inner leads. In ball bonding, the tip of a thin wire is melted using H2 flame or electric discharge to form a ball, but the ball must be close to a true sphere and not eccentric, and the ball can be easily bonded to the aluminum pad that is the electrode. It is necessary that the wire loop maintains an appropriate height, that the stitch side is well bonded, etc. Copper can be made to have excellent deformability by improving its purity, but it tends to soften at room temperature and cause loops to sag, and it tends to vary in properties depending on the lot, and it is difficult to bond it to the aluminum of the electrode pad during ball bonding. However, it has disadvantages such as the fact that it does not work well, and that it tends to cause the ball to float. Furthermore, although Ti alone has been known to have an effect on improving bonding properties, Ti itself
It easily reacts with O 2 and N 2 , so there is a large variation in properties, and the addition of Ti increases elongation (El).
It is known that the disadvantage is that the value varies greatly. According to the invention, 0.1 to 50 ppm Ti and 0.1 to 50 ppm Ti
1000ppm, preferably 0.1-100ppm, Na, K,
By adding a total of 0.2 to 200 ppm of at least one or more elements selected from the group consisting of Rb, Cs, Be, Sr, Ba, Y, Mo, and W, the above-mentioned drawbacks can be overcome. In addition, bonding properties comparable to or better than gold can be obtained even in ball bonding for highly integrated ICs that require low load and low ultrasonic output to prevent mechanical damage to the chip. The above effects include Na, K, Rb, Cs, Be, Sr,
After adding Ba, Y, Mo and W to the base copper, Ti
and 99.999% or more, preferably
This can be further improved by using 99.9999% or more pure copper. In addition, Na, K, Rb, Cs, Be, Sr, Ba, Y,
The amount of Mo and W added is preferably 0.1 to 100 ppm, and the total amount with Ti is preferably 0.1 to 200 ppm, but each is 0.1 to 100 ppm.
~1000ppm, even 0.1~2000ppm can be used sufficiently for some models. Regarding copper wire, the loop shape and wire strength are practically important, as well as the bonding properties on the ball and stitch sides described above. Although these characteristics are related to the mechanical characteristics of the wire, the characteristics required differ depending on the type of semiconductor, bonding method, and device conditions. However, if the elongation is extremely small, the loop height becomes large, which may cause shoots between the wires, and the wire deformability is small, requiring high loads to perform stitch bonding.
The higher the ultrasonic output required, the lower the bonding properties. On the other hand, if the elongation is extremely large, the loop height will be low and there is a risk of contact with the chip, and the wire will be more likely to collapse at the stitch bond, making the neck part likely to be fragile. Further, the wire tail after bonding becomes non-uniform, and a ball cannot be formed. Therefore, the mechanical properties described above are practically effective. In order to stably and advantageously exhibit these properties in practical terms, the processing rate in the manufacturing process, particularly in the final wire drawing process, is particularly important, and the processing range described above is required. (Examples) Next, the present invention will be explained in more detail based on Examples. Example 1 Using a vacuum melting furnace, additive elements were added to 99.9996% pure copper, and billets (25 mm x 140 mm) having alloy compositions shown in Experiment Nos. 1 to 23 in Table 1 were cast. This billet was chamfered to approximately 20 mm (diameter) x 100 mm (length), then hot rolled to a diameter of approximately 10 mm, and then stripped to a diameter of 8 mm and wire drawn. Further, wire drawing at a processing rate of 92% and vacuum annealing at 350°C were repeated to obtain a wire with a diameter of 25 μm. Finally, annealing was performed in a running annealing furnace at a temperature of 250 to 400°C in an argon atmosphere to produce a wire with an elongation of approximately 15%. The mechanical properties of the wires obtained in Experiment Nos. 1 to 23 are shown in Table 2. In the same table, Bl is breaking strength and El is elongation. The amount of oxygen in the middle of the wire was less than 5 ppm in all cases.

【表】 これらのワイヤを10%H2−N2雰囲気中で、ボ
ンデイング条件を、荷重35g、超音波出力
0.02W、時間30msec、ステージ温度275℃として
マニユアル型のワイヤボンダーでボールボンドを
行い、次の項目について比較試験した。 (1) ボールの形状(真球度、偏芯) (2) ボールの歪(ボールアツプ直後のボールの径
と押潰した後のボール径との比較) (3) ボール浮き(Siウエハ上に蒸着した1μm厚の
Alにボールボンドした時の接合不成功率) (4) チツプ割れ (5) 接合ワイヤ破断モード(ボンデイング後ワイ
ヤプル試験を行つた時の破断の部位が接合部か
ワイヤ切れかをみる。ワイヤ切れの割合(%)
で示す。) (6) ループ高さ(ボンデイング後のループ高さ) なお、(5)、(6)の項目については基材としてメツ
キレスのCu−0.15Cr−0.1Sn合金条(0.25mm厚)
を用いた。 この結果を第2表に示した。同表より本発明の
ワイヤは機械的特性及ボンデイング特性が優れに
るのに対して比較例である実験No.11〜14(過剰添
加)は同じレベルのボール変形能を有するけれど
もボール浮き率が非常に大きいこと、ループ高さ
が適当でないことがわかる。また無添加(Cuの
み。実験No.19)に比べ本発明は、ボール形状が良
くボール浮き率が小さく、ループ高さも良好であ
ることがわかる。また、Auのみ(実験No.15)は
他の特性が良いが本発明に比べ伸び(El)が小さ
い。
[Table] These wires were bonded in a 10% H2 - N2 atmosphere, with a load of 35g and an ultrasonic output.
Ball bonding was performed using a manual wire bonder at 0.02W, time 30msec, and stage temperature 275°C, and comparative tests were conducted on the following items. (1) Ball shape (sphericity, eccentricity) (2) Ball distortion (comparison of ball diameter immediately after ball up and ball diameter after crushing) (3) Ball floating (deposited on Si wafer) 1 μm thick
Bonding failure rate when ball bonding to Al) (4) Chip cracking (5) Bonded wire fracture mode (When performing a wire pull test after bonding, check whether the fracture occurs at the joint or a wire breakage. Rate of wire breakage) (%)
Indicated by ) (6) Loop height (loop height after bonding) For items (5) and (6), the base material is a non-metallic Cu-0.15Cr-0.1Sn alloy strip (0.25 mm thick).
was used. The results are shown in Table 2. From the same table, the wire of the present invention has excellent mechanical properties and bonding properties, whereas the comparative examples, Experiment Nos. 11 to 14 (excess addition), have the same level of ball deformability but have a lower ball floating rate. It can be seen that it is very large and that the loop height is inappropriate. Furthermore, it can be seen that, compared to the ball without additives (Cu only, Experiment No. 19), the ball shape of the present invention is better, the ball float rate is smaller, and the loop height is also better. Further, although Au only (Experiment No. 15) has good other properties, the elongation (El) is smaller than that of the present invention.

【表】 実施例 2 実施例1の実験No.2と同じ合金組成の鋳塊ビレ
ツトを用いてワイヤを製造した。この場合最終伸
線加工率を80、99.95、99.97%とするとともに、
焼鈍温度を変えて種々の伸びのものを作つた以外
は実施例1と同様にして行つた。 これらワイヤについて実施例1の条件でメツキ
レスのCu−0.15Cr−0.1Sn合金条(0.25mm厚)に
ボールボンドを行い、そのプル試験を実施して、
ワイヤ破断モードの割合を求めた。 結果を第1図に示した。 同図の結果より高加工率でも、2〜20%の範囲
内で良好なボンデイング特性が得られることがわ
かる。 (発明の効果) 本発明の銅細線は変形能は優れるばかりでな
く、ワイヤ強度が高く、常温軟化せず、ループの
ダレを生じない。またボールの形状が良好でボー
ルボンデイングにおいて電極パツドのアルミニウ
ムとの接合性がよく、ボール浮き率が大きいとい
う優れた効果を奏する。 さらに本発明の銅細線によれば、チツプの機械
的損傷を防止できるため低荷重、低超音波出力条
件を要求される高集積ICのボールボンドにおい
ても金に匹敵する以上のボンデイング特性が得ら
れる。 本発明によれば安価な銅線を用いて金線を有利
に代替できる。 本発明は、高純度Cuの特性を追求して得られ
た成果であり、上記の効果のほか長期の信頼性に
ついては、前述の如くAl/Auは固相拡散して脆
弱な界面相を形成し、パープルブラーグ現象を起
こし易いが、Al−Cuはこれに比して数分の1以
下であることが知られており、この意味でも効果
は極めて大きい。
[Table] Example 2 A wire was manufactured using an ingot billet having the same alloy composition as in Experiment No. 2 of Example 1. In this case, the final wire drawing processing rate is 80, 99.95, 99.97%,
Example 1 was carried out in the same manner as in Example 1, except that the annealing temperature was changed to produce products with various elongations. These wires were ball-bonded to a non-metallic Cu-0.15Cr-0.1Sn alloy strip (0.25 mm thick) under the conditions of Example 1, and a pull test was conducted.
The percentage of wire breakage mode was determined. The results are shown in Figure 1. The results shown in the figure show that even at high processing rates, good bonding characteristics can be obtained within the range of 2 to 20%. (Effects of the Invention) The thin copper wire of the present invention not only has excellent deformability, but also has high wire strength, does not soften at room temperature, and does not cause loop sag. In addition, the ball has a good shape, has good bonding properties with the aluminum of the electrode pad in ball bonding, and has excellent effects such as a high ball floating rate. Furthermore, the thin copper wire of the present invention can prevent mechanical damage to the chip, making it possible to obtain bonding properties comparable to or better than that of gold even in ball bonds for highly integrated ICs that require low load and low ultrasonic output conditions. . According to the present invention, inexpensive copper wire can be used to advantageously replace gold wire. The present invention is the result of pursuing the characteristics of high-purity Cu, and in addition to the above-mentioned effects, the long-term reliability is as follows: As mentioned above, Al/Au diffuses into the solid phase and forms a brittle interfacial phase. However, it is known that Al--Cu tends to cause the purple Blurrg phenomenon, but it is known to be less than a fraction of this, and in this sense as well, the effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCu−0.15Cr−0.1Sn条にボールボンド
したワイヤの破断モード中、正常なワイヤ切れの
割合を、ワイヤの最終伸線加工率と伸びについて
比較した結果である。
Figure 1 shows the results of comparing the percentage of normal wire breakage during the breakage mode of a wire ball-bonded to a Cu-0.15Cr-0.1Sn strip with respect to the final drawing rate and elongation of the wire.

Claims (1)

【特許請求の範囲】 1 0.1〜50ppmのTiと0.1〜1000ppmの、Na、
K、Rb、Cs、Be、Sr、Ba、Y、Mo、W、Ag、
Zn、Ga、Tl及びSnから成る群から選ばれた少な
くとも1種の元素とを合計で0.2〜2000ppm含有
し、残部純度99.999重量%以上のCuから成ること
を特徴とするボンデイングワイヤ用銅細線。 2 真空または非酸化性雰囲気下で鋳造された
0.1〜50ppmのTiと0.1〜1000ppmの、Na、K、
Rb、Cs、Be、Sr、Ba、Y、Mo、W、Ag、Zn、
Ga、Tl及びSnから成る群から選ばれた少なくと
も1種の元素とを合計で0.2〜2000ppm含有し、
残部純度99.999重量%以上のCuから成る鋳塊を、
伸線加工と焼鈍処理を繰り返して所定の線径にす
るに当り、少なくとも最終加工率を70〜99.99%
とし、焼鈍処理により2〜20%の伸びとすること
を特徴とするボンデイングワイヤ用銅細線の製造
方法。 3 焼鈍処理後に1〜5%の加工を加えて2〜20
%の伸びとする特許請求の範囲第2項記載のボン
デイングワイヤ用銅細線の製造方法。
[Claims] 1 0.1 to 50 ppm of Ti and 0.1 to 1000 ppm of Na,
K, Rb, Cs, Be, Sr, Ba, Y, Mo, W, Ag,
A fine copper wire for bonding wire, characterized in that it contains at least one element selected from the group consisting of Zn, Ga, Tl and Sn in a total of 0.2 to 2000 ppm, and the balance is Cu with a purity of 99.999% by weight or more. 2 Cast under vacuum or non-oxidizing atmosphere
0.1~50ppm Ti and 0.1~1000ppm Na, K,
Rb, Cs, Be, Sr, Ba, Y, Mo, W, Ag, Zn,
Contains a total of 0.2 to 2000 ppm of at least one element selected from the group consisting of Ga, Tl and Sn,
An ingot consisting of Cu with a balance purity of 99.999% by weight or more,
When repeating wire drawing and annealing to achieve the specified wire diameter, the final processing rate is at least 70 to 99.99%.
A method for manufacturing a thin copper wire for bonding wire, characterized in that the elongation is 2 to 20% by annealing. 3 Add 1-5% processing after annealing to 2-20
% elongation of the copper wire for bonding wire according to claim 2.
JP61208894A 1986-09-05 1986-09-05 Fine copper wire and its production Granted JPS6365036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208894A JPS6365036A (en) 1986-09-05 1986-09-05 Fine copper wire and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208894A JPS6365036A (en) 1986-09-05 1986-09-05 Fine copper wire and its production

Publications (2)

Publication Number Publication Date
JPS6365036A JPS6365036A (en) 1988-03-23
JPH0555580B2 true JPH0555580B2 (en) 1993-08-17

Family

ID=16563889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208894A Granted JPS6365036A (en) 1986-09-05 1986-09-05 Fine copper wire and its production

Country Status (1)

Country Link
JP (1) JPS6365036A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2726939B2 (en) * 1989-03-06 1998-03-11 日鉱金属 株式会社 Highly conductive copper alloy with excellent workability and heat resistance
JP3364336B2 (en) * 1994-09-08 2003-01-08 ティーディーケイ株式会社 Optical disc and recording material
JP2009153851A (en) * 2007-12-27 2009-07-16 Konica Minolta Medical & Graphic Inc Ultrasonic diagnostic apparatus and manufacturing method of wire used therefor
JP6056876B2 (en) 2015-01-07 2017-01-11 三菱マテリアル株式会社 Superconducting stabilizer
JP6299803B2 (en) * 2016-04-06 2018-03-28 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP6299802B2 (en) 2016-04-06 2018-03-28 三菱マテリアル株式会社 Superconducting stabilizer, superconducting wire and superconducting coil
CN107799496B (en) * 2017-09-01 2020-05-22 华南理工大学 High-reliability copper alloy bonding wire for electronic packaging and preparation method thereof
CN111910102B (en) * 2020-07-14 2021-08-03 中南大学 Copper-silver composite material wire and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102551A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62253745A (en) * 1986-04-25 1987-11-05 Mitsubishi Metal Corp Ultrafine cu alloy wire having satisfactory drawability and electric conductivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102551A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62253745A (en) * 1986-04-25 1987-11-05 Mitsubishi Metal Corp Ultrafine cu alloy wire having satisfactory drawability and electric conductivity

Also Published As

Publication number Publication date
JPS6365036A (en) 1988-03-23

Similar Documents

Publication Publication Date Title
JP5616165B2 (en) Silver bonding wire
US5153704A (en) Semiconductor device using annealed bonding wire
JPH0555580B2 (en)
JPH0216580B2 (en)
JPS63235440A (en) Fine copper wire and its production
US5989364A (en) Gold-alloy bonding wire
JPH0464121B2 (en)
JPS63238232A (en) Fine copper wire and its production
JPS63235442A (en) Fine copper wire and its production
JPH0520494B2 (en)
JPH09272931A (en) Fine gold alloy wire for semiconductor device
JPS62290835A (en) Au-alloy extra fine wire for semiconductor device bonding wire
JPS6365034A (en) Fine copper wire and its production
JPS63247325A (en) Fine copper wire and its production
JPS6030158A (en) Bonding wire
JPH07335686A (en) Gold alloy wire for bonding
CN111656501A (en) Bonding wire
JPS63243243A (en) Fine copper wire and its production
JPS6365037A (en) Fine copper wire and its production
JPS63241942A (en) Fine copper wire and manufacture thereof
JP2830520B2 (en) Method of manufacturing bonding wire for semiconductor device
JP7383798B2 (en) Gold-coated bonding wire and its manufacturing method, semiconductor wire bonding structure, and semiconductor device
JPS6365035A (en) Fine copper wire and its production
JPS63238233A (en) Fine copper wire and its production
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices