JPH0553722B2 - - Google Patents

Info

Publication number
JPH0553722B2
JPH0553722B2 JP60043737A JP4373785A JPH0553722B2 JP H0553722 B2 JPH0553722 B2 JP H0553722B2 JP 60043737 A JP60043737 A JP 60043737A JP 4373785 A JP4373785 A JP 4373785A JP H0553722 B2 JPH0553722 B2 JP H0553722B2
Authority
JP
Japan
Prior art keywords
powder
ultrafine
oxide particles
combustion tube
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60043737A
Other languages
Japanese (ja)
Other versions
JPS61205604A (en
Inventor
Tsukasa Hirayama
Sumio Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan, NipponDenso Co Ltd filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP60043737A priority Critical patent/JPS61205604A/en
Publication of JPS61205604A publication Critical patent/JPS61205604A/en
Publication of JPH0553722B2 publication Critical patent/JPH0553722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/322Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粒径0.2μm以下の酸化物超微粒子を
高効率で製造する製造方法とその製造装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a manufacturing method and apparatus for manufacturing ultrafine oxide particles having a particle size of 0.2 μm or less with high efficiency.

(従来の技術) 従来からMgO、Al2O3、ZrO2、Fe2O3
Fe3O4、SiO2などの酸化物の粉体は、フアインセ
ラミツクス、複合材料、センサ用の原料、触媒或
いは触媒担体として重要な材料であるが、これら
の粉体は通常湿式法で製造する。そのため、一般
に粉体粒子の形状は不定形であり、結晶性も悪
い。これに対し、金属溶融蒸発法、アーク放電法
等の乾式法により製造されるこれらの酸化物の粉
体粒子は、粒径が非常に小さく、結晶性も良い。
例えばγ−Al2O3粉体の場合、従来の湿式法で製
造したものは不定形で内部に極めて多数のポアを
持つ多孔質体であるのに対し、従来のアーク放電
法で生成したγ−Al2O3超微粒子はほとんど完全
に球形で、極めて結晶性の良い粒子であるため、
焼結原料や表面反応触媒或いはその担体としての
用途に適している。
(Conventional technology) Conventionally, MgO, Al 2 O 3 , ZrO 2 , Fe 2 O 3 ,
Powders of oxides such as Fe 3 O 4 and SiO 2 are important materials for fine ceramics, composite materials, raw materials for sensors, catalysts, or catalyst supports, but these powders are usually manufactured using a wet method. do. Therefore, the shape of powder particles is generally amorphous and has poor crystallinity. On the other hand, powder particles of these oxides produced by a dry method such as a metal melt evaporation method or an arc discharge method have a very small particle size and good crystallinity.
For example, in the case of γ-Al 2 O 3 powder, those produced by the conventional wet method are amorphous and porous with an extremely large number of pores inside, whereas the γ-Al 2 O 3 powder produced by the conventional arc discharge method is porous. -Al 2 O 3 ultrafine particles are almost completely spherical and have extremely good crystallinity, so
It is suitable for use as a sintering raw material, surface reaction catalyst, or its carrier.

このように、従来の乾式法で製造した酸化物超
微粒子には、湿式法により製造した粉体にはない
優れた性質が認められるが、これら金属溶融蒸発
法、アーク放電法等の従来の乾式法による超微粒
子製造法は、何れも生産性の点で問題があるもの
であつた。
In this way, ultrafine oxide particles produced using conventional dry methods have superior properties that are not found in powders produced using wet methods. All methods for producing ultrafine particles by the method have had problems in terms of productivity.

従来の超微粒子の乾式製法には、金属材料から
直接に酸化物超微粒子を製造する方法と、一旦金
属超微粒子を作り、それを酸化させる方法とがあ
る。このうち、前者の方法であるスパツタ法は、
生産量が少なく、工業的な生産法としては不適で
あつた。後者は、まず真空容器内で金属溶融蒸発
法により超微粒子金属粉末を作り、これを大気中
で酸化させて酸化物超微粒子にする。原理的に
は、どんな金属でも蒸発させることが出来、金属
の蒸気圧と真空度との差が大きくなるにつれて蒸
発量が大きくなるという特性を持つ。
Conventional dry methods for producing ultrafine particles include methods for directly producing ultrafine oxide particles from metal materials, and methods for once producing ultrafine metal particles and then oxidizing them. Among these, the former method, the spatuta method, is
The production volume was small and it was unsuitable as an industrial production method. In the latter method, ultrafine metal powder is first produced in a vacuum container using a metal melting evaporation method, and then oxidized in the atmosphere to form ultrafine oxide particles. In principle, any metal can be evaporated, and as the difference between the vapor pressure of the metal and the degree of vacuum increases, the amount of evaporation increases.

金属加熱のための投入電力が多いと蒸発量も大
きくなるが、そのかわり突沸現象が生じ、粒径の
大きな粒子が多くなる。そして、蒸発量を更に増
やせば、突沸量が更に増えるため、0.2μm以下の
超微粒子の収率は更に低下する。
If the amount of power input for heating the metal is large, the amount of evaporation will also be large, but at the cost of this, a bumping phenomenon will occur and the number of particles with large particle sizes will increase. If the amount of evaporation is further increased, the amount of bumping will further increase, and the yield of ultrafine particles of 0.2 μm or less will further decrease.

0.2μm以下の超微粒子の収率を増加させるため
には、蒸発量を低く抑えればよいが、それでは生
産性が悪いために工業的には不適なものとなる。
その上、これらの得られた金属微粒子を酸化する
という工程が別に必要となる。
In order to increase the yield of ultrafine particles of 0.2 μm or less, it is sufficient to keep the amount of evaporation low, but this would result in poor productivity and would be unsuitable for industrial use.
Moreover, a separate step of oxidizing the obtained metal fine particles is required.

酸化雰囲気中の原料金属を蒸発させ、1工程で
金属酸化物の超微粒子を製造しようとすれば、金
属の蒸発表面に蒸気圧の極めて低い酸化物層が形
成されるため、ますます多量の蒸発は困難であ
り、従つて、超微粒子の製造効率が悪く、工業的
には適さないものになつてしまう。
If we attempt to produce ultrafine metal oxide particles in one step by evaporating raw metal in an oxidizing atmosphere, an oxide layer with extremely low vapor pressure will be formed on the evaporated surface of the metal, resulting in an increasingly large amount of evaporation. is difficult, and therefore the production efficiency of ultrafine particles is poor, making them unsuitable for industrial use.

このように、超微粒子を容易に大量にかつ経済
的に生産する方法に関する研究はまだまだ不十分
であり、このことは、現在の超微粒子に関する研
究を遅らせているばかりでなく、将来の工業的実
用化段階での最大の難関となると言わざるを得な
い。
As described above, research on how to easily and economically produce ultrafine particles in large quantities is still insufficient, and this not only slows down current research on ultrafine particles but also hinders future industrial practical use. It must be said that this will be the biggest hurdle in the transformation stage.

(発明が解決しようとする課題) そこで、蒸発面積を極めて広くすること、
酸化物層が形成されるスピードと同等以上のスピ
ードで金属を蒸発させるために極めて迅速に原料
金属を加熱すること、以上の2点を実現させよう
とするものである。
(Problem to be solved by the invention) Therefore, to make the evaporation area extremely wide,
The purpose of this method is to heat the raw material metal extremely quickly in order to evaporate the metal at a speed equal to or higher than the speed at which the oxide layer is formed.

すなわち、本発明は容易に多量の酸化物超微粒
子を経済的に製造する方法と装置を提供すること
を目的とするものである。
That is, an object of the present invention is to provide a method and apparatus for easily and economically producing large quantities of ultrafine oxide particles.

(課題を解決するための手段) 本発明の酸化物超微粒子の製造方法は、上記目
的を達成するため鋭意研究の結果、金属粉体を酸
素を含む高温の炎の中で蒸発酸化させることによ
り、高効率で酸化物超微粒子が生成することを発
見したことに基づいて発明されたものである。
(Means for Solving the Problems) In order to achieve the above object, the method for producing ultrafine oxide particles of the present invention was developed by evaporating and oxidizing metal powder in a high-temperature flame containing oxygen. This invention was based on the discovery that ultrafine oxide particles can be produced with high efficiency.

すなわち、ガスバーナによつて形成される酸素
を含む高温の炎中に原料金属粉体を導入し、該原
料金属粉体を蒸発酸化させて、粒径が0.2μm以下
の酸化物超微粒子を生成させることを特徴とす
る。
That is, raw metal powder is introduced into a high temperature flame containing oxygen formed by a gas burner, and the raw metal powder is evaporated and oxidized to produce ultrafine oxide particles with a particle size of 0.2 μm or less. It is characterized by

原料金属粉体のバーナ炎中への導入法は、原料
金属粉体を炎中に落下させてもよく、原料金属粉
体をキヤリアガスで気流輸送してガスバーナの炎
中へ導入してもよい。このキヤリアガスは酸素あ
るいは燃焼ガスであつてよい。
The raw metal powder may be introduced into the burner flame by dropping the raw metal powder into the flame, or by transporting the raw metal powder by airflow using a carrier gas and introducing it into the gas burner flame. This carrier gas may be oxygen or a combustion gas.

上記酸化物超微粒子の製造方法を実現するため
の装置は、酸素を含む高温の炎を生成するガスバ
ーナ、該ガスバーナの先端方向に伸びるように取
り付けられた燃焼管、燃焼管へ通じる粉体導入管
を通じて燃焼管の中へ落下させる原料金属粉体を
貯蔵するための粉体貯蔵槽、燃焼管の出口に取り
付けられていて燃焼管の中で生成された酸化物超
微粒子を捕集するための超微粒子捕集器から構成
されている。
The apparatus for realizing the above method for producing ultrafine oxide particles includes a gas burner that generates a high-temperature flame containing oxygen, a combustion tube attached to extend toward the tip of the gas burner, and a powder introduction tube leading to the combustion tube. A powder storage tank is used to store the raw metal powder that is dropped into the combustion tube through the It consists of a particulate collector.

そして、上記粉体貯蔵層と粉体導入管との間に
粉体落下量調節コツクを設けるのがよい。
Further, it is preferable to provide a powder fall amount adjustment knob between the powder storage layer and the powder introduction pipe.

別の態様では、酸素を含む高温の炎を生成する
ガスバーナ、該ガスバーナへ通じるキヤリアガス
輸送管、キヤリアガス輸送管の途中に設けた原料
金属粉体を貯蔵し、キヤリアガスによつて撹拌す
るための粉体貯蔵攪拌槽、ガスバーナの先端方向
に伸びるように取り付けられた燃焼管、該燃焼管
の出口に取り付けられていて燃焼管の中で生成さ
れた酸化物微粒子を捕集するための超微粒子捕集
器から構成されている。
In another embodiment, a gas burner that generates a high-temperature flame containing oxygen, a carrier gas transport pipe leading to the gas burner, and a powder provided in the middle of the carrier gas transport pipe for storing raw metal powder and stirring it with the carrier gas. A storage stirring tank, a combustion tube attached to extend toward the tip of the gas burner, and an ultrafine particle collector attached to the outlet of the combustion tube to collect oxide fine particles generated in the combustion tube. It consists of

何れの態様においても、燃焼管へ通じる2次酸
素導入管を設けることが好ましい。
In either embodiment, it is preferable to provide a secondary oxygen introduction pipe that communicates with the combustion pipe.

(作用) 上記のように、原料金属の蒸発面積を極めて広
くするためには原料金属を粉末とするのがよく、
極めて迅速に原料金属粉末を加熱するには、直接
高温の炎中に原料金属粉末を導入するのがよい。
(Function) As mentioned above, in order to make the evaporation area of the raw metal extremely wide, it is best to form the raw metal into a powder.
In order to heat the raw metal powder extremely quickly, it is preferable to introduce the raw metal powder directly into a high-temperature flame.

バーナの火炎温度は、通常、プロパンと酸素の
場合早く3000〜3200℃、メタンと酸素の場合は約
2800〜3000℃である。なお、このような高温の測
定はNa、K、Ca等の金属から発する炎光の強度
から推定測定している。
Burner flame temperatures are typically as early as 3000-3200°C for propane and oxygen, and approx.
The temperature is 2800-3000℃. Note that such high temperature measurements are estimated from the intensity of flame light emitted from metals such as Na, K, and Ca.

超微粒子を形成する原料金属は、上記のガスバ
ーナによつて蒸発可能な金属であれば良いが、実
用上はAl、Mg、Fe、Zr、Si等が用いられる。
The raw material metal for forming the ultrafine particles may be any metal that can be evaporated by the gas burner, but in practice Al, Mg, Fe, Zr, Si, etc. are used.

そして、生成する超微粒子の粒径は、原料金属
粉体の粒径によらず、ほぼ一定の範囲に収まる
が、これは超微粒子の生成が金属蒸気の酸化によ
るため、生成条件は原料金属の粒径の影響を受け
ないためと考えられる。しかし、粉末粒径が過大
であると熱容量のために昇温速度が低下するの
で、一部が蒸発し、残部は表面酸化し、蒸発した
部分のみが酸化物超微粒子となる。このため、超
微粒子の収率が低下するので、原料金属粉末の粒
径を適当に選択するのがよい。
The particle size of the ultrafine particles that are generated falls within a nearly constant range regardless of the particle size of the raw metal powder, but this is because the generation of ultrafine particles is due to the oxidation of metal vapor, and the generation conditions are different from those of the raw metal. This is thought to be because it is not affected by particle size. However, if the powder particle size is too large, the rate of temperature increase will be reduced due to heat capacity, so a portion will evaporate, the remaining portion will undergo surface oxidation, and only the evaporated portion will become ultrafine oxide particles. For this reason, the yield of ultrafine particles decreases, so it is better to appropriately select the particle size of the raw metal powder.

(実施例) 製造装置の1例は、第1図にその構成の要部の
断面を示すように、酸素を含む高温の炎を生成す
るガスバーナ1、ガスバーナ1の先端方向に伸び
るように取り付けられた燃焼管6、燃焼管6へ通
じる粉体導入管5を通して燃焼管6中へ落下させ
る原料金属粉体を貯蔵するための粉体貯蔵槽4、
燃焼管6の出口に取付られていて燃焼管6中で生
成された酸化物微粒子を捕集するための超微粒子
捕集器7から構成されている。
(Example) As shown in FIG. 1, which shows a cross section of the main parts of the manufacturing device, an example of the manufacturing device includes a gas burner 1 that generates a high-temperature flame containing oxygen, and a gas burner 1 that is attached so as to extend toward the tip of the gas burner 1. a combustion pipe 6, a powder storage tank 4 for storing raw metal powder to be dropped into the combustion pipe 6 through a powder introduction pipe 5 leading to the combustion pipe 6;
It consists of an ultrafine particle collector 7 attached to the outlet of the combustion tube 6 to collect oxide particles generated in the combustion tube 6.

金属原料粉末は粉体導入管5を通じて落下させ
ることにより燃焼管6中で急速に蒸発、酸化さ
れ、超微粒子を生成するが、落下させる粉体の量
は貯蔵槽4と導入管5との間に設けた粉体落下量
調節コツク3より任意に調節できるようにしてあ
る。また、必要に応じて、燃焼管へ通じる2次酸
素導入管8を設け、この管8を通して燃焼管6中
へ2次酸素を供給し、燃焼条件を調節できるよう
にしてもよい。
When the metal raw material powder is dropped through the powder introduction pipe 5, it is rapidly evaporated and oxidized in the combustion tube 6, producing ultrafine particles, but the amount of powder that is dropped is between the storage tank 4 and the introduction pipe 5. The amount of powder falling can be adjusted as desired using a knob 3 provided at the bottom. Further, if necessary, a secondary oxygen introduction pipe 8 communicating with the combustion pipe may be provided, and secondary oxygen may be supplied into the combustion pipe 6 through this pipe 8 to adjust combustion conditions.

第2図は、酸化物超微粒子製造装置のもう1つ
の例を示すもので、酸素を含む高温の炎を生成す
るガスバーナ1、ガスバーナ1へ通じるキヤリア
ガス輸送管、キヤリアガス輸送管の途中に設けた
原料金属粉体を貯蔵しキヤリアガスによつて攪拌
するための粉体貯蔵攪拌槽9、ガスバーナ1の先
端方向に伸びるように取り付けられた燃焼管6、
燃焼管6の出口に取付られ燃焼管中で生成された
酸化物超微粒子を捕集するための超微粒子捕集器
7から構成されている。
Figure 2 shows another example of an oxide ultrafine particle production device, in which a gas burner 1 generates a high-temperature flame containing oxygen, a carrier gas transport pipe leading to the gas burner 1, and a raw material installed in the middle of the carrier gas transport pipe. a powder storage stirring tank 9 for storing metal powder and stirring it with a carrier gas; a combustion tube 6 attached to extend toward the tip of the gas burner 1;
It consists of an ultrafine particle collector 7 attached to the outlet of the combustion tube 6 to collect ultrafine oxide particles generated in the combustion tube.

第1図に示す装置により、金属Al粉末から
Al2O3超微粒子を製造した。
Using the equipment shown in Figure 1, metal Al powder is
Al 2 O 3 ultrafine particles were produced.

原料Al粉末は、中心分布が45〜50μmである10
〜100μmのAl粉末であり、その粒度分布を第3
図中に点線で示す。
The raw material Al powder has a center distribution of 45 to 50 μm10
~100μm Al powder, whose particle size distribution is
Indicated by dotted lines in the figure.

粉体貯蔵槽からガスバーナの前への粉体の供給
量を5g/分としたとき、得られた超微粒子の粒
径範囲は、第3図に示すように0.01〜0.2μmであ
り、その中心値は0.05〜0.06μmであつた。なお、
原料のうち、約5〜10%が反応せずに残つた。
When the amount of powder supplied from the powder storage tank to the front of the gas burner is 5 g/min, the particle size range of the obtained ultrafine particles is 0.01 to 0.2 μm as shown in Figure 3, and the center The value was 0.05-0.06 μm. In addition,
Approximately 5-10% of the raw material remained unreacted.

比較のため、以下のように従来の真空溶融蒸発
法によつて超微粒子を製造した。
For comparison, ultrafine particles were produced by a conventional vacuum melting evaporation method as follows.

金属Alを抵抗線で加熱し、1.3×10-3Paの真空
度で、るつぼ中の原料を蒸発酸化させた。この時
蒸発量を5g/分に設定した。また、原料供給量
を同じとしただけでなく、バーナおよびるつぼの
投入エネルギーをほぼ同程度としてある。
Metal Al was heated with a resistance wire, and the raw material in the crucible was evaporated and oxidized at a vacuum level of 1.3×10 -3 Pa. At this time, the evaporation amount was set to 5 g/min. Furthermore, not only the amount of raw materials supplied was the same, but also the energy input to the burner and crucible was approximately the same.

得られた微粒子の粒度分布を第4図に示す。こ
の従来の真空溶融蒸発法の結果は、点線で示すよ
うに幅広い分布を示している。特に、0.2μm以下
の収率を比較すると、実線で示す本発明の実施例
においては重量相対割合が1程度になるのに対し
て、真空溶融蒸発法においては0.1以下となり、
10倍以上の収率になつているのがわかる。
The particle size distribution of the obtained fine particles is shown in FIG. The results of this conventional vacuum melting evaporation method show a wide distribution as shown by the dotted line. In particular, when comparing the yield of 0.2 μm or less, in the example of the present invention shown by the solid line, the relative weight ratio is about 1, whereas in the vacuum melting evaporation method, it is less than 0.1,
It can be seen that the yield is more than 10 times higher.

真空溶融蒸発法において、大粒径のものが生成
されるのは、真空蒸発法においては、蒸発速度を
早くすると突沸現象が生じ、その結果、粒子の細
かいものだけでなく、大粒径のものが出来てしま
うものと考えられる。事実、蒸発速度を遅くする
ことにより突沸現象をなくし、微粒子のみを得る
ことは出来るが、この場合、蒸発量が少なくなる
ことによつて超微粒子の製造効率が悪くなり、工
業的に利用することが難しくなる。
In the vacuum melting evaporation method, large particles are produced because, in the vacuum evaporation method, when the evaporation rate is increased, a bumping phenomenon occurs, and as a result, not only fine particles but also large particles are produced. It is thought that this is possible. In fact, by slowing down the evaporation rate, it is possible to eliminate the bumping phenomenon and obtain only fine particles, but in this case, the amount of evaporation decreases and the production efficiency of ultrafine particles deteriorates, making it difficult to use it industrially. becomes difficult.

本願発明の方法によつて生成し、採集した超微
粒子を電子顕微鏡で観察測定したところ、粒径
0.01〜0.2μmの球状粒子が生成されており、これ
を電子線回折で分析したことろ、γ−Al2O3から
構成されていることがわかつた。
When the ultrafine particles produced and collected by the method of the present invention were observed and measured using an electron microscope, the particle size was
Spherical particles of 0.01 to 0.2 μm were produced, and analysis of these by electron beam diffraction revealed that they were composed of γ-Al 2 O 3 .

第2図の装置により、上記実施例と同様の原料
Al粉末をO2ガスをキヤリアガスとして気流輸送
し、バーナ1まで導いた。O2ガスをキヤリアガ
スとしても、室温付近の温度ではほとんど酸化し
ない。酸化が進行するのはほぼ800℃以上の高温
においてであり、特に1200℃以上の高温になると
著しく酸化が進行する。このため、O2ガスをキ
ヤリアガスとしても酸化物超微粒子の生成に対す
る影響はない。
Using the apparatus shown in Figure 2, the same raw materials as in the above example were prepared.
Al powder was transported by air flow using O 2 gas as a carrier gas and led to burner 1. Even if O 2 gas is used as a carrier gas, there is almost no oxidation at temperatures around room temperature. Oxidation progresses at high temperatures of approximately 800°C or higher, and particularly at high temperatures of 1200°C or higher, oxidation progresses significantly. Therefore, even if O 2 gas is used as a carrier gas, there is no effect on the generation of ultrafine oxide particles.

生成した超微粒子は、やはり粒径0.01〜0.2μm
の球状γ−Al2O3の超微粒子であり、収率も同様
に高かつた。
The generated ultrafine particles still have a particle size of 0.01 to 0.2 μm.
These were ultrafine spherical γ-Al 2 O 3 particles, and the yield was similarly high.

第2図の装置に類似の装置で、燃料ガスとして
用いたプロパンガスをキヤリアガスとしてMg粉
末を気流輸送してバーナの炎中に導入したとこ
ろ、MgO超微粒子が短時間で多量に生成した。
また、同様にFe粉末を導入したところ、γ−
Fe2O3超微粒子が高効率で生成した。キヤリアガ
スの流量は0.1〜0.5m3/分であり、気流搬送され
る原料Al粉末は0.1〜0.5m3当り5gであつた。
When Mg powder was introduced into a burner flame by pneumatic transport using propane gas used as a fuel gas as a carrier gas using an apparatus similar to the apparatus shown in Fig. 2, a large amount of ultrafine MgO particles were generated in a short period of time.
In addition, when Fe powder was introduced in the same way, γ-
Fe 2 O 3 ultrafine particles were generated with high efficiency. The flow rate of the carrier gas was 0.1 to 0.5 m 3 /min, and the amount of raw material Al powder conveyed by air current was 5 g per 0.1 to 0.5 m 3 .

(発明の効果) 本発明の超微粒子製造方法は、実施例によつて
明らかなように、極めて簡単な構成の装置によ
り、格別高価な原料、燃料を使用することなし
に、質の良い酸化物超微粒子が高効率で製造する
ことが出来、酸化物超微粒子を工業的に製造する
ことを可能にするという実用的に極めて効果の高
い発明である。
(Effects of the Invention) As is clear from the examples, the method for producing ultrafine particles of the present invention can produce high-quality oxides using an extremely simple device without using particularly expensive raw materials or fuel. This invention is extremely effective in practical terms because ultrafine particles can be produced with high efficiency and ultrafine oxide particles can be produced industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸化物超微粒子の製造装置の
1例の部分縦断面図、第2図は他の例の部分縦断
面図、第3図は原料金属粉と生成した超微粒子の
粒径分布を示すグラフ、第4図は従来の真空蒸発
法によつて生成される粒子と本発明によつて生成
される粒子の粒径分布比較を示すグラフである。 1:ガスバーナ、2:装置カバー、3:粉体落
下量調節コツク、4:粉体貯蔵槽、5:粉体導入
管、6:燃焼管、7:超微粒子捕集器、8:2次
酸素導入管、9:粉体貯蔵攪拌槽。
Fig. 1 is a partial longitudinal cross-sectional view of one example of the apparatus for producing ultrafine oxide particles of the present invention, Fig. 2 is a partial longitudinal cross-sectional view of another example, and Fig. 3 is a particle of the raw metal powder and the produced ultrafine particles. FIG. 4 is a graph showing a comparison of particle size distribution between particles produced by a conventional vacuum evaporation method and particles produced by the present invention. 1: Gas burner, 2: Equipment cover, 3: Powder falling amount adjustment pot, 4: Powder storage tank, 5: Powder introduction pipe, 6: Combustion pipe, 7: Ultrafine particle collector, 8: Secondary oxygen Inlet pipe, 9: Powder storage stirring tank.

【特許請求の範囲】[Claims]

1 酸化ホウ素と、増粘剤と、窒素含有窒化物プ
ロモーターとを含む反応組成物を非酸化性雰囲気
下で加熱しかつ高い温度に保つて窒化ホウ素を生
成することを含む窒化ホウ素の製造方法であつ
て、増粘剤をメタホウ酸、オルトホウ酸、ピロホ
ウ酸、五ホウ酸アンモニウム4水和物及びこれら
の混合物から選ぶ窒化ホウ素の製造方法。 2 前記増粘剤がオルトホウ酸或は五ホウ酸アン
モニウム4水和物である特許請求の範囲第1項記
載の方法。 3 窒素含有プロモーターが有機アミド或は有機
アミンである特許請求の範囲第1項或は第2項記
載の方法。 4 窒素含有プロモーターがメラミン或はジシア
ンジアミドである特許請求の範囲第3項記載の方
法。 5 反応組成物が窒素含有窒化物プロモーター30
〜55重量%及び酸化ホウ素と増粘剤との組合せ45
〜70重量%を含み、組合せにおける酸化ホウ素対
増粘剤の重量比が4:1〜1:3である特許請求
の範囲第1〜4項のいずれか一に記載の方法。 6 酸化ホウ素と、オルトホウ酸と、メラミンと
1. A method for producing boron nitride, comprising heating a reaction composition containing boron oxide, a thickener, and a nitrogen-containing nitride promoter in a non-oxidizing atmosphere and maintaining it at an elevated temperature to produce boron nitride. A method for producing boron nitride, wherein the thickener is selected from metaboric acid, orthoboric acid, pyroboric acid, ammonium pentaborate tetrahydrate, and mixtures thereof. 2. The method according to claim 1, wherein the thickener is orthoboric acid or ammonium pentaborate tetrahydrate. 3. The method according to claim 1 or 2, wherein the nitrogen-containing promoter is an organic amide or an organic amine. 4. The method according to claim 3, wherein the nitrogen-containing promoter is melamine or dicyandiamide. 5 The reaction composition is a nitrogen-containing nitride promoter30
~55% by weight and combination of boron oxide and thickener 45
5. A method according to any one of claims 1 to 4, wherein the weight ratio of boron oxide to thickener in the combination is from 4:1 to 1:3. 6 Boron oxide, orthoboric acid, and melamine

Claims (1)

るための粉体貯蔵槽、燃焼管の出口に取り付けら
れていて燃焼管の中で生成された酸化物超微粒子
を捕集するための超微粒子捕集器から構成されて
いることを特徴とする粒径が0.2μm以下の酸化物
超微粒子の製造装置。 7 特許請求の範囲第6項において、粉体貯蔵層
と粉体導入管との間に粉体落下量調節コツクを設
けたことを特徴とする酸化物超微粒子の製造装
置。 8 特許請求の範囲第6項または第7項におい
て、燃焼管へ通じる2次酸素導入管を設けたこと
を特徴とする酸化物超微粒子の製造装置。 9 酸素を含む高温の炎を生成するガスバーナ、
該ガスバーナーへ通じるキヤリアガス輸送管、キ
ヤリアガス輸送管の途中に設けた原料金属粉体を
貯蔵し、キヤリアガスによつて攪拌するための粉
体貯蔵攪拌槽、ガスバーナの先端方向に伸びるよ
うに取り付けられた燃焼管、該燃焼管の出口に取
り付けられていて燃焼管の中で生成された酸化物
超微粒子を捕集するための超微粒子捕集器から構
成されていることを特徴とする粒径が0.2μm以下
の酸化物超微粒子の製造装置。 10 特許請求の範囲第9項において、燃焼管へ
通じる2次酸素導入管を設けたことを特徴とする
酸化物超微粒子の製造装置。
and an ultrafine particle collector attached to the outlet of the combustion tube to collect ultrafine oxide particles generated in the combustion tube. Equipment for producing ultrafine oxide particles with a particle size of 0.2μm or less. 7. The apparatus for producing ultrafine oxide particles according to claim 6, characterized in that a powder fall amount adjustment knob is provided between the powder storage layer and the powder introduction pipe. 8. The apparatus for producing ultrafine oxide particles according to claim 6 or 7, characterized in that a secondary oxygen introduction pipe communicating with the combustion pipe is provided. 9. A gas burner that generates a high-temperature flame containing oxygen;
A carrier gas transport pipe leading to the gas burner, a powder storage stirring tank provided in the middle of the carrier gas transport pipe for storing raw metal powder and stirring it with the carrier gas, and a powder storage stirring tank installed so as to extend toward the tip of the gas burner. A combustion tube with a particle size of 0.2, comprising a combustion tube and an ultrafine particle collector attached to the outlet of the combustion tube to collect ultrafine oxide particles generated in the combustion tube. Equipment for producing ultrafine oxide particles of μm or less. 10. The apparatus for producing ultrafine oxide particles according to claim 9, characterized in that a secondary oxygen introduction pipe communicating with the combustion pipe is provided.
JP60043737A 1985-03-07 1985-03-07 Production of ultrafine particle of oxide and device therefor Granted JPS61205604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043737A JPS61205604A (en) 1985-03-07 1985-03-07 Production of ultrafine particle of oxide and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043737A JPS61205604A (en) 1985-03-07 1985-03-07 Production of ultrafine particle of oxide and device therefor

Publications (2)

Publication Number Publication Date
JPS61205604A JPS61205604A (en) 1986-09-11
JPH0553722B2 true JPH0553722B2 (en) 1993-08-10

Family

ID=12672091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043737A Granted JPS61205604A (en) 1985-03-07 1985-03-07 Production of ultrafine particle of oxide and device therefor

Country Status (1)

Country Link
JP (1) JPS61205604A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660003B2 (en) * 1985-07-24 1994-08-10 日本電装株式会社 Method and apparatus for producing ultrafine particles
JP2600181B2 (en) * 1987-07-15 1997-04-16 トヨタ自動車株式会社 Method for producing oxide powder
JPH02289404A (en) * 1989-04-27 1990-11-29 Toyota Motor Corp Production of metal oxide powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255602A (en) * 1984-05-29 1985-12-17 Toyota Motor Corp Preparation of ultrafine particle of oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255602A (en) * 1984-05-29 1985-12-17 Toyota Motor Corp Preparation of ultrafine particle of oxide

Also Published As

Publication number Publication date
JPS61205604A (en) 1986-09-11

Similar Documents

Publication Publication Date Title
Liang et al. Catalytic synthesis and photoluminescence of β-Ga 2 O 3 nanowires
US3848068A (en) Method for producing metal compounds
AU685828B2 (en) Method and apparatus for making nanostructured materials
US5618475A (en) Evaporator apparatus and method for making nanoparticles
US7291317B1 (en) Method for synthesizing extremely high-temperature melting materials
CN101618458B (en) Preparation method of sub-micron zinc powder and preparation device thereof
US20050061108A1 (en) Copper and/or zinc alloy nanopowders made by laser vaporization and condensation
JPH0433490B2 (en)
JPH0359964B2 (en)
US4122152A (en) Process for preparing silicon nitride powder having a high α-phase content
Pasquier et al. Synthesis of MgAl 2 O 4 spinel: seeding effects on formation temperature
JPH0553722B2 (en)
US4675171A (en) Production of finely-divided particulate bismuth oxide
JPH07309618A (en) Method for manufacture of aluminium oxide powder, aluminium oxide powder manufactured by said method and use thereof
CN201470881U (en) Submicron zinc powder preparation plant
KR20140096181A (en) Apparatus and method for manufacturing the silica-titania catalyst having high thermal stability
Brochin et al. Study of BiSb-SiO2 nanocomposite powders produced by an arc plasma processing
JP3723022B2 (en) Method for producing amorphous silica fine particles
JP3504481B2 (en) Method for producing Ni powder
SV et al. Formation of SiO and related Si-based materials through carbothermic reduction of silica-containing slag
CN107999781B (en) The method and ferrosilicon composite powder of zinc bismuth alloy cladding magnesium ferrosilicon particle preparation ferrosilicon powder
JPS61291406A (en) Method for producing ultra-fine particle of oxide and apparatus therefor
Zhang et al. Preparation of submicron metastable spherical β-Bi2O3 particles by self-propagating high-temperature synthesis method
JPH0577601B2 (en)
RU2738596C1 (en) Method of producing ultrafine particles of homogeneous oxide ceramic compositions consisting of core and outer shells