JPH0554166B2 - - Google Patents

Info

Publication number
JPH0554166B2
JPH0554166B2 JP11756887A JP11756887A JPH0554166B2 JP H0554166 B2 JPH0554166 B2 JP H0554166B2 JP 11756887 A JP11756887 A JP 11756887A JP 11756887 A JP11756887 A JP 11756887A JP H0554166 B2 JPH0554166 B2 JP H0554166B2
Authority
JP
Japan
Prior art keywords
film
soft magnetic
thickness
forming
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11756887A
Other languages
Japanese (ja)
Other versions
JPS63281204A (en
Inventor
Kumio Nako
Masaji Dojima
Tatsushi Yamamoto
Masaru Kadono
Tetsuo Muramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11756887A priority Critical patent/JPS63281204A/en
Publication of JPS63281204A publication Critical patent/JPS63281204A/en
Publication of JPH0554166B2 publication Critical patent/JPH0554166B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気ヘツドコア材料の製造方法に関
し、真空蒸着法、スパツタリング法等の薄膜作成
技術を用いて形成する厚膜磁気ヘツドコアの製造
方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a magnetic head core material, and more particularly, to a method for manufacturing a thick film magnetic head core formed using a thin film forming technique such as a vacuum evaporation method or a sputtering method. It is.

(従来の技術) 近年、磁気記録技術の分野において、記録密度
の増大を求める要求が強まつている。磁気記録の
高密度化のひとつの方法として、磁気テープとし
ては、磁気エネルギーの大きいメタルテープある
いは自己減磁の小さい蒸着テープが使用されよう
としており、他方磁気ヘツド側ではコア材料とし
て高飽和磁束密度、高透磁率を有する材料の開発
が進められている。
(Prior Art) In recent years, in the field of magnetic recording technology, there has been an increasing demand for increased recording density. One way to increase the density of magnetic recording is to use metal tapes with high magnetic energy or evaporated tapes with low self-demagnetization, while on the magnetic head side, core materials with high saturation magnetic flux densities are being used. , materials with high magnetic permeability are being developed.

このようなコア材料としては、フエライトでは
飽和磁束密度に限界があるため、合金系材料ある
いはアモルフアス合金材料が適している。Fe−
Si−Al系合金は、Si9.5wt%、Al5.5wt%、残部
Feの組成を中心として高透磁率、高飽和磁束密
度を有することは良く知られている。
As such a core material, since ferrite has a limit in saturation magnetic flux density, an alloy material or an amorphous alloy material is suitable. Fe−
Si-Al alloy is Si9.5wt%, Al5.5wt%, balance
It is well known that it has high magnetic permeability and high saturation magnetic flux density, mainly due to its composition of Fe.

磁気ヘツドコアの作成において、合金系材料の
透磁率の周波数依存性を考えると、渦電流損失に
より、高周波帯域で透磁率は減衰する。そこで高
周波帯域で高透磁率を得るためには、渦電流損失
を考慮した数ミクロンの軟磁性材料と非磁性材料
とを交互に積層したコア材料が要求される。しか
し、この積層型コア材料をバルク状態から作成す
ることは、軟磁性材料の厚み及び磁性層と非磁性
層との接合性が悪い等の点から困難である。ま
た、再生感度の点からトラツク幅は数十ミクロン
要求される。
When creating a magnetic head core, considering the frequency dependence of the magnetic permeability of alloy materials, the magnetic permeability attenuates in the high frequency band due to eddy current loss. Therefore, in order to obtain high magnetic permeability in a high frequency band, a core material is required in which soft magnetic material and nonmagnetic material of several microns are alternately laminated in consideration of eddy current loss. However, it is difficult to produce this laminated core material from a bulk state due to the thickness of the soft magnetic material and poor bonding properties between the magnetic layer and the nonmagnetic layer. Further, from the viewpoint of reproduction sensitivity, a track width of several tens of microns is required.

そこで真空蒸着法等の薄膜作成技術を駆使する
ことにより、脆性材料基板上に軟磁性膜の厚膜を
形成した磁気ヘツドコア材料が求められている。
Therefore, there is a need for a magnetic head core material in which a thick soft magnetic film is formed on a brittle material substrate by making full use of thin film forming techniques such as vacuum evaporation.

(発明が解決しようとする問題点) しかしながら、脆性材料であるセラミツクス基
板とその上に形成した軟磁性膜とでは物性係数、
すなわち弾性係数、熱膨張係数等が異なるため、
接合界面の弾性歪みの不適合により、均質材料で
は見られない応力集中が接合界面のエツジ部や界
面亀裂の先端部に発生し、膜の内部応力が基板材
料の破壊強度に至らなくても、異相界面領域の破
壊が進行し、界面に沿う基板内で破壊が生じ、脆
性材料基板上への厚膜形成を困難にしていた。ま
た厚膜が厚くなると膜の内部応力が変わらなくて
も、膜の全応力が大きくなり、成膜済基板のたわ
み量が大きくなり、以降の磁気ヘツド加工工程を
困難にしている。
(Problems to be Solved by the Invention) However, the physical property coefficients of the ceramic substrate, which is a brittle material, and the soft magnetic film formed thereon are
In other words, since the elastic modulus, thermal expansion coefficient, etc. are different,
Due to the incompatibility of elastic strain at the bond interface, stress concentration that would not be seen in a homogeneous material occurs at the edge of the bond interface or at the tip of an interfacial crack, and even if the internal stress of the film does not reach the fracture strength of the substrate material, As the destruction of the interface region progressed, destruction occurred within the substrate along the interface, making it difficult to form a thick film on the brittle material substrate. Further, as the film becomes thicker, even if the internal stress of the film does not change, the total stress of the film increases, and the amount of deflection of the film-formed substrate increases, making the subsequent magnetic head processing process difficult.

(問題点を解決するための手段) 本発明は脆性材料基板上に該脆性材料基板と物
性係数の異なる軟磁性膜の厚膜を形成する際、所
望膜厚以下の膜厚を有する軟磁性膜を成膜後、熱
処理を施して、応力緩和し、該熱処理された軟磁
性膜上に更に所望膜厚以下の膜厚を有する軟磁性
膜を成膜し、続いて熱処理をする操作を繰返し
て、すなわち、軟磁性膜の成膜、熱処理、成膜、
熱処理を必要に応じて繰り返すことによつて所定
の厚みの軟磁性膜を形成し磁気ヘツドコア材料を
作成する。また、このとき軟磁性膜はFe−Si−
Al合金膜であることが好ましい。
(Means for Solving the Problems) The present invention provides a method for forming a thick film of a soft magnetic film having a physical property coefficient different from that of the brittle material substrate on a brittle material substrate. After forming the film, heat treatment is performed to relieve stress, and a soft magnetic film having a thickness less than the desired film thickness is further formed on the heat-treated soft magnetic film, and then heat treatment is repeated. , that is, soft magnetic film formation, heat treatment, film formation,
By repeating the heat treatment as necessary, a soft magnetic film with a predetermined thickness is formed to produce a magnetic head core material. Also, at this time, the soft magnetic film is Fe-Si-
Preferably, it is an Al alloy film.

(作用) 脆性材料基板上に一度に軟磁性膜を堆積させる
ことなく、複数工程に分割して軟磁性材料による
膜を堆積させ、更に各工程毎に熱処理を施こすた
め、比較的薄い膜厚の段階で下地層との熱応力等
による不整合が緩和され、全体として所望膜厚に
達した軟磁性膜は脆性基板に対して接合度が増
し、脆性基板の破壊及び成膜済基板のたわみ量を
抑制する。
(Function) The soft magnetic material film is not deposited all at once on the brittle material substrate, but is divided into multiple steps to deposit the soft magnetic material film, and heat treatment is performed in each step, resulting in a relatively thin film. At this stage, the mismatch with the underlying layer due to thermal stress, etc. is alleviated, and the soft magnetic film, which has reached the desired thickness as a whole, increases the degree of bonding to the brittle substrate, resulting in damage to the brittle substrate and deflection of the coated substrate. Limit the amount.

(実施例) 以下、本発明を実施例に基づいて詳細に説明す
る。
(Examples) Hereinafter, the present invention will be explained in detail based on Examples.

第1図は、異相界面を有する成膜済基板の構造
を示している。同図において例えば結晶化ガラス
基板からなる脆性材料基板1の表面上に例えば
20μmの厚みのFe−Si−Al系合金膜2を電子ビー
ム蒸着法により形成したものである。上記20μm
の厚みのFe−Si−Al系合金膜2を形成する際、
脆性材料基板1上にまず5μmの厚みの合金膜21
を成膜後、真空中600℃5時間の熱処理を施して、
応力緩和し、該熱処理済の合金膜21上に更に5μ
m厚の同じ組成の合金膜22を形成する。該合金
膜22についても同様に熱処理により応力緩和す
る。このような成膜と熱処理を施す操作を4回繰
り返すことにより20μm厚のFe−Si−Al合金膜2
を形成した。このときの各操作における膜厚に対
する膜の内部応力及び膜厚と膜の全応力の関係図
を各々第2図、第3図に示す。
FIG. 1 shows the structure of a film-formed substrate having a different phase interface. In the figure, for example, on the surface of a brittle material substrate 1 made of a crystallized glass substrate, for example,
A Fe-Si-Al alloy film 2 with a thickness of 20 μm was formed by electron beam evaporation. 20μm above
When forming the Fe-Si-Al alloy film 2 with a thickness of
First, an alloy film 2 with a thickness of 5 μm is placed on a brittle material substrate 1.
After forming the film, heat treatment was performed at 600℃ for 5 hours in a vacuum.
After stress relaxation, an additional 5μ is applied on the heat-treated alloy film 21 .
An alloy film 2 2 having the same composition and having a thickness of m is formed. The stress of the alloy film 2 2 is similarly relaxed by heat treatment. By repeating the film formation and heat treatment four times, a 20 μm thick Fe-Si-Al alloy film 2 was formed.
was formed. The relationships between the internal stress of the film and the film thickness and the total stress of the film in each operation at this time are shown in FIGS. 2 and 3, respectively.

比較実験として5μm、10μm、15μm、20μmの
各厚みのFe−Si−Al合金膜を電子ビーム蒸着法
により第1図と同じ脆性材料基板上に形成し、
各々真空中600℃5時間熱処理を施したときの成
膜時及び熱処理後の膜厚に対する膜の内部応力及
び膜厚と膜の全応力の関係を調べた。その結果を
各々第4図、第5図に示す。
As a comparative experiment, Fe-Si-Al alloy films with thicknesses of 5 μm, 10 μm, 15 μm, and 20 μm were formed on the same brittle material substrate as shown in Figure 1 by electron beam evaporation.
The internal stress of the film and the relationship between the film thickness and the total stress of the film were investigated at the time of film formation and after the heat treatment when each film was subjected to heat treatment at 600°C for 5 hours in a vacuum. The results are shown in FIGS. 4 and 5, respectively.

鵜 第2図と第4図及び第3図と第5図とを比較
してみると、Fe−Si−Al系合金膜を20μm形成し
た後の内部応力及び全応力は、本実施例の如く成
膜途中に熱処理を施こしながら行つた場合には、
内部応力が1.5×1019dyne/cm2、全応力が3×
106dyne/cm2の値を示し、途中熱処理を施さなか
つた場合と比べ、内部応力、全応力ともに約63%
減少していることが判る。また第5図に示す様
に、膜厚20μm迄作成する際の全応力の最大値
は、膜厚20μm成膜時の全応力で、8.4×
106dyne/cm2の大きな値を示しているが、第3図
に示す本実施例の方法によれば全応力の最大値は
膜厚20μm成膜時の4.6×106dyne/cm2であり、本
実施例のものは約55%迄減少している。
Comparing Figures 2 and 4, and Figures 3 and 5, the internal stress and total stress after forming the Fe-Si-Al alloy film to a thickness of 20 μm are similar to those in this example. If heat treatment is performed during film formation,
Internal stress is 1.5×10 19 dyne/cm 2 , total stress is 3×
10 6 dyne/cm 2 , and both internal stress and total stress are approximately 63% compared to the case without heat treatment.
It can be seen that it is decreasing. Furthermore, as shown in Figure 5, the maximum value of the total stress when forming a film up to a thickness of 20 μm is 8.4×
However, according to the method of this example shown in Fig. 3 , the maximum value of the total stress is 4.6 × 10 6 dyne/cm 2 when the film thickness is 20 μm. In this example, it is reduced to about 55%.

(他の実施例) 前記実験において、脆性材料基板上に5μmの
厚みのFe−Si−Al系合金膜を成膜後、SiO2
Al2O3、SiC等の非磁性材料を500〜3000Åの範囲
で成膜後真空中600℃5時間の熱処理を施し、該
非磁性膜上に更に5μm厚みの合金膜及び非磁性
膜を500〜3000Å形成し、該熱処理を施す操作を
4回繰り返すことにより、全体として20μm厚の
Fe−Si−Al系合金膜からなるコア材料を作成し
た場合でも膜厚と膜の応力及び全応力の関係図は
同じであつた。
(Other Examples) In the above experiment, after forming a 5 μm thick Fe-Si-Al alloy film on a brittle material substrate, SiO 2 ,
After forming a nonmagnetic material such as Al 2 O 3 or SiC to a thickness of 500 to 3000 Å, heat treatment is performed at 600°C for 5 hours in a vacuum, and then an alloy film and a nonmagnetic film with a thickness of 5 μm are further formed on the nonmagnetic film. By repeating the process of forming 3000Å and applying the heat treatment four times, a total thickness of 20μm is obtained.
Even when a core material made of a Fe-Si-Al alloy film was prepared, the relationship between film thickness, film stress, and total stress was the same.

即ち20μm膜厚のFe−Si−Al系合金膜を成膜す
る際に、途中に挿入する熱処理によつて成膜工程
を分割する際、更に形成したFe−Si−Al合金膜
上に薄い非磁性膜を介挿して磁気ヘツドコア材料
を形成する。このように非磁性膜を介挿しても途
中に熱処理を施こすことにより応力関係は損われ
ない。
In other words, when forming an Fe-Si-Al alloy film with a thickness of 20 μm, when dividing the film-forming process by inserting heat treatment in the middle, a thin non-metallic film is added on top of the formed Fe-Si-Al alloy film. A magnetic head core material is formed by interposing a magnetic film. Even if a nonmagnetic film is inserted in this way, the stress relationship will not be impaired by performing heat treatment in the middle.

上記実施例のような非磁性膜を介挿した磁気ヘ
ツドコア材料では、脆性材料基板上に該Fe−Si
−Al合金膜を成膜する場合の基板材料の破壊及
び膜の剥離を生ずるしきい値の全応力に達する膜
厚が高膜厚側に移行する。このことは例えば第6
図に示す様な軟磁性膜(Fe−Si−Al系合金膜)
4が非磁性基板3で挾持され、軟磁性膜4の膜厚
がトラツク幅となる形態の磁気ヘツドにおいて、
形成し得るトラツク幅を増大させることが可能と
なることを示している。
In the magnetic head core material with a nonmagnetic film interposed therein as in the above embodiment, the Fe-Si
- When forming an Al alloy film, the film thickness reaches the threshold total stress that causes destruction of the substrate material and peeling of the film, shifting to the high film thickness side. This is true, for example, in the sixth
Soft magnetic film (Fe-Si-Al alloy film) as shown in the figure
4 is held between non-magnetic substrates 3, and the thickness of the soft magnetic film 4 is equal to the track width.
This shows that it is possible to increase the track width that can be formed.

(発明の効果) 以上詳細に説明した如く、所望膜厚以下の膜厚
を有するFe−Si−Al系合金膜を成膜して、熱処
理を施し該熱処理後の膜上に更に膜を形成し熱処
理を施す操作を繰り返して所望膜厚の厚膜を形成
することにより、基板と膜との物性係数の不一致
が余り問題にならず、基板の選択範囲が広がり熱
応力逆磁歪効果による磁気特性劣化が抑えられ、
コアの磁気特性劣化を防止し、ひいては磁気ヘツ
ドの効率改善を図ることができる。また、Fe−
Si−Al系合金膜の内部応力及び全応力が減少す
るから磁気ヘツド加工工程が容易になり、磁気ヘ
ツドの生産性が図れると共に、トラツク幅を増大
させることが可能となる。
(Effects of the Invention) As explained in detail above, an Fe-Si-Al alloy film having a thickness equal to or less than a desired film thickness is formed, heat-treated, and another film is formed on the heat-treated film. By repeating heat treatment operations to form a thick film with the desired thickness, the mismatch in physical property coefficients between the substrate and the film becomes less of a problem, expanding the selection range of substrates and preventing deterioration of magnetic properties due to thermal stress inverse magnetostriction effect. is suppressed,
It is possible to prevent deterioration of the magnetic properties of the core and improve the efficiency of the magnetic head. Also, Fe−
Since the internal stress and total stress of the Si--Al alloy film are reduced, the magnetic head processing process becomes easier, the productivity of the magnetic head can be improved, and the track width can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による異相界面を有
する成膜済基板の構造図、第2図は同実施例によ
るFe−Si−Al系合金膜の膜厚と内部応力との関
係図、第3図は同実施例によるFe−Si−Al系合
金膜の膜厚と全応力との関係図、第4図は従来の
Fe−Si−Al系合金膜の形成方法による膜厚と応
力との関係図、第5図は従来のFe−Si−Al系合
金膜の形成方法による膜厚と全応力との関係図、
第6図は軟磁性膜が非磁性材料で挾持された形態
の磁気ヘツドの斜視図である。 1……脆性材料基板、2……Fe−Si−Al系合
金膜、3……非磁性材料、4……軟磁性膜。
FIG. 1 is a structural diagram of a film-formed substrate having a different phase interface according to an embodiment of the present invention, and FIG. 2 is a diagram of the relationship between the film thickness and internal stress of the Fe-Si-Al alloy film according to the same embodiment. Figure 3 is a relationship between the film thickness and total stress of the Fe-Si-Al alloy film according to the same example, and Figure 4 is a diagram of the relationship between the film thickness and total stress of the Fe-Si-Al alloy film according to the same example.
A diagram showing the relationship between film thickness and stress according to the method of forming an Fe-Si-Al alloy film. Figure 5 is a diagram showing the relationship between film thickness and total stress according to the conventional method of forming an Fe-Si-Al alloy film.
FIG. 6 is a perspective view of a magnetic head in which a soft magnetic film is sandwiched between nonmagnetic materials. DESCRIPTION OF SYMBOLS 1...Brittle material substrate, 2...Fe-Si-Al alloy film, 3...Nonmagnetic material, 4...Soft magnetic film.

Claims (1)

【特許請求の範囲】 1 脆性材料基板上に軟磁性膜の厚膜を形成する
磁気ヘツドコア材料の製造方法において、 軟磁性膜を形成する第1の工程と、該第1の工
程に引き続いて300℃〜800℃で熱処理を施す第2
の工程とによつて軟磁性膜を形成する軟磁性膜形
成工程を備え、 該軟磁性膜形成工程によつて形成された軟磁性
膜上に前記軟磁性膜形成工程を施すことを繰り返
すことによつて前記脆性材料基板上に所定の厚み
の軟磁性膜の厚膜を形成することを特徴とする磁
気ヘツドコア材料の製造方法。 2 前記軟磁性膜がFe−Si−Al合金膜であるこ
とを特徴とする特許請求の範囲第1項記載の磁気
ヘツドコア材料の製造方法。
[Claims] 1. A method for manufacturing a magnetic head core material in which a thick soft magnetic film is formed on a brittle material substrate, comprising: a first step of forming a soft magnetic film; 2nd heat treatment at ℃~800℃
a soft magnetic film forming step of forming a soft magnetic film by the step of step and repeating the soft magnetic film forming step on the soft magnetic film formed by the soft magnetic film forming step. Therefore, a method for manufacturing a magnetic head core material, which comprises forming a thick soft magnetic film having a predetermined thickness on the brittle material substrate. 2. The method of manufacturing a magnetic head core material according to claim 1, wherein the soft magnetic film is a Fe-Si-Al alloy film.
JP11756887A 1987-05-13 1987-05-13 Production of base material for magnetic head core Granted JPS63281204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11756887A JPS63281204A (en) 1987-05-13 1987-05-13 Production of base material for magnetic head core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11756887A JPS63281204A (en) 1987-05-13 1987-05-13 Production of base material for magnetic head core

Publications (2)

Publication Number Publication Date
JPS63281204A JPS63281204A (en) 1988-11-17
JPH0554166B2 true JPH0554166B2 (en) 1993-08-11

Family

ID=14715038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11756887A Granted JPS63281204A (en) 1987-05-13 1987-05-13 Production of base material for magnetic head core

Country Status (1)

Country Link
JP (1) JPS63281204A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532062A (en) * 1990-07-05 1996-07-02 Asahi Glass Company Ltd. Low emissivity film
SG43266A1 (en) * 1990-07-05 1997-10-17 Asahi Glass Co Ltd A low emissivity film
US5419969A (en) * 1990-07-05 1995-05-30 Asahi Glass Company Ltd. Low emissivity film

Also Published As

Publication number Publication date
JPS63281204A (en) 1988-11-17

Similar Documents

Publication Publication Date Title
JP2550996B2 (en) Soft magnetic thin film
JPH0466366B2 (en)
JPH0554166B2 (en)
JPS6129105A (en) Magnetic alloy thin film
JPH06215325A (en) Laminate type core of magnetic head
JPS62222416A (en) Member for thin film magnetic film
JP3127613B2 (en) Magnetic head and method of manufacturing the same
JPH09293207A (en) Magnetic head
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPS63254709A (en) Laminated thin magnet film and magnetic head using the same
JPH0462162B2 (en)
US5267113A (en) Magnetic head
JP2882927B2 (en) Magnetic head and method of manufacturing magnetic head
JPS61233409A (en) Production of laminated magnetic core for high frequency and magnetic head core
JP3211295B2 (en) Stacked magnetic head
JPH0560641B2 (en)
KR100324730B1 (en) Method for fabricating magnetic head
JPH03278409A (en) Laminated thin soft magnetic film
JPH04285153A (en) Multi-layer magnetic film and its formation
JPH06244048A (en) Method for formation of magnetically soft thin film and magnetic head
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPS5987614A (en) Metallic magnetic thin film head
JPS6323216A (en) Production of thin film magnetic head
JPH01248606A (en) Magnetic film and manufacture thereof
JPH025206A (en) Production of magnetic head