JPH0554078B2 - - Google Patents

Info

Publication number
JPH0554078B2
JPH0554078B2 JP58006955A JP695583A JPH0554078B2 JP H0554078 B2 JPH0554078 B2 JP H0554078B2 JP 58006955 A JP58006955 A JP 58006955A JP 695583 A JP695583 A JP 695583A JP H0554078 B2 JPH0554078 B2 JP H0554078B2
Authority
JP
Japan
Prior art keywords
single crystal
thin film
crystal substrate
cdte single
type cdte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58006955A
Other languages
Japanese (ja)
Other versions
JPS59132382A (en
Inventor
Akira Ibuka
Haruo Hosomatsu
Morio Wada
Naoki Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP58006955A priority Critical patent/JPS59132382A/en
Publication of JPS59132382A publication Critical patent/JPS59132382A/en
Publication of JPH0554078B2 publication Critical patent/JPH0554078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は、X線CT等に用いられる多チヤンネ
ル形放射線検出器に関するものである。更に詳し
くは、本発明はP形CdTe単結晶基板を用いた位
置分解能の高い多チヤンネル形放射線検出器に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multichannel radiation detector used in X-ray CT and the like. More specifically, the present invention relates to a multichannel radiation detector with high positional resolution using a P-type CdTe single crystal substrate.

第1図は従来公知のX線CTに用いられている
Xeガス電離箱の一例を示す構成斜視図である。
この電離箱は、絶縁体サポート1の間に高圧電極
21と信号電極31とを交互に例えば0.5mm〜1.0
mmの間隔で配列し、これらをXeガス25Kg/cm2
加圧された耐圧容器4内に収容して構成されてい
る。ここで、Xeガス加圧を行なうのは、X線CT
センサとしての高感度を得るためである。各電極
板は、電極間ギヤツプを1.0mm程度以下と小さく
する必要があることから、0.1mm程度の薄いしか
も放射線が透過しにくいタングステン材料が用い
られている。
Figure 1 is used in conventionally known X-ray CT.
FIG. 2 is a perspective view of the configuration of an example of a Xe gas ionization chamber.
In this ionization chamber, high voltage electrodes 21 and signal electrodes 31 are arranged alternately between insulator supports 1, for example, by 0.5 mm to 1.0 mm.
They are arranged at intervals of mm and housed in a pressure-resistant container 4 pressurized to 25 kg/cm 2 of Xe gas. Here, Xe gas pressurization is performed using X-ray CT.
This is to obtain high sensitivity as a sensor. Since each electrode plate needs to have a small interelectrode gap of about 1.0 mm or less, it is made of tungsten material that is thin, about 0.1 mm, and difficult for radiation to pass through.

このように構成される従来のXeガス電離箱に
おいては、耐圧容器が必要で全体構成が大型かつ
重量も大きくなる欠点がある。また、薄い電極を
用いることから、これら各電極板の振動防止がノ
イズ対策上必要であり、また、絶縁体サポータの
絶縁物表面リークによるノイズ電流も考慮しなく
てはならない欠点がある。
The conventional Xe gas ionization chamber configured in this manner has the disadvantage that a pressure-resistant container is required, resulting in a large and heavy overall configuration. Furthermore, since thin electrodes are used, it is necessary to prevent vibration of each of these electrode plates as a noise countermeasure, and there is also the drawback that noise current due to leakage from the surface of the insulator of the insulator supporter must be taken into consideration.

ここにおいて、本発明は従来のXeガス電離箱
の欠点に鑑みてなされたもので、各チヤンネル間
ピツチを小さくでき、全体が小形で製作が容易、
かつ動作の安定な多チヤンネル形放射線検出器を
実現しようとするものである。
Here, the present invention was made in view of the drawbacks of the conventional Xe gas ionization chamber, and the pitch between each channel can be reduced, the whole is small and easy to manufacture.
The aim is to realize a multi-channel radiation detector with stable operation.

第2図は本発明に係る多チヤンネル放射線検出
器の一例を示す構成斜視図である。この図におい
て、5は厚さが1〜2mmのP形CdTe単結晶基板
である。このCdTe単結晶基板は、CdとTeとを
化学当量混合し、これを石英ガラスアンプルに真
空封入した後、ブリツジマン炉等で加熱し、結晶
化し、得られた単結晶インゴツトを切断、加工し
て作られる。6はCdTe単結晶基板5の一方の面
(背面側)に設けた共通電極で、単結晶基板5と
はオーミツク接合し、本発明においては、これ
が、Agペースト層によつて形成されている。7
1,72,73,…7nは、CdTe単結晶基板5
の他方の面に所定ピツチで配列するように設けた
Al又はInの薄膜電極で、例えば蒸着法又はスパ
ツタ法によつて付着形成される。これらの各薄膜
電極71,72,73,…7nは、CdTe単結晶
基板5との間でシヨツトキーバリヤ接合し、有感
電極として作用する。8は単結晶基板5の支持ホ
ールダで、基板5は、共通電極6を構成するAg
ペーストの接着力によつてこの支持ホールダに固
着されている。
FIG. 2 is a perspective view showing an example of a multichannel radiation detector according to the present invention. In this figure, 5 is a P-type CdTe single crystal substrate with a thickness of 1 to 2 mm. This CdTe single-crystal substrate is produced by mixing Cd and Te in chemical equivalents, vacuum-sealing the mixture in a quartz glass ampoule, heating it in a Bridgeman furnace, etc. to crystallize it, and cutting and processing the resulting single-crystal ingot. Made. Reference numeral 6 denotes a common electrode provided on one surface (back side) of the CdTe single crystal substrate 5, which is in ohmic contact with the single crystal substrate 5, and in the present invention is formed of an Ag paste layer. 7
1, 72, 73,...7n are CdTe single crystal substrates 5
arranged at a predetermined pitch on the other side of the
Thin film electrodes of Al or In, deposited, for example, by vapor deposition or sputtering. Each of these thin film electrodes 71, 72, 73, . 8 is a support holder for the single crystal substrate 5, and the substrate 5 is an Ag constituting the common electrode 6.
It is fixed to this support holder by the adhesive force of the paste.

このように構成された多チヤンネル放射線検出
器において、測定すべき放射線は、薄膜電極7
1,72,73,…7n側から入射する。
In the multi-channel radiation detector configured in this way, the radiation to be measured is transmitted through the thin film electrode 7.
The light is incident from the 1, 72, 73, . . . 7n side.

第3図は、本発明に係る放射線検出器の動作を
説明するための説明図で、イは断面図、ロはイに
対応する結晶基板内部の電位分布図である。
FIG. 3 is an explanatory diagram for explaining the operation of the radiation detector according to the present invention, in which A is a sectional view and B is a potential distribution diagram inside the crystal substrate corresponding to A.

CdTe単結晶基板5と、Al又はInで形成した薄
膜電極71とが、シヨツトキーバリア接合を形成
すると、第3図ロに示すように薄膜電極71側か
ら電位分布が生じ、これによつて薄膜電極71付
近に幅Weffの空乏層50が生じる。ここに、薄
膜電極71側から放射線が入射すると、その中で
エネルギーを失い、自由キヤリアが発生する。基
板5はP形CdTeであつて、正孔が多数キヤリア
となる。このキヤリアは、空乏層50内で発生し
たものが、薄膜電極71に集められ、電離電流I1
として外部に取り出される。この電離電流I1の大
きさは、薄膜電極71が形成されている面に入射
する放射線エネルギに対応している。なお、空乏
層50内で発生した自由キヤリアは、この空乏層
内の電界で加速され、薄膜電極71に到達し、電
離電流となるが、これ以外で発生したキヤリア
は、電界が存在しないので加速されず、直ちに再
結合して消滅するので、電離電流には寄与しな
い。
When the CdTe single crystal substrate 5 and the thin film electrode 71 made of Al or In form a shot key barrier junction, a potential distribution is generated from the thin film electrode 71 side as shown in FIG. A depletion layer 50 having a width Weff is generated near the thin film electrode 71. When radiation enters here from the thin film electrode 71 side, energy is lost therein and free carriers are generated. The substrate 5 is P-type CdTe, and many holes serve as carriers. These carriers are generated within the depletion layer 50 and are collected on the thin film electrode 71, resulting in an ionization current I 1
It is taken out to the outside as. The magnitude of this ionization current I 1 corresponds to the radiation energy incident on the surface on which the thin film electrode 71 is formed. Note that free carriers generated within the depletion layer 50 are accelerated by the electric field within this depletion layer, reach the thin film electrode 71, and become an ionization current, but carriers generated elsewhere are accelerated because no electric field exists. Since it immediately recombines and disappears, it does not contribute to the ionization current.

このような動作は、第2図において、各薄膜電
極71,72,73…が形成された各部分につい
てそれぞれ適用されるものであつて、各空乏層で
それぞれ放射線感度をもつ複数チヤンネルの放射
線検出器が実現できる。
Such an operation is applied to each portion where the thin film electrodes 71, 72, 73, etc. are formed in FIG. The device can be realized.

このように構成された本発明に係る放射線検出
器は、放射線のエネルギー吸収効率が高いこと、
無バイアスで放射線検出が行なえる等の特長があ
る。また、各薄膜電極相互間の相互干渉もなく、
信号を分離できる。それ故に、薄膜電極の配列ピ
ツチを小さくすることが可能で、位置分解能の高
い多チヤンネル形放射線検出器が実現できる。
The radiation detector according to the present invention configured as described above has high radiation energy absorption efficiency;
It has the advantage of being able to detect radiation without bias. In addition, there is no mutual interference between each thin film electrode,
Can separate signals. Therefore, the arrangement pitch of the thin film electrodes can be reduced, and a multichannel radiation detector with high positional resolution can be realized.

第4図は、本発明に係る放射線検出器における
放射線(X線)ビーム位置と薄膜電極71,72
からの出力の関係を示す線図である。
FIG. 4 shows the radiation (X-ray) beam position and thin film electrodes 71 and 72 in the radiation detector according to the present invention.
2 is a diagram showing the relationship between the outputs from the

第5図は、第4図線図を得るための実験システ
ム説明図である。ここでは、P形CdTe単結晶基
板5上に、薄膜電極を、電極ピツチ1mm、電極幅
0.5mmでAlを蒸着して形成させた場合である。X
線管81より発生したCWX線をチヨツパ82に
よつて断続し、これをスリツトコリメータ83を
介して、放射線CdTe検出器に照射する。この検
出器は、図示してないが、1/400mm単位で動く移
動ステージに乗つており、これを移動させつつ、
各薄膜電極71,72からの信号電圧V71′V72
感度比をプロツトしたものである。
FIG. 5 is an explanatory diagram of an experimental system for obtaining the diagram shown in FIG. Here, thin film electrodes are placed on a P-type CdTe single crystal substrate 5 with an electrode pitch of 1 mm and an electrode width of 1 mm.
This is the case where Al is deposited to a thickness of 0.5 mm. X
The CW X-rays generated from the ray tube 81 are interrupted by a chopper 82, and are irradiated to a radiation CdTe detector via a slit collimator 83. This detector is mounted on a moving stage that moves in 1/400 mm units, although it is not shown.
The sensitivity ratio of the signal voltages V 71 'V 72 from the respective thin film electrodes 71 and 72 is plotted.

第4図に示した実験結果から、隣接チヤンネル
からの信号リークは非常に小さく、チヤンネル分
離特性が良好であることが認められる。
From the experimental results shown in FIG. 4, it is recognized that signal leakage from adjacent channels is very small and the channel separation characteristics are good.

なお、上記の実験例では、CdTe単結晶基板5
上に線状の薄膜電極を所定ピツチで一列に配列し
たものについて例示したが、点状の薄膜電極を格
子状に配列し、二次元的に配列する多チヤンネル
放射線検出器を構成してもよい。
In addition, in the above experimental example, the CdTe single crystal substrate 5
Although the example shown above is one in which linear thin film electrodes are arranged in a line at a predetermined pitch, a multi-channel radiation detector in which dotted thin film electrodes are arranged in a grid pattern and arranged two-dimensionally may also be constructed. .

以上詳細に説明したように、本発明によれば、
P形CdTe単結晶基板、Agペースト層による共通
電極、複数個のAlまたはInの線状薄膜電極の組
み合わせで構成したもので、各チヤンネル間に切
り込み溝などを設けなくとも隣のチヤンネルとの
間での信号分離が可能となり、チヤンネル間ピツ
チを小さくすることができる上に、全体を小形に
構成できる。
As explained in detail above, according to the present invention,
It is composed of a P-type CdTe single crystal substrate, a common electrode made of an Ag paste layer, and multiple linear thin film electrodes of Al or In, so that each channel can be connected to the adjacent channel without the need for cutting grooves or the like. This makes it possible to separate signals at each channel, reduce the pitch between channels, and also make the entire structure compact.

また、本発明においては、P形CdTe単結晶基
板の連続する他方の表面にAgペースト層によつ
て共通電極を形成し、このAgペースト層の接着
力によつて、P形CdTe単結晶基板をホールダに
固着保持するように構成した結果、1mm程度の薄
いP形CdTe単結晶基板を、電気的に影響しない
形態で、しかも機械的な強度を維持しながら、長
期間にわたつて安定して保持することができ、動
作の安定な多チヤンネル形放射線検出器が実現で
きる。
Furthermore, in the present invention, a common electrode is formed on the other continuous surface of the P-type CdTe single-crystal substrate using an Ag paste layer, and the P-type CdTe single-crystal substrate is As a result of being configured to be firmly held in the holder, a thin P-type CdTe single crystal substrate of approximately 1 mm can be stably held for a long period of time without being affected electrically, while maintaining mechanical strength. A multi-channel radiation detector with stable operation can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来公知のX線CTに用いられている
Xeガス電離箱の一例を示す構成斜視図、第2図
は本発明に係る放射線検出器の一例を示す構成斜
視図、第3図は動作説明図、第4図は特性の一例
を示す線図、第5図は第4図の特性を得るための
実験システム説明図である。 5……CdTe単結晶基板、6……共通電極、7
1,72,73……薄膜電極。
Figure 1 is used in conventionally known X-ray CT.
FIG. 2 is a perspective view of the structure of an example of the Xe gas ionization chamber, FIG. 2 is a perspective view of the structure of an example of the radiation detector according to the present invention, FIG. 3 is an explanatory diagram of operation, and FIG. 4 is a diagram showing an example of characteristics. , FIG. 5 is an explanatory diagram of an experimental system for obtaining the characteristics shown in FIG. 4. 5... CdTe single crystal substrate, 6... Common electrode, 7
1, 72, 73...Thin film electrode.

Claims (1)

【特許請求の範囲】 1 P形CdTe単結晶で構成された平板状の基板
と、 P形CdTe単結晶基板の連続する一方の表面に
所定ピツチで配列するように形成した複数個の
AlまたはInの薄膜電極と、 このP形CdTe単結晶基板の連続する他方の表
面にAgペースト層によつて形成した共通電極と、 Agペースト層の接着力によつて前記P形CdTe
単結晶基板を固着保持する支持ホールダとを備
え、 前記薄膜電極側から被測定放射線を入射させる
ようにした多チヤンネル形放射線検出器。
[Claims] 1. A flat substrate made of a P-type CdTe single crystal, and a plurality of substrates arranged at a predetermined pitch on one continuous surface of the P-type CdTe single crystal substrate.
A thin film electrode of Al or In, a common electrode formed by an Ag paste layer on the other continuous surface of this P-type CdTe single crystal substrate, and a common electrode formed by an Ag paste layer on the other continuous surface of this P-type CdTe single crystal substrate, and
A multi-channel radiation detector, comprising a support holder that firmly holds a single crystal substrate, and in which radiation to be measured is incident from the thin film electrode side.
JP58006955A 1983-01-19 1983-01-19 Multichannel type radiation detector Granted JPS59132382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006955A JPS59132382A (en) 1983-01-19 1983-01-19 Multichannel type radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006955A JPS59132382A (en) 1983-01-19 1983-01-19 Multichannel type radiation detector

Publications (2)

Publication Number Publication Date
JPS59132382A JPS59132382A (en) 1984-07-30
JPH0554078B2 true JPH0554078B2 (en) 1993-08-11

Family

ID=11652645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006955A Granted JPS59132382A (en) 1983-01-19 1983-01-19 Multichannel type radiation detector

Country Status (1)

Country Link
JP (1) JPS59132382A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734480B2 (en) * 1986-07-07 1995-04-12 株式会社ジャパンエナジー CdTe radiation detection element
US6331705B1 (en) 1997-05-08 2001-12-18 State Of Israel, Atomic Energy Commission Room temperature solid state gamma or X-ray detectors
IL120807A (en) * 1997-05-08 2001-03-19 Israel Atomic Energy Comm Method for compensating for the effects of incomplete charge collection and for improving spectroscopic characteristics of room temperature solid state gamma or x-ray detectors
US6621084B1 (en) * 1998-09-24 2003-09-16 Elgems Ltd. Pixelated photon detector
EP1674887A3 (en) * 1998-09-24 2006-11-08 Elgems Ltd. Pixelated photon detector
US7122804B2 (en) * 2002-02-15 2006-10-17 Varian Medical Systems Technologies, Inc. X-ray imaging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929070A (en) * 1972-07-12 1974-03-15
JPS57149981A (en) * 1981-03-12 1982-09-16 Yokogawa Hokushin Electric Corp Multichannel type radiation detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929070A (en) * 1972-07-12 1974-03-15
JPS57149981A (en) * 1981-03-12 1982-09-16 Yokogawa Hokushin Electric Corp Multichannel type radiation detector

Also Published As

Publication number Publication date
JPS59132382A (en) 1984-07-30

Similar Documents

Publication Publication Date Title
US6385282B1 (en) Radiation detector and an apparatus for use in radiography
JP4416318B2 (en) Method and apparatus for obtaining an image by plane beam radiography, and radiation detector
KR100690921B1 (en) Radiation detector, an apparatus for use in planar beam radiography and a method for detecting ionizing radiation
US6373065B1 (en) Radiation detector and an apparatus for use in planar beam radiography
CA2393534C (en) A method and an apparatus for radiography and a radiation detector
CA2399007C (en) A method and a device for radiography and a radiation detector
JPH0554078B2 (en)
AU2001242943A1 (en) A method and a device for radiography and a radiation detector
EP1084425A1 (en) Detector for ionising radiation
US4571494A (en) Multi-channel radiation detector array
US4418452A (en) X-Ray detector
WO2001059479A1 (en) Radiation detector, an apparatus for use in radiography and a method for detecting ionizing radiation
JPS628157B2 (en)
JPS5811593B2 (en) Ionization chamber type X-ray detector
JPS623681A (en) Ion changer type x-ray detector