JPH0555287B2 - - Google Patents

Info

Publication number
JPH0555287B2
JPH0555287B2 JP58025987A JP2598783A JPH0555287B2 JP H0555287 B2 JPH0555287 B2 JP H0555287B2 JP 58025987 A JP58025987 A JP 58025987A JP 2598783 A JP2598783 A JP 2598783A JP H0555287 B2 JPH0555287 B2 JP H0555287B2
Authority
JP
Japan
Prior art keywords
mold
thermoplastic resin
extruder
molded product
lower mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58025987A
Other languages
Japanese (ja)
Other versions
JPS59150720A (en
Inventor
Shohei Masui
Kanemitsu Ooishi
Yoshihiko Oomura
Kyoshi Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58025987A priority Critical patent/JPS59150720A/en
Publication of JPS59150720A publication Critical patent/JPS59150720A/en
Publication of JPH0555287B2 publication Critical patent/JPH0555287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/042Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C31/044Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds with moving heads for distributing liquid or viscous material into the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Description

【発明の詳細な説明】 本発明は高度に導電性を付与した熱可塑性樹脂
成形品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thermoplastic resin molded article that is highly conductive.

ポリプロピレン、ABS樹脂(アクリロニトリ
ル−ブタジエン−スチレン樹脂)、変性ポリフエ
ニレンオキシド等の熱可塑性樹脂に導電性カーボ
ンブラツク、金属(繊維状、フレーク状又は粉末
状)、炭素繊維、メタライズド炭素繊維、メタラ
イズドガラス(繊維状、マツト状又はビーズ状)
から選ばれる充填剤を単独もしくは2種以上組合
せて混合させることにより導電性が付与された材
料が得られることは公知である。
Thermoplastic resins such as polypropylene, ABS resin (acrylonitrile-butadiene-styrene resin), modified polyphenylene oxide, conductive carbon black, metal (fibrous, flake or powder), carbon fiber, metallized carbon fiber, metallized glass (fiber-like, mat-like or bead-like)
It is known that a material imparted with electrical conductivity can be obtained by mixing fillers selected from the following, either singly or in combination.

エレクトロニクス機器のハウジング等で要求さ
れる電磁波シールド材としての性能を与えるべく
体積固有抵抗値が101〜10-3程度の高度の導電性
を付与するためには該充填剤を大量に混合させる
ことが必要である。
In order to provide a high degree of conductivity with a volume resistivity value of approximately 10 1 to 10 -3 in order to provide performance as an electromagnetic shielding material required for electronic equipment housings, etc., it is necessary to mix a large amount of the filler. is necessary.

該充填剤を大量に含む熱可塑性樹脂は一般に流
動性が悪く、かつ、不均一、不等方性である。流
動性が悪く、かつ、不均一、不等方性の上記材料
を用いて高度に導電性を付与した成形品を得る方
法として射出成形方法があるが、この方法では閉
鎖した金型空間内に溶融樹脂を高圧で射出し、製
品厚みと略同一の間隙を高剪断で流動させて賦形
するため、得られた成形品はフローマークが発生
したり、ねじれ・反りが発生するトラブルは避け
がたい。また、金型が摩耗しやすい問題がある。
さらに重要なことは流動、賦形中に上記充填剤が
高剪断応力を受けて破断・変形・偏在等の問題を
おこし、均一かつ高度の導電性を付与しがたい問
題が発生し、結果として電磁波シールド性のすぐ
れた成形品を得がたい。
Thermoplastic resins containing large amounts of fillers generally have poor fluidity and are non-uniform and non-isotropic. Injection molding is a method for obtaining highly conductive molded products using the above-mentioned materials, which have poor fluidity and are non-uniform and anisotropic. Molten resin is injected under high pressure and shaped by flowing with high shear through a gap that is approximately the same as the thickness of the product, so problems such as flow marks, twisting, and warping are inevitable in the resulting molded product. sea bream. In addition, there is a problem that the mold is easily worn out.
More importantly, the filler is subjected to high shear stress during flow and shaping, causing problems such as breakage, deformation, and uneven distribution, making it difficult to provide uniform and high conductivity. It is difficult to obtain molded products with excellent electromagnetic shielding properties.

本発明者等は鋭意検討の結果、導電性カーボン
ブラツク、金属(繊維状、フレーク状又は粉末
状)、炭素繊維、メタライズド炭素繊維、メタラ
イズドガラス(繊維状、マツト状又はビーズ状)
から選ばれる充填剤を単独もしくは2種以上の組
合せの合計量が10〜35容積パーセント含有する熱
可塑性樹脂(以下これを導電性付与熱可塑性樹脂
と呼ぶ)溶融物を上下金型がまだ開放状態にある
間に下金型上に供給し、上下金型を閉じてプレス
成形することにより上記問題点を解決し均一かつ
高度に導電性を付与した熱可塑性樹脂成形品を得
ることを見い出した。
As a result of intensive studies, the present inventors have found that conductive carbon black, metal (fiber-like, flake-like, or powder-like), carbon fiber, metallized carbon fiber, and metallized glass (fibrous-like, mat-like, or bead-like)
A thermoplastic resin (hereinafter referred to as a conductive thermoplastic resin) containing a filler selected from the following in a total amount of 10 to 35% by volume, singly or in combination of two or more, is melted into the upper and lower molds while still open. It has been found that the above-mentioned problems can be solved and a thermoplastic resin molded product imparted with uniform and highly conductive properties can be obtained by supplying the thermoplastic resin onto the lower mold while the thermoplastic resin is still in the room, closing the upper and lower molds, and press-molding.

さらに上記溶融物の供給方法として水平方向に
移動するテーブル上に2個の下金型を取付け、こ
の移動テーブル中央上部に、上下運動するプラテ
ンを設けて、これに1個の上金型を取付けてなる
プレス機を設置し、上記2つの下金型のうちの一
方の金型を用いてプレス成形している間に他方の
下金型上に上記溶融物を供給する方法を用いるこ
とによつて、より効率よく均一かつ高度に導電性
を付与した熱可塑性樹脂成形品を得ることを見い
出した。
Furthermore, as a method of supplying the melt, two lower molds are installed on a table that moves horizontally, and a platen that moves up and down is provided at the top center of this moving table, and one upper mold is installed on this. By installing a press machine made of As a result, we have discovered that it is possible to more efficiently obtain a thermoplastic resin molded article that is uniformly and highly conductive.

また、上記溶融物の他の供給方法として下金型
内に設けた樹脂通路を通じて、下金型面上に供給
する方法を用いて効率よく均一かつ高度に導電性
を付与した熱可塑性樹脂成形品を得ることもでき
る。
In addition, as another method of supplying the above-mentioned molten material, thermoplastic resin molded products can be efficiently and uniformly and highly conductive using a method of supplying the melt onto the surface of the lower mold through a resin passage provided in the lower mold. You can also get

以下図面を用いて成形方法をさらに詳細に説明
し、その後実施例について説明する。
The molding method will be explained in more detail below with reference to the drawings, and then examples will be explained.

第1図は下金型上に導電性付与熱可塑性樹脂溶
融物が供給された一例を示す模式図で3は上プラ
テン1に取付けられた上金型、4は下プラテン2
に取付けられた下金型、5は上記導電性付与熱可
塑性樹脂を可塑化溶融する押出機、6はその先端
に取付けられた供給通路を示す。
Figure 1 is a schematic diagram showing an example in which the conductive thermoplastic resin melt is supplied onto the lower mold. 3 is the upper mold attached to the upper platen 1, and 4 is the lower platen 2.
5 is an extruder for plasticizing and melting the conductivity-imparting thermoplastic resin, and 6 is a supply passage attached to the tip thereof.

この押出機には図示していないが、これを図の
X〜X′方向に移動させるための押出機移動装置
に付設されている。
Although not shown, this extruder is attached to an extruder moving device for moving the extruder in directions X to X' in the figure.

成形操作はまず、押出機5を第1図に示すよう
に下金型上に供給するのに適した位置まで前進さ
せて、供給通路6から下金型4上に上記導電性付
与熱可塑性樹脂溶融物20を供給する。供給後、
押出機5は上金型または/および下金型が移動し
て型閉めする動作をさまたげない位置まで後退さ
せて、しかる後に上金型または/および下金型が
移動して型閉し、上記溶融物20を加圧して賦形
し、冷却後型を開いて成形品を取出す。なお、上
記工程の中で樹脂の供給方法として、押出機5と
供給通路6の間にアキユムレーターを設けて、こ
れに一度樹脂を貯えた後供給する方がサイクルア
ツプ等の点で好ましい(上記成形方法を以下成形
方法aと呼ぶ)。
In the molding operation, first, the extruder 5 is advanced to a position suitable for feeding onto the lower mold 4 as shown in FIG. A melt 20 is provided. After supplying
The extruder 5 is moved back to a position where the upper mold and/or the lower mold do not interfere with the movement of the mold to close the mold, and then the upper mold and/or the lower mold moves to close the mold. The melt 20 is pressed and shaped, and after cooling, the mold is opened and the molded product is taken out. In addition, as a method of supplying the resin in the above process, it is preferable to provide an accumulator between the extruder 5 and the supply passage 6, and to store the resin once and then supply it from the viewpoint of cycle up etc. The method is hereinafter referred to as molding method a).

第2図は下金型上に導電性付与熱可塑性樹脂溶
融物が供給された他の例を示す模式図で、9は上
プラテン7に取付けられた上金型、11,11′
は下プラテン8上の移動テーブル10に取付けら
れた下金型、12,12′は図示していない一台
の押出機に接続している溶融樹脂の供給通路であ
り、切換弁(図示していない)により下金型11
に溶融樹脂を供給するときは12が開き、下金型
11′に溶融樹脂を供給するときは12′が開くよ
うになつている。成形操作は次の如くである。
FIG. 2 is a schematic diagram showing another example in which the conductive thermoplastic resin melt is supplied onto the lower mold, where 9 is the upper mold attached to the upper platen 7, 11, 11'
12 and 12' are molten resin supply passages connected to one extruder (not shown), and a switching valve (not shown) (not included) lower mold 11
12 is opened when the molten resin is supplied to the lower mold 11', and 12' is opened when the molten resin is supplied to the lower mold 11'. The molding operation was as follows.

まず押出機(図示していない)に接続している
供給通路12から下金型11上に上記導電性付与
熱可塑性樹脂溶融体21を供給し、次に移動テー
ブル8を図2のAの位置からBの位置に移動させ
る。そうすると金型11は金型11′の位置に、
金型11′はCの位置に移る。その状態で上金型
9を降下し、該溶融物21を、金型9と金型11
で加圧賦形し、冷却する。上述のように移動テー
ブル8が位置Aから位置Bに移つたとき前回のプ
レスで成形された成形品22は金型11′に残つ
た状態でCの位置に出てくるので金型11′から
離型する。次いで前記同様にして樹脂通路12′
から下金型11′上に供給する。このように一方
の下金型からの成形品の取出しおよび溶融樹脂供
給の動作はプレス機中央で他方の下金型と上金型
を用いてプレス成形が行なわれている間に行なう
のである。なお、この場合も前記成形方法aと同
様押出機と供給通路12,12′の間にアキユム
レーターを設けてこれに一度樹脂を貯えた後供給
する方がサイクルアツプ等の点で好ましい(上記
成形方法を以下成形方法bと呼ぶ)。
First, the conductive thermoplastic resin melt 21 is supplied onto the lower mold 11 from the supply passage 12 connected to an extruder (not shown), and then the movable table 8 is moved to the position A in FIG. Move from to position B. Then, the mold 11 is at the position of the mold 11',
The mold 11' is moved to position C. In this state, the upper mold 9 is lowered, and the melt 21 is transferred to the mold 9 and the mold 11.
Pressure-shape and cool. As mentioned above, when the movable table 8 moves from position A to position B, the molded product 22 formed in the previous press remains in the mold 11' and comes out at position C, so it is removed from the mold 11'. Release the mold. Next, the resin passage 12' is opened in the same manner as described above.
From there, it is supplied onto the lower mold 11'. In this way, the operations of taking out the molded product from one of the lower molds and supplying the molten resin are performed at the center of the press machine while press molding is being performed using the other lower mold and upper mold. In this case, as in the molding method a, it is preferable to provide an accumulator between the extruder and the supply passages 12, 12' to store the resin once and then supply it from the viewpoint of cycle up etc. (the molding method described above (hereinafter referred to as molding method b).

以下実施例によりさらに詳しく説明する。 This will be explained in more detail below with reference to Examples.

実施例 1 住友ノーブレン AN664B(エチレンプロピレ
ンブロツクコポリマー、メルトフローレート=
5)にアルミニウムフレーク(断面1×1.4mm、
厚み0.025mm)を12容積パーセントを均一に混合
し、押出機を用いて押出混練してペレツト化した
コンパウンドを用いて前記成形方法aで底面が約
300×260、高さ40mm、成形品厚み約2mmの箱状成
形品を成形した。得られた成形品はフローマーク
等の不良現象がなく、側壁の内反り、ねじれ等が
ない外観良好な成形品が得られた。また、得られ
た成形品から23ケ所で試験片を切り出して体積固
有抵抗値を測定すると平均値4.5Ω・cm、標準偏
差2.1Ω・cmであつた。
Example 1 Sumitomo Noblen AN664B (ethylene propylene block copolymer, melt flow rate =
5) Aluminum flakes (cross section 1 x 1.4 mm,
Using a compound obtained by uniformly mixing 12 volume percent of 0.025 mm thick pellets and extruding and kneading the pellets using an extruder, the bottom surface was made into pellets using the above-mentioned molding method a.
A box-shaped molded product with dimensions of 300 x 260 mm, height of 40 mm, and thickness of approximately 2 mm was molded. The obtained molded product had no defective phenomena such as flow marks, and had a good appearance without warping or twisting of the side wall. Further, when test pieces were cut out from the obtained molded product at 23 locations and the volume resistivity values were measured, the average value was 4.5 Ω·cm and the standard deviation was 2.1 Ω·cm.

実施例 2 成形方法が前記成形方法bであること以外は実
施例1と同様に成形品を成形した。得られた成形
品はフローマーク等の不良現象がなく、側壁の内
反り、ねじれ等のない外観良好な成形品が得られ
た。また、実施例1と同様の試験片で測定した体
積固有抵抗値は平均値3.0Ω・cm、標準偏差
1.5Ω・cmであつた。
Example 2 A molded article was molded in the same manner as in Example 1 except that the molding method was the molding method b. The molded product thus obtained had no defective phenomena such as flow marks, and had a good appearance without warping or twisting of the side wall. In addition, the volume resistivity values measured using the same test pieces as in Example 1 had an average value of 3.0Ω・cm and a standard deviation of
It was 1.5Ω・cm.

比較例 1 成形方法が通常の射出成形方法(ゲートは底面
中央に設けた)であること以外は実施例1と同様
に成形品を成形した。
Comparative Example 1 A molded article was molded in the same manner as in Example 1, except that the molding method was a normal injection molding method (the gate was provided at the center of the bottom surface).

得られた成形品はゲートを中心に年輪状のフロ
ーマークが発生し、充填剤によるけばだちが目立
つとともに側壁は長辺側7mm、短辺側5mmの内反
りが発生した。
In the molded product obtained, annual ring-like flow marks were generated around the gate, fuzz caused by the filler was noticeable, and the side walls were warped by 7 mm on the long side and 5 mm on the short side.

また、実施例1と同様の試験片で測定した体積
固有抵抗値は平均値6.5Ω・cm、標準偏差119Ω・
cmであつた。
In addition, the volume resistivity values measured using the same test pieces as in Example 1 had an average value of 6.5Ω・cm and a standard deviation of 119Ω・cm.
It was cm.

実施例 3 コンパウンドがクララスチツク MH(高衝撃
性一般グレード)に導電性カーボンブラツク(粒
径約500Å)20容積パーセント、炭素繊維(繊維
径約13ミクロン、繊維長約6mm)10容積パーセン
トを均一に混合し、押出機を用いて押出混練して
ペレツト化したコンパウンドを用いたこと以外は
実施例3と同様に成形品を成形した。得られた成
形品はフローマーク等の不良現象がなく、側壁の
内反り、ねじれ等のない外観良好な成形品が得ら
れた。また、実施例1と同様の試験片で測定した
体積固有抵抗値は平均値0.27、標準偏差0.20Ω・
cmであつた。
Example 3 The compound is a homogeneous mixture of Clarastic MH (high impact general grade), 20 volume percent of conductive carbon black (particle size: approx. 500 Å), and 10 volume percent of carbon fiber (fiber diameter: approx. 13 microns, fiber length: approx. 6 mm). A molded article was molded in the same manner as in Example 3, except that a compound obtained by extrusion kneading and pelletizing using an extruder was used. The molded product thus obtained had no defective phenomena such as flow marks, and had a good appearance without warping or twisting of the side wall. In addition, the volume resistivity values measured using the same test pieces as in Example 1 had an average value of 0.27 and a standard deviation of 0.20Ω.
It was cm.

実施例 4 コンパウンドがエスブライト 500HM(耐衝撃
性ポリスチレン、メルトフローレート=3)にア
ルミニウムコーテイドガラス繊維(繊維径15ミク
ロン、繊維長3mm)を20容積パーセント均一に混
合し、押出機を用いて押出混練してペレツト化し
たコンパウンドを用いたこと以外は実施例1と同
様に成形品を成形した。得られた成形品はフロー
マーク等の不良現象がなく、側壁の内反り、ねじ
れ等のない外観良好な成形品が得られた。
Example 4 The compound was S-Bright 500HM (impact-resistant polystyrene, melt flow rate = 3) and aluminum coated glass fiber (fiber diameter 15 microns, fiber length 3 mm) was uniformly mixed at 20% by volume, and was mixed using an extruder. A molded article was molded in the same manner as in Example 1, except that a compound obtained by extrusion kneading and pelletization was used. The molded product thus obtained had no defective phenomena such as flow marks, and had a good appearance without warping or twisting of the side wall.

また、実施例1と同様の試験片で測定した体積
固有抵抗値は平均値0.62Ω・cm標準偏差0.40Ω・
cmであつた。
In addition, the volume resistivity values measured using the same test pieces as in Example 1 have an average value of 0.62Ω・cm and a standard deviation of 0.40Ω・
It was cm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は下金型上に前記導電性付与熱可塑性樹
脂溶融物が供給された一例を示す模式図であり、
第2図は同様の他の一例を示す模式図である。 図において、1,7は上プラテン、2,8は下
プラテン、3,9は上金型、4,11,11′は
下金型、5は押出機、6,12,12′は樹脂供
給通路、10は移動テーブル、20,21,22
は導電性付与熱可塑性樹脂溶融物である。
FIG. 1 is a schematic diagram showing an example in which the conductivity-imparting thermoplastic resin melt is supplied onto the lower mold,
FIG. 2 is a schematic diagram showing another similar example. In the figure, 1 and 7 are upper platens, 2 and 8 are lower platens, 3 and 9 are upper molds, 4, 11, and 11' are lower molds, 5 is an extruder, and 6, 12, and 12' are resin supplies. Aisle, 10 is a moving table, 20, 21, 22
is a conductive thermoplastic resin melt.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性カーボンブラツク、繊維状、フレーク
状又は粉末状の金属、炭素繊維、メタライズド炭
素繊維および繊維状、マツト状又はビーズ状のメ
タライズドガラスからなる群から選ばれる単独も
しくは2種以上の組合せの充填剤を10〜35容積パ
ーセント含有する熱可塑性樹脂溶融物を上、下金
型がまだ開放状態にある間に下金型上に供給し、
上、下金型を閉じてプレス成形することを特徴と
する高度に導電性を付与した熱可塑性樹脂成形品
の製造方法。
1 Filling with a single material or a combination of two or more selected from the group consisting of conductive carbon black, fibrous, flaky or powder metal, carbon fiber, metallized carbon fiber, and fibrous, matte or bead-like metallized glass. supplying a thermoplastic resin melt containing 10 to 35 volume percent of the agent onto the lower mold while the upper and lower molds are still open;
A method for producing a highly conductive thermoplastic resin molded product, which is characterized by press-molding with upper and lower molds closed.
JP58025987A 1983-02-17 1983-02-17 Preparation of highly electric-conductive thermoplastic resin molded piece Granted JPS59150720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025987A JPS59150720A (en) 1983-02-17 1983-02-17 Preparation of highly electric-conductive thermoplastic resin molded piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025987A JPS59150720A (en) 1983-02-17 1983-02-17 Preparation of highly electric-conductive thermoplastic resin molded piece

Publications (2)

Publication Number Publication Date
JPS59150720A JPS59150720A (en) 1984-08-29
JPH0555287B2 true JPH0555287B2 (en) 1993-08-16

Family

ID=12181057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025987A Granted JPS59150720A (en) 1983-02-17 1983-02-17 Preparation of highly electric-conductive thermoplastic resin molded piece

Country Status (1)

Country Link
JP (1) JPS59150720A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT402039B (en) * 1994-11-15 1997-01-27 Bruno Ing Svoboda SCREW PLASTIFICATION DEVICE
JP2013540360A (en) * 2010-10-06 2013-10-31 インテバ・プロダクツ・エルエルシー Method and apparatus for providing a reinforced composite material with EMI shielding
JP5762926B2 (en) * 2011-11-02 2015-08-12 株式会社タカギセイコー Press-formed product, manufacturing method and manufacturing apparatus thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611955A (en) * 1979-07-10 1981-02-05 Daicel Chem Ind Ltd Electrically-conductive resin composition
JPS56129151A (en) * 1980-03-14 1981-10-09 Ikegai Corp Molding method and apparatus for plastic material
JPS57177047A (en) * 1981-04-22 1982-10-30 Tokuyama Sekisui Kogyo Kk Electrically conductive resin composition and video disc record

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611955A (en) * 1979-07-10 1981-02-05 Daicel Chem Ind Ltd Electrically-conductive resin composition
JPS56129151A (en) * 1980-03-14 1981-10-09 Ikegai Corp Molding method and apparatus for plastic material
JPS57177047A (en) * 1981-04-22 1982-10-30 Tokuyama Sekisui Kogyo Kk Electrically conductive resin composition and video disc record

Also Published As

Publication number Publication date
JPS59150720A (en) 1984-08-29

Similar Documents

Publication Publication Date Title
KR20070085579A (en) Method of injection compression molding and molded item
CN103238382A (en) Method and apparatus for providing reinforced composite materials with electromagnetic interference shielding
GB2112796A (en) Plastics materials containing electrically conductive fibers
EP0799118B1 (en) Improved process for making preforms useful for encapsulating semiconductors
JPH08325385A (en) Carbon-fiber reinforced thermoplastic resin molding and its production
JPH0555287B2 (en)
US5939001A (en) Process for manufacturing objects from fiber-reinforced thermoplasts
US20130081871A1 (en) Foaming agent to improve emi shielding
US2770842A (en) Injection molding of polytetrafluoroethylene
US7862762B2 (en) Moulding of mouldable materials
JPH0365311A (en) Carbon fiber chop
JPH08294918A (en) Raw material for manufacturing frtp product and manufacture thereof
CN1225774C (en) Method for manufacturing molded resin piece having surface distributed metal
US11472082B2 (en) Molding method and molding apparatus of molded article comprising fiber-reinforced thermoplastic resin
JP3112604B2 (en) Method for producing fiber-reinforced thermosetting resin molded article
CN111234302A (en) Method for improving plastic shrinkage
JP2006103099A (en) Method for producing molded article, and molded article
KR100787562B1 (en) A method of preparing resin composition pellet for shielding electro-magnetic interference and molded articles using it
JPH0234475B2 (en) DODENSEIFUIRAAGANJUSEIKEIZAIRYONOSEIZOHOHO
CN113667268B (en) Antistatic wear-resistant polyether-ether-ketone composite material and preparation method thereof
JP3112993B2 (en) Manufacturing method of composite material of nylon and ceramics
CN114161656A (en) Manufacturing method, product and application of sandwich injection molding product with electromagnetic shielding function
JP4333861B2 (en) Multilayer plastic molded product and method for producing the same
CN113045818A (en) Preparation method of conductive composite material based on engineering plastic as carrier
ZA200206432B (en) Moulding of synthetic plastics material.