JPH0554883A - Manufacture of hydrogen storage electrode for alkaline storage battery - Google Patents

Manufacture of hydrogen storage electrode for alkaline storage battery

Info

Publication number
JPH0554883A
JPH0554883A JP3188404A JP18840491A JPH0554883A JP H0554883 A JPH0554883 A JP H0554883A JP 3188404 A JP3188404 A JP 3188404A JP 18840491 A JP18840491 A JP 18840491A JP H0554883 A JPH0554883 A JP H0554883A
Authority
JP
Japan
Prior art keywords
powder
binder resin
plate
hydrogen storage
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3188404A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3188404A priority Critical patent/JPH0554883A/en
Publication of JPH0554883A publication Critical patent/JPH0554883A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the content of electrolyte and improve quick discharge characteristics by mixing a conduction agent powder and a viscosity improver capable of being gasified at a temperature equal to or lower than a specified melting point, into a hydrogen occluded alloy powder, forming the resulting mass under pressure together with a current collection plate, and burning the resulting plate. CONSTITUTION:A hydrogen storage alloy powder, a conductor powder, a resinous binder powder, and a viscosity improver capable of being gasified at a temperature equal to or lower than the melting point the binder resin are mixed together. The mixed powder is formed under pressure together with a current collection plate and the formed plate is rolled. Then, the resulting plate is burned at a temperature equal to or higher than the melting point of the binder resin. Then, the binder resin powder particles are melted and bound together to form a three-dimensional net-like structure, thereby binding the alloy powder particles and retaining them. On the other hand, since the binder resin powder particles included in the formed plate are gasified, a large number of pores are produced. Therefore, a hydrogen storage electrode having an increased porosity is obtained and hence the content of the electrolyte impregnated therein is increased to improve the quick discharge characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用水素
吸蔵電極の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a hydrogen storage electrode for alkaline storage batteries.

【0002】[0002]

【従来の技術】従来のアルカリ蓄電池に用いる水素吸蔵
電極の製造法は、水素吸蔵合金粉末を導電剤粉としてニ
ッケル粉及び結着剤粉としてポリテトラフルオロエチレ
ン(PTFE)粉と共に、該PTFE粉が充分に繊維化
するまで混合した後、該混合物を一度粉砕し、次でこの
混合物を金型に充填し、集電板と共に加圧成形して互い
に圧延機でシート状に圧延し、これをPTFEの溶融温
度以上で、一般に330〜360℃で焼成することによ
り水素吸蔵電極を製造していた。
2. Description of the Related Art A conventional method for manufacturing a hydrogen storage electrode used in an alkaline storage battery is to use a hydrogen storage alloy powder as a conductive agent powder, nickel powder, and a binder powder, polytetrafluoroethylene (PTFE) powder, together with the PTFE powder. After mixing until fully fiberized, the mixture is crushed once, then the mixture is filled in a mold, pressure-molded together with a current collector plate and rolled into a sheet with a rolling mill, and this is rolled into PTFE. In general, the hydrogen storage electrode was manufactured by firing at 330 to 360 ° C. or higher at the melting temperature or higher.

【0003】[0003]

【発明が解決しようとする課題】上記従来の製造法にお
いて、該成形板を圧延する工程は、電極としての十分な
強度を維持させることゝ該PTFE結着剤粉粒子相互を
十分に密着させ、次の焼成工程で溶融したPTFE粒子
の三次元網目構造を形成し易くし、合金粉の剥離脱落を
防止するためである。然し乍ら、その結果、製造された
電極の耐久性は向上するものの電極内の気孔率は小さく
なり、電極内部の電解液含有量が不足して2C以上の急
放電時に電圧低下が大きくなる等の不都合を伴った。従
って、本発明は、かかる不都合を解消し、急放電特性の
向上した水素吸蔵電極の製造法が望まれる。
In the above conventional manufacturing method, the step of rolling the molded plate is to maintain sufficient strength as an electrode, that is, the PTFE binder powder particles are sufficiently adhered to each other, This is for facilitating the formation of a three-dimensional network structure of the PTFE particles melted in the subsequent firing step and for preventing the exfoliation and dropping of the alloy powder. However, as a result, although the durability of the manufactured electrode is improved, the porosity in the electrode is reduced, the electrolyte content in the electrode is insufficient, and the voltage drop becomes large at the time of a rapid discharge of 2 C or more. Accompanied by. Therefore, the present invention is desired to provide a method for manufacturing a hydrogen storage electrode which solves the above inconvenience and has improved rapid discharge characteristics.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の目的を
達成したアルカリ蓄電池用水素吸蔵電極の製造法に係
り、水素吸蔵合金粉を導電剤粉、結着剤樹脂粉及び該結
着剤樹脂の融点温度又はそれ以下で気化し得る増粘剤粉
と共に混合し、該混合粉を集電板と共に加圧成形し、得
れた成形板を圧延した後、これを該結着剤樹脂の溶融温
度又はそれ以上で焼成することを特徴とする。
The present invention relates to a method for producing a hydrogen storage electrode for an alkaline storage battery, which achieves the above-mentioned object. The hydrogen storage alloy powder is a conductive agent powder, a binder resin powder and the binder. It is mixed with a thickening agent powder that can be vaporized at a melting point temperature of the resin or lower, the mixed powder is pressure-molded together with a current collector plate, the molded plate obtained is rolled, and then this is mixed with the binder resin. It is characterized by firing at a melting temperature or higher.

【0005】[0005]

【作用】上記の成形板を、上記の条件で焼成するとき
は、該結着剤樹脂粉は互いに溶融結着し三次元の網状構
造を形成し、合金粉粒子を結着保持する一方、該成形板
中に混在する該結着剤樹脂粉粒子は気化するので、その
跡に無数の気孔が生成される。従って、気孔率の増大し
た水素吸蔵電極が得られる。従って、その内部に含浸さ
れる電解液の含有量の増大をもたらす。
When the above-mentioned molded plate is fired under the above-mentioned conditions, the binder resin powders are melt-bonded to each other to form a three-dimensional network structure, and the alloy powder particles are bound and held, while Since the binder resin powder particles mixed in the molded plate are vaporized, numerous pores are generated in the traces. Therefore, a hydrogen storage electrode having an increased porosity can be obtained. Therefore, it causes an increase in the content of the electrolytic solution impregnated therein.

【0006】[0006]

【実施例】次に本発明の実施例を詳述する。市販のL
a、Ni、Alを一定の組成比になるように秤量して配
合し、これをアーク溶解法により加熱溶解させた。一例
として、合金組成がLaNi4.5Al0.5になる水
素吸蔵合金のインゴットを製造した。この合金をクラッ
シャーで粗砕後、ボールミルで250メッシュ以下の微
粉砕した。この水素合金粉に結着剤としてポリテトラフ
ルオロエチレン、ポリフッ化ビニリデン、ポリプロピレ
ン、ポリエチレンなどの各種の結着剤樹脂から選択し
た、例えばポリテトラフルオロエチレン(PTFE)粉
を5wt.%と導電剤粉として、例えばカーボニルニッ
ケル粉を20wt.%と更に、該結着剤樹脂の融点温度
又はそれ以下で気化し得る増孔剤の粉末、例えばナフタ
リン、ショウノウなどの非水溶性有機化合物の粉末、こ
の実施例では、ナフタリン粉2wt.%とを添加し、該
PTFE粉が充分に繊維化するまで混合した。更に、こ
の混合物を粉砕した後、これを金型内に充填し、ニッケ
ル金網、パンチングメタル、エキスパンドメタルなどか
ら選択した集電板、例えば該金網と共に所定の厚さに加
圧した後脱型し、次でこの成形板を圧延機で所定の厚さ
まで圧延した。この成形板を焼成炉内に入れ、1×10
−3トール程度の真空度で350℃、30分間焼成して
該結着剤樹脂粉粒子を相互に溶融結着して三次元の網状
構造体を形成して、合金粉粒子を結着保持せしめて本発
明の水素吸蔵電極を製造した。ナフタリンの融点は約8
0℃であり、沸点は約218℃であるから、上記の焼成
過程でナフタリン粉は溶融後気化するので、その跡に無
数の気孔が該成形板に生成される。従って、気孔率の増
大した水素吸蔵電極板が得られる。以下これを本発明電
極と称する。
EXAMPLES Next, examples of the present invention will be described in detail. Commercial L
A, Ni, and Al were weighed and mixed so as to have a constant composition ratio, and this was heated and melted by an arc melting method. As an example, a hydrogen storage alloy ingot having an alloy composition of LaNi 4.5 Al 0.5 was manufactured. This alloy was crushed with a crusher and then finely crushed with a ball mill to 250 mesh or less. To this hydrogen alloy powder, as a binder, for example, polytetrafluoroethylene (PTFE) powder selected from various binder resins such as polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, and polyethylene was used. % And conductive agent powder, for example, carbonyl nickel powder 20 wt. %, And a powder of a pore-forming agent which can be vaporized at the melting point temperature of the binder resin or lower, for example, a powder of a non-water-soluble organic compound such as naphthalene or camphor, in this example, 2 wt. %, And mixed until the PTFE powder was sufficiently fibrillated. Further, after crushing the mixture, the mixture is filled in a mold, and a current collector selected from nickel wire mesh, punching metal, expanded metal, etc., for example, the wire mesh is pressed to a predetermined thickness and then demolded. Then, this formed plate was rolled by a rolling mill to a predetermined thickness. This formed plate is put in a firing furnace and 1 × 10
The binder resin powder particles are melt-bonded to each other by firing at a vacuum degree of about −3 Torr at 350 ° C. for 30 minutes to form a three-dimensional net-like structure, and the alloy powder particles are bound and held. To produce the hydrogen storage electrode of the present invention. The melting point of naphthalene is about 8
Since the temperature is 0 ° C. and the boiling point is about 218 ° C., the naphthalene powder is vaporized after melting in the above-described firing process, and innumerable pores are formed in the trace in the trace. Therefore, a hydrogen storage electrode plate having an increased porosity can be obtained. Hereinafter, this is referred to as an electrode of the present invention.

【0007】比較のため、上記の増孔剤を添加しない以
外は上記の実施例と同じ製造工程により水素吸蔵電極板
を製造した。以下これを比較電極と称する。
For comparison, a hydrogen storage electrode plate was manufactured by the same manufacturing process as in the above-mentioned example except that the above-mentioned pore-forming agent was not added. Hereinafter, this is referred to as a reference electrode.

【0008】上記の実施例で得た本発明電極と比較電極
の電池性能を比較するため、その夫々を負極とし、公知
のペースト式Ni極を組み合わせ、ナイロンセパレータ
ーを介して重合し、捲回極板群を作製し、これを円筒容
器に挿入し、電解液として7N KOH水溶液を注入含
浸させ、常法により電池蓋で密閉してNi極規制、10
00mAhの円筒密閉型ニッケル水素電池を夫々作製し
た。この夫々の電池に化成を行う目的で20℃、0.1
Cの電流で150%充電した後、同じ電流で電池電圧
1.0Vまで放電する操作を2回行った。次に、その夫
々の電池の急放電特性を調べるため、20℃、0.1C
の電流で150%充電した後、3Cの電流で電池電圧
1.0Vまで放電を行い、放電時の平均電圧を測定し
た。その結果は下記表1に示す通りであった。
In order to compare the battery performances of the electrode of the present invention and the comparative electrode obtained in the above-mentioned examples, each of them was used as a negative electrode, and a known paste type Ni electrode was combined and polymerized through a nylon separator to obtain a wound electrode. A plate group was prepared, which was inserted into a cylindrical container, which was then impregnated with a 7N KOH aqueous solution as an electrolytic solution, which was then sealed with a battery lid by a conventional method to regulate the Ni electrode.
Each of the 00 mAh cylindrical sealed nickel-hydrogen batteries was produced. For the purpose of chemical conversion to each of these batteries, 20 ℃, 0.1
After charging 150% with a current of C, discharging with the same current to a battery voltage of 1.0 V was performed twice. Next, in order to investigate the rapid discharge characteristics of each battery, at 20 ° C. and 0.1 C
After being charged 150% with the current of 3%, the battery was discharged with a current of 3C to a battery voltage of 1.0 V, and the average voltage during discharging was measured. The results are shown in Table 1 below.

【0009】[0009]

【表1】 [Table 1]

【0010】上記表1から明らかなように、本発明の製
法により得られた水素吸蔵電極により、その急放電特性
が大きく改善された。
As is clear from Table 1, the hydrogen storage electrode obtained by the manufacturing method of the present invention greatly improved the rapid discharge characteristics.

【0011】上記の実施例では、増孔剤としてナフタリ
ンを使用したが、ショウノウ(樟脳)でも同様の効果が
得られた。これらは、昇華性であるので、焼成により直
ちに気化し、その後に気孔を生成でき、又、非水溶性で
あるので、溶媒に水を用いたペースト式の水素吸蔵電極
の製造法にも適用でき有利である。勿論、増孔剤として
は、これと共に用いられる結着剤樹脂の融点温度又はそ
れ以下で溶融気化し、或いは昇華により気化する非水溶
性固形有機化合物であれば、焼成過程で気化するので、
直ちに気孔率の増大した水素吸蔵電極が得られる。
Although naphthalene was used as a pore-forming agent in the above-mentioned examples, the same effect was obtained with camphor (camphor). Since these are sublimable, they can be immediately vaporized by firing and then generate pores, and since they are water-insoluble, they can also be applied to a method for producing a paste-type hydrogen storage electrode using water as a solvent. It is advantageous. Of course, as the pore-forming agent, if it is a non-water-soluble solid organic compound that is vaporized at the melting point temperature of the binder resin used with it or lower, or vaporized by sublimation, it vaporizes in the firing process,
Immediately, a hydrogen storage electrode having an increased porosity can be obtained.

【0012】[0012]

【発明の効果】このように本発明によるときは、水素吸
蔵合金粉を導電剤粉と結着剤樹脂粉と更に該結着剤樹脂
の融点温度又はそれ以下で気化し得る増孔剤粉とを混合
した混合粉を集電板に一体に加圧し成形体を形成し、こ
れを該結着剤樹脂の溶融温度又はそれ以上で焼成するよ
うにしたので、混在する増孔剤粉が気化した跡に無数の
気孔を生じ、気孔率の増大した水素吸蔵電極を容易に製
造することができ、該電極の電解液の含有量が増大し電
極の急放電特性の向上をもたらす等の効果を有する。
As described above, according to the present invention, hydrogen-absorbing alloy powder is used as a conductive agent powder, a binder resin powder, and a pore-forming agent powder which can be vaporized at a melting point temperature of the binder resin or lower. The mixed powder mixed with was pressed integrally on a current collector plate to form a molded body, which was fired at the melting temperature of the binder resin or higher, so that the mixed pore-forming agent powder was vaporized. Innumerable pores are generated in the traces, and a hydrogen storage electrode having an increased porosity can be easily manufactured, and the content of the electrolytic solution of the electrode is increased, which has the effect of improving the rapid discharge characteristics of the electrode. ..

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月9日[Submission date] July 9, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】[0004]

【課題を解決するための手段】本発明は、上記の目的を
達成したアルカリ蓄電池用水素吸蔵電極の製造法に係
り、水素吸蔵合金粉を導電剤粉、結着剤樹脂粉及び該結
着剤樹脂の融点温度又はそれ以下で気化し得る増剤粉
と共に混合し、該混合粉を集電板と共に加圧成形し、得
れた成形板を圧延した後、これを該結着剤樹脂の溶融温
度又はそれ以上で焼成することを特徴とする。
The present invention relates to a method for producing a hydrogen storage electrode for an alkaline storage battery, which achieves the above-mentioned object. The hydrogen storage alloy powder is a conductive agent powder, a binder resin powder and the binder. It is mixed with a pore- forming agent powder that can be vaporized at a melting point temperature of the resin or lower, the mixed powder is pressure-molded together with a current collector plate, the obtained molded plate is rolled, and then the binder resin is mixed. It is characterized by firing at a melting temperature or higher.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【作用】上記の成形板を、上記の条件で焼成するとき
は、該結着剤樹脂粉は互いに溶融結着し三次元の網状構
造を形成し、合金粉粒子を結着保持する一方、該成形板
中に混在する該増孔剤粉は気化するので、その跡に無数
の気孔が生成される。従って、気孔率の増大した水素吸
蔵電極が得られる。従って、その内部に含浸される電解
液の含有量の増大をもたらす。
When the above-mentioned molded plate is fired under the above-mentioned conditions, the binder resin powders are melt-bonded to each other to form a three-dimensional network structure, and the alloy powder particles are bound and held, while since the Zoana agent powder mixed in the molding plate is vaporized, innumerable pores dent is generated. Therefore, a hydrogen storage electrode having an increased porosity can be obtained. Therefore, it causes an increase in the content of the electrolytic solution impregnated therein.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉を導電剤粉、結着剤樹脂
粉及び該結着剤樹脂の融点温度又はそれ以下で気化し得
る増粘剤粉と共に混合し、該混合粉を集電板と共に加圧
成形し、得れた成形板を圧延した後、これを該結着剤樹
脂の溶融温度又はそれ以上で焼成することを特徴とする
アルカリ蓄電池用水素吸蔵電極の製造法。
1. A hydrogen storage alloy powder is mixed with a conductive agent powder, a binder resin powder, and a thickener powder which can be vaporized at a melting point temperature of the binder resin or lower, and the mixed powder is collected. A method for producing a hydrogen storage electrode for an alkaline storage battery, which comprises press-molding with a pressure plate, rolling the obtained molded plate, and firing the plate at a melting temperature of the binder resin or higher.
【請求項2】 該増粘剤粉は、ナフタリン、ショウノウ
などの非水溶性有機化合物である請求項1記載のアルカ
リ蓄電池用水素吸蔵電極の製造法。
2. The method for producing a hydrogen storage electrode for an alkaline storage battery according to claim 1, wherein the thickener powder is a water-insoluble organic compound such as naphthalene or camphor.
JP3188404A 1991-04-25 1991-04-25 Manufacture of hydrogen storage electrode for alkaline storage battery Pending JPH0554883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3188404A JPH0554883A (en) 1991-04-25 1991-04-25 Manufacture of hydrogen storage electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3188404A JPH0554883A (en) 1991-04-25 1991-04-25 Manufacture of hydrogen storage electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH0554883A true JPH0554883A (en) 1993-03-05

Family

ID=16223057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3188404A Pending JPH0554883A (en) 1991-04-25 1991-04-25 Manufacture of hydrogen storage electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0554883A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239114B1 (en) 1997-09-26 2001-05-29 Kgk Synergize Compositions and methods for treatment of neoplastic diseases with combinations of limonoids, flavonoids and tocotrienols
US6251400B1 (en) * 1997-09-26 2001-06-26 Kgk Synergize Inc Compositions and methods of treatment of neoplastic diseases and hypercholesterolemia with citrus limonoids and flavonoids and tocotrienols
WO2003026046A1 (en) 2001-09-17 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Active material for cell and its manufacturing method
US9132117B2 (en) 2013-06-17 2015-09-15 Kgk Synergize, Inc Compositions and methods for glycemic control of subjects with impaired fasting glucose

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239114B1 (en) 1997-09-26 2001-05-29 Kgk Synergize Compositions and methods for treatment of neoplastic diseases with combinations of limonoids, flavonoids and tocotrienols
US6251400B1 (en) * 1997-09-26 2001-06-26 Kgk Synergize Inc Compositions and methods of treatment of neoplastic diseases and hypercholesterolemia with citrus limonoids and flavonoids and tocotrienols
WO2003026046A1 (en) 2001-09-17 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Active material for cell and its manufacturing method
US9132117B2 (en) 2013-06-17 2015-09-15 Kgk Synergize, Inc Compositions and methods for glycemic control of subjects with impaired fasting glucose
US9610276B2 (en) 2013-06-17 2017-04-04 Kgk Synergize, Inc. Compositions and methods for glycemic control of subjects with impaired fasting glucose

Similar Documents

Publication Publication Date Title
JPH0554883A (en) Manufacture of hydrogen storage electrode for alkaline storage battery
JPH0750607B2 (en) Hydrogen storage electrode for alkaline storage battery
JP2603188B2 (en) Hydrogen storage alloy electrode
JPH0763006B2 (en) Method for manufacturing hydrogen storage electrode
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JP3098940B2 (en) Method for producing hydrogen storage alloy powder for electrode
JPH06280079A (en) Slurry for hydrogen storage alloy electrode and production of hydrogen storage alloy electrode using the same
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JP2538610B2 (en) Metal oxide / hydrogen battery
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPH097590A (en) Manufacture of hydrogen absorbing alloy powder for electrode
JP2561200B2 (en) Hydrogen storage electrode
JP2986816B2 (en) Hydrogen storage electrode and its manufacturing method
JP2631191B2 (en) Method for producing active material slurry for hydrogen storage alloy electrode
JPH0810591B2 (en) Hydrogen storage alloy electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JPH0562671A (en) Manufacture of hydrogen storage electrode
JPH11131161A (en) Hydrogen storage alloy and negative electrode for nickel-hydrogen storage battery using the hydrogen storage alloy
JPH04301363A (en) Hydrogen storage electrode and manufacture thereof
JP2001236953A (en) Hydrogen storage alloy negative electrode and its manufacturing method
JPH04308656A (en) Metal hydride electrode for alkaline battery and manufacture thereof
JPH06215764A (en) Manufacture of hydrogen absorbing electrode and metal oxide-hydrogen storage battery with hydrogen absorbing electrode
JPH06275278A (en) Hydrogen storage electrode for alkaline storage battery
JPH0760681B2 (en) Method for producing nickel positive electrode