JPH0553513A - Production of liquid crystal oriented film - Google Patents

Production of liquid crystal oriented film

Info

Publication number
JPH0553513A
JPH0553513A JP21362191A JP21362191A JPH0553513A JP H0553513 A JPH0553513 A JP H0553513A JP 21362191 A JP21362191 A JP 21362191A JP 21362191 A JP21362191 A JP 21362191A JP H0553513 A JPH0553513 A JP H0553513A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
polymer film
irradiated
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21362191A
Other languages
Japanese (ja)
Other versions
JP3267989B2 (en
Inventor
Yutaka Nakai
豊 中井
Takaki Takato
孝毅 高頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21362191A priority Critical patent/JP3267989B2/en
Publication of JPH0553513A publication Critical patent/JPH0553513A/en
Application granted granted Critical
Publication of JP3267989B2 publication Critical patent/JP3267989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To allow the application of the liquid crystal oriented film to a large- sized and precise electrode display device by forming stretched parts and shrunk parts on the surface of a high-polymer film by irradiation with an energy beam, thereby producing the excellent liquid crystal oriented film in a short period of time without contaminating the surface and generating static electricity. CONSTITUTION:The surface of the high-polymer film (liquid crystal oriented film) 2 formed on a substrate 1 is irradiated with the energy beam 3. Shrinkage arises in the parts of the high-polymer film 2 irradiated with the energy beam 3 and the shrunk parts 4 are formed. Stretch arises in the parts not irradiated with the energy beam 3 and the stretched parts 5 are formed. Then, liquid crystal molecules 6 are oriented along the shrinkage direction and stretch direction of the high-polymer film 2 when the liquid crystal molecules 6 come into contact with the surface of the liquid crystal oriented film consisting of the formed high-polymer film 2. The surfaces of the shrunk part 4 are eventually recessed and ruggedness is generated and, therefore, the liquid crystal molecules 6 are more easily oriented along the ruggedness of the surface of the high- polymer film 2 by an anisotropic effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶配向膜の製造方法
に係わり、特に高分子膜に液晶を配向するための配向制
御機構を設けた液晶配向膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a liquid crystal alignment film, and more particularly to a method for producing a liquid crystal alignment film provided with an alignment control mechanism for aligning liquid crystals on a polymer film.

【0002】[0002]

【従来の技術】液晶表示装置は、薄型軽量,低消費電力
等の優れた特徴を有しており、新しい表示装置として様
々な分野から大きな期待が寄せられている。
2. Description of the Related Art Liquid crystal display devices have excellent characteristics such as thinness, light weight, and low power consumption, and are expected to be new display devices from various fields.

【0003】従来の液晶表示装置においては、液晶セル
の基本構造は一般に共通している。即ち液晶セルは、対
向して設けられた一対の基板をスペーサを介在させて所
定の間隙を保持させ、基板の周縁部をシール剤でシール
し、基板間に液晶を封入した構造を有している。また、
一対の基板の内面には電極及び液晶配向膜が形成されて
いる。
In the conventional liquid crystal display device, the basic structure of the liquid crystal cell is generally common. That is, the liquid crystal cell has a structure in which a pair of substrates provided opposite to each other are held with a spacer therebetween to maintain a predetermined gap, the peripheral edge of the substrate is sealed with a sealant, and liquid crystal is sealed between the substrates. There is. Also,
An electrode and a liquid crystal alignment film are formed on the inner surfaces of the pair of substrates.

【0004】ところで、基板の内面に形成した液晶配向
膜は、液晶を一定の方向に並べる作用を有する。液晶の
配向のさせ方は、基板に平行な方向に配向させる方式
と、基板に垂直な方向に配向させる方式とが知られてい
る。このうち、基板に平行な方向に配向させる方式が多
用されている。
By the way, the liquid crystal alignment film formed on the inner surface of the substrate has a function of arranging liquid crystals in a certain direction. As a method of aligning the liquid crystal, a method of aligning in a direction parallel to the substrate and a method of aligning in a direction perpendicular to the substrate are known. Of these, a method of orienting in a direction parallel to the substrate is often used.

【0005】従来、液晶配向膜を製造するには、ラビン
グ法又は斜方蒸着法が用いられている。ラビング法と
は、基板の表面にポリイミド,ポリビニルアルコール等
の高分子膜を形成し、ベルベット等の布で擦ることによ
り、高分子膜の表面に方向性を持たせる方法である。斜
方蒸着法とは、SiOのような金属酸化物等を、基板に
対して一定角度を持たせて蒸着させることにより、表面
に方向性を持たせる方法である。このうち、ラビング法
は単純なプロセスであるため、短時間で大量の処理が可
能であり、最も頻繁に用いられている。
Conventionally, a rubbing method or an oblique vapor deposition method has been used to manufacture a liquid crystal alignment film. The rubbing method is a method in which a polymer film made of polyimide, polyvinyl alcohol, or the like is formed on the surface of a substrate and rubbed with a cloth such as velvet to make the surface of the polymer film directional. The oblique vapor deposition method is a method in which a metal oxide such as SiO is vapor-deposited at a constant angle with respect to a substrate to give a directional surface. Among them, the rubbing method is a simple process and can process a large amount in a short time, and is used most frequently.

【0006】しかしながら、この種の方法にあっては次
のような問題があった。即ち、ラビング法では、膜を布
で擦るため多量の静電気が蓄積し、この静電気により薄
膜トランジスタの破壊やごみの付着等が生じる。さら
に、布が基板に直接接触するために基板の汚染が避けら
れないことである。このような理由から、大型で精密な
液晶表示装置への利用には限界があることが指摘されて
いる。また、斜方蒸着法は、蒸着過程に長時間を要す
る、液晶のプレチルト角が大きくなる、配向制御が弱い
という問題があり、殆ど使用されていないのが現状であ
る。
However, this method has the following problems. That is, in the rubbing method, a large amount of static electricity is accumulated because the film is rubbed with a cloth, and the static electricity causes destruction of the thin film transistor and adhesion of dust. In addition, contamination of the substrate is unavoidable because the cloth is in direct contact with the substrate. For these reasons, it has been pointed out that there is a limit to its use in large-sized and precise liquid crystal display devices. Further, the oblique vapor deposition method has problems that it takes a long time for the vapor deposition process, the pretilt angle of the liquid crystal is large, and the alignment control is weak, so that it is rarely used.

【0007】[0007]

【発明が解決しようとする課題】このように従来、液晶
配向膜を製造するにはラビング法が多用されているが、
この方法では静電気の発生や基板表面の汚染が生じ、大
型で精密な液晶表示装置に適用することは困難であっ
た。
As described above, conventionally, the rubbing method has been widely used for producing a liquid crystal alignment film.
With this method, static electricity is generated and the surface of the substrate is contaminated, and it is difficult to apply it to a large and precise liquid crystal display device.

【0008】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、表面の汚染や静電気の
発生を伴うことなく、短時間で優れた液晶配向膜を製造
することができ、大型で精密な液晶表示装置への適用も
可能となる液晶配向膜の製造方法を提供することにあ
る。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to produce an excellent liquid crystal alignment film in a short time without causing contamination of the surface or generation of static electricity. Another object of the present invention is to provide a method for producing a liquid crystal alignment film, which can be applied to a large-sized and precise liquid crystal display device.

【0009】[0009]

【課題を解決するための手段】本発明の骨子は、高分子
膜の表面に、延伸部位と収縮部位を形成することにあ
る。
The essence of the present invention is to form a stretched portion and a contracted portion on the surface of a polymer film.

【0010】即ち本発明は、液晶を配向制御するための
液晶配向膜の製造方法において、基板上に形成された高
分子膜の表面に、所定方向に沿ってエネルギービームを
照射し、照射部分と該照射部分に隣接する非照射部分の
体積変化を利用して、高分子膜に延伸部位と収縮部位を
形成することを特徴とする。
That is, according to the present invention, in the method for producing a liquid crystal alignment film for controlling the alignment of liquid crystal, the surface of the polymer film formed on the substrate is irradiated with an energy beam along a predetermined direction to form an irradiation portion. It is characterized in that the stretched portion and the contracted portion are formed in the polymer film by utilizing the volume change of the non-irradiated portion adjacent to the irradiated portion.

【0011】[0011]

【作用】本発明のように、高分子膜にエネルギービーム
を照射すると、該照射部分が局所的に加熱されその体積
変化が生じる。ここで、高分子膜としてエネルギービー
ムの照射部分が収縮する材料を用いれば、高分子膜に収
縮部位と延伸部位を形成することが可能となる。さら
に、エネルギービームを縞状(一定間隔で平行)に照射
すれば、収縮部位と延伸部位が一方向に沿って配列され
ることになり、これらの配列方向に沿って液晶が配向す
ることになる。
When the polymer film is irradiated with the energy beam as in the present invention, the irradiated portion is locally heated and its volume changes. Here, if a material whose energy beam irradiation portion contracts is used as the polymer film, it becomes possible to form a contracted portion and a stretched portion in the polymer film. Further, if the energy beam is irradiated in stripes (parallel at a constant interval), the contracted portion and the stretched portion are arranged in one direction, and the liquid crystal is aligned in the arrangement direction. ..

【0012】そしてこの場合、ラビング法とは異なり基
板表面を布で擦る必要がなくなり、静電気の発生や表面
の汚染を未然に防止することができる。しかも、エネル
ギービームを照射するにはレーザビームや電子ビーム等
を光学的に走査すればよく、エネルギービームの縞状の
照射も短時間に行うことができる。従って、短時間で優
れた液晶配向膜を製造することが可能となる。
In this case, unlike the rubbing method, it is not necessary to rub the surface of the substrate with a cloth, and it is possible to prevent generation of static electricity and contamination of the surface. Moreover, the irradiation of the energy beam may be performed by optically scanning a laser beam, an electron beam, or the like, and the irradiation of the energy beam in a striped pattern can be performed in a short time. Therefore, it becomes possible to manufacture an excellent liquid crystal alignment film in a short time.

【0013】本発明において、液晶配向膜を構成する高
分子膜は十分な強度を有し、液晶に溶解しないことが望
ましい。液晶配向膜を構成する高分子膜としては、例え
ば熱可塑性樹脂や熱硬化性樹脂を用いることができる。
In the present invention, it is desirable that the polymer film constituting the liquid crystal alignment film has sufficient strength and does not dissolve in the liquid crystal. As the polymer film forming the liquid crystal alignment film, for example, a thermoplastic resin or a thermosetting resin can be used.

【0014】従来のラビング法に用いる配向膜として
は、ポリイミド,ポリビニルアルコールなどの熱可塑性
樹脂が主に用いられてきた。これらの高分子膜は膜形
成,力学的強度,密着性,耐熱性等の点で優れており、
配向膜として既に実績を上げている。これらの高分子膜
にエネルギービームを照射すると、該照射部分は局所的
に加熱され膨脹する。しかし、エネルギービームの照射
停止後の冷却過程により、該照射部分は収縮する。この
結果、高分子膜に収縮部位と、該収縮部位に隣接して延
伸部位を形成することが可能となる。
As the alignment film used in the conventional rubbing method, thermoplastic resins such as polyimide and polyvinyl alcohol have been mainly used. These polymer films are excellent in film formation, mechanical strength, adhesion, heat resistance, etc.
It has already been proven as an alignment film. When these polymer films are irradiated with an energy beam, the irradiated parts are locally heated and expand. However, the irradiation part contracts due to the cooling process after the irradiation of the energy beam is stopped. As a result, it becomes possible to form a contracted portion in the polymer film and a stretched portion adjacent to the contracted portion.

【0015】一方、熱硬化性樹脂は熱により硬化反応を
するもので、その時収縮を生じる。これらの高分子膜に
エネルギービームを照射すると、該照射部分は硬化収縮
を生じ、その結果配向膜に収縮部位と、該収縮部位に隣
接して延伸部位を形成することが可能となる。なお、熱
硬化性樹脂は、力学的強度,密着性等の点で問題が生じ
る可能性があるが、その場合はポリイミドなどの熱可塑
性樹脂に熱硬化性樹脂を混入することで、力学的強度,
密着性を保ちながら、硬化収縮を引き起こすことが可能
である。
On the other hand, the thermosetting resin undergoes a curing reaction by heat and contracts at that time. When these polymer films are irradiated with an energy beam, the irradiated parts undergo curing contraction, and as a result, it becomes possible to form contracted parts and stretched parts adjacent to the contracted parts in the alignment film. Thermosetting resins may cause problems in terms of mechanical strength, adhesion, etc., but in that case, mixing thermosetting resins with thermoplastic resins such as polyimide will improve mechanical strength. ,
It is possible to cause curing shrinkage while maintaining adhesion.

【0016】また、本発明の液晶配向膜は多層構造とし
てもよい。この場合、下層をシリコーンゴム、天然ゴム
のような柔軟性に富む材料とし、上層を前述した高分子
膜とする構造が望ましい。このような構造では、上層の
収縮及び延伸の度合を、下層によって強めることができ
る。
The liquid crystal alignment film of the present invention may have a multi-layer structure. In this case, it is desirable that the lower layer is made of a highly flexible material such as silicone rubber or natural rubber, and the upper layer is the polymer film described above. In such a structure, the degree of shrinkage and stretching of the upper layer can be enhanced by the lower layer.

【0017】[0017]

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。 (実施例1)
The details of the present invention will be described below with reference to the illustrated embodiments. (Example 1)

【0018】図1は、本発明の第1の実施例方法に係わ
る液晶配向膜の製造工程を示す断面図である。まず、図
1(a)に示すように、電極が形成された基板1の表面
に高分子溶液を塗布する。高分子溶液の塗布方法は、ス
ピンナー法,印刷法のいずれでもよい。この後、高分子
溶液を乾燥して基板1上に高分子膜(液晶配向膜)2を
形成する。
FIG. 1 is a sectional view showing a manufacturing process of a liquid crystal alignment film according to the method of the first embodiment of the present invention. First, as shown in FIG. 1A, a polymer solution is applied to the surface of the substrate 1 on which electrodes are formed. The polymer solution may be applied by either a spinner method or a printing method. Then, the polymer solution is dried to form a polymer film (liquid crystal alignment film) 2 on the substrate 1.

【0019】次いで、図1(b)に示すように、基板1
の上からエネルギービーム3を照射する。また、エネル
ギービーム3は基板1の裏面から照射してもよい。エネ
ルギービーム3は所定方向に沿って縞状に平行に走査す
る。なお、複数のエネルギービームを同時に照射しても
よい。
Next, as shown in FIG. 1B, the substrate 1
The energy beam 3 is emitted from above. Further, the energy beam 3 may be irradiated from the back surface of the substrate 1. The energy beam 3 scans in a stripe shape in parallel along a predetermined direction. Note that a plurality of energy beams may be irradiated at the same time.

【0020】エネルギービーム3が照射された高分子膜
2の部分では、前述したように収縮が生じ、図1(c)
に示すように収縮部位4が形成される。そして、エネル
ギービーム3が照射されなかった高分子膜2の部分で
は、この部分に隣接する収縮部位4の収縮に伴って、図
中矢印で示す方向に応力が働き、延伸が生じて延伸部位
5が形成される。これにより、収縮部位と延伸部位を有
する液晶配向膜が形成される。
In the portion of the polymer film 2 which is irradiated with the energy beam 3, contraction occurs as described above, and FIG.
As shown in, the contraction site 4 is formed. Then, in the portion of the polymer film 2 which is not irradiated with the energy beam 3, stress is exerted in the direction indicated by the arrow in the drawing along with the contraction of the contracted portion 4 adjacent to this portion, and the stretched portion 5 is stretched. Is formed. As a result, a liquid crystal alignment film having a contracted portion and a stretched portion is formed.

【0021】かくして形成された高分子膜2からなる液
晶配向膜上に、図1(d)に示すように液晶分子6が接
触すると、液晶分子6は高分子膜2の収縮方向及び延伸
方向に沿って配向する。また、結果的に収縮部位4の表
面が窪んで高分子膜2の表面に凹凸が生じているので、
形状的な異方性の効果により液晶分子6は高分子膜2の
表面の凹凸に沿ってより配向し易くなる。
As shown in FIG. 1D, when the liquid crystal molecules 6 are brought into contact with the liquid crystal alignment film composed of the polymer film 2 thus formed, the liquid crystal molecules 6 are contracted and stretched in the polymer film 2. Orient along. In addition, as a result, the surface of the contraction site 4 is dented and unevenness is generated on the surface of the polymer film 2,
Due to the effect of shape anisotropy, the liquid crystal molecules 6 are more easily aligned along the irregularities on the surface of the polymer film 2.

【0022】図2は、上記の液晶配向膜を用いて作成し
た液晶表示素子の概略構成を示す断面図である。この液
晶表示素子は、次のようにして製造される。まず、電極
9が形成された基板1の表面に前述した方法により収縮
部位及び延伸部位が縞状に形成された高分子膜2からな
る液晶配向膜を形成する。これと同様の基板1′を用意
し、一対の基板1,1′を、高分子膜2,2′が形成さ
れた面を対向させてスペーサ7により所定の間隔を保持
した状態で、基板1,1′の周縁部をシール剤8で接着
する。そして、注入口から一対の基板1,1′の間に液
晶を封入したのち、注入口を閉じる。
FIG. 2 is a sectional view showing a schematic structure of a liquid crystal display element produced using the above liquid crystal alignment film. This liquid crystal display element is manufactured as follows. First, on the surface of the substrate 1 on which the electrodes 9 are formed, a liquid crystal alignment film composed of the polymer film 2 in which the contracted portion and the stretched portion are formed in stripes is formed by the method described above. A substrate 1 ′ similar to this is prepared, and a pair of substrates 1 and 1 ′ are made to face each other with the surfaces having the polymer films 2 and 2 ′ facing each other and the spacers 7 are kept at a predetermined interval. , 1'are bonded together with a sealant 8. Then, after filling the liquid crystal between the pair of substrates 1 and 1'from the inlet, the inlet is closed.

【0023】このように本実施例方法では、高分子膜2
からなる液晶配向膜を極めて簡単に製造することがで
き、しかもラビング法の欠点である静電気の蓄積による
薄膜トランジスタの破壊、及びごみの付着や基板の汚染
などを避けることができる。このため、大型で精密な液
晶表示装置に適用することが可能となり、その有用性は
絶大である。
As described above, in the method of this embodiment, the polymer film 2
It is possible to extremely easily manufacture a liquid crystal alignment film made of, and it is possible to avoid the drawbacks of the rubbing method, such as destruction of the thin film transistor due to accumulation of static electricity, adhesion of dust, and contamination of the substrate. Therefore, it can be applied to a large and precise liquid crystal display device, and its usefulness is great.

【0024】なお、高分子膜2に照射するエネルギービ
ームとしてはレーザがあげられ、例えばYAG,Ar,
CO2 などが考えられる。但し、レーザに限定されるも
のではない。さらに、複数のエネルギービームを用いて
同時に複数の収縮部位を形成することも可能であり、こ
れによりスループットを向上させることができる。
A laser can be used as an energy beam for irradiating the polymer film 2, for example, YAG, Ar,
CO 2 etc. can be considered. However, it is not limited to the laser. Further, it is possible to form a plurality of contraction sites at the same time by using a plurality of energy beams, which can improve the throughput.

【0025】液晶配向膜を構成する高分子膜2の収縮部
位及び延伸部位の幅は、1〜50μmが適当である。1
μm以下では、エネルギービームにより高分子膜2に微
細なパターンを描くことが困難となる。100μmを越
えると、粗雑なパターンとなり、液晶を十分に配向させ
ることができなくなる。また、延伸部位の収縮部位に対
する比率は、1〜100、望ましくは5〜10の範囲で
ある。
The width of the contracted portion and the stretched portion of the polymer film 2 constituting the liquid crystal alignment film is appropriately 1 to 50 μm. 1
When the thickness is less than μm, it becomes difficult to draw a fine pattern on the polymer film 2 by the energy beam. If it exceeds 100 μm, the pattern becomes rough and the liquid crystal cannot be sufficiently aligned. Further, the ratio of the stretched portion to the contracted portion is in the range of 1 to 100, preferably 5 to 10.

【0026】液晶配向膜を構成する高分子膜2の厚み
は、10〜1000nm、望ましくは10〜100nm
である。10nm未満では、液晶を十分に配向させるこ
とができなくなる。1000nmを越えると、配向膜の
抵抗が増加するため、液晶表示素子の動作に悪影響を与
える。
The thickness of the polymer film 2 constituting the liquid crystal alignment film is 10 to 1000 nm, preferably 10 to 100 nm.
Is. If it is less than 10 nm, the liquid crystal cannot be sufficiently aligned. If it exceeds 1000 nm, the resistance of the alignment film increases, which adversely affects the operation of the liquid crystal display element.

【0027】また、図2に示す液晶表示素子において、
基板表面に形成される電極9は、単純マトリックス方式
でも、アクティブマトリックス方式でもよい。このうち
後者では、基板上の画素毎に薄膜トランジスタ(TF
T)が形成されているので、表示特性を改善することが
できる。
Further, in the liquid crystal display element shown in FIG.
The electrodes 9 formed on the surface of the substrate may be of a simple matrix type or an active matrix type. In the latter, the thin film transistor (TF) is provided for each pixel on the substrate.
Since T) is formed, the display characteristics can be improved.

【0028】使用する液晶は特に限定されず、ツイステ
ッドネマティック(TN)液晶,スーパーツイステッド
ネマティック(STN)液晶,強誘電性液晶(キラルス
メクティック液晶)など、どのような液晶を用いてもよ
い。但し、TN液晶は従来から広く用いられているが、
この液晶を用いた表示方式では応答速度が不十分である
ことや、クロストークが発生するなどの問題があるた
め、動画用の大画面ディスプレイなど、速い応答速度が
要求されるものへの応用は困難である。STN液晶はね
じれ角が250〜360度であり、ねじれ角が90度で
あるTN液晶と比較して、コントラストを増大させるの
に有利である。強誘電性液晶を用いた素子は、液晶材料
と配向膜との相互作用により自発分極を発生させ、この
自発分極と電場との相互作用により液晶を駆動させる方
式であるので、応答速度を改善するのに有効である。次
に、本発明のより具体的な実施例(第2の実施例,第3
の実施例)について説明する。 (実施例2)まず、以下の原料を用い、高分子組成物を
調整した。 熱可塑性樹脂:ポリイミド樹脂(日立化成製,商品名P
IX−5400) 溶媒:γ−ブチロラクトン
The liquid crystal to be used is not particularly limited, and any liquid crystal such as twisted nematic (TN) liquid crystal, super twisted nematic (STN) liquid crystal, ferroelectric liquid crystal (chiral smectic liquid crystal) may be used. However, although TN liquid crystal has been widely used,
Since the display method using this liquid crystal has problems such as insufficient response speed and occurrence of crosstalk, it is not applicable to large-screen displays for moving images and the like that require high response speed. Have difficulty. The STN liquid crystal has a twist angle of 250 to 360 degrees, which is advantageous in increasing the contrast as compared with the TN liquid crystal having a twist angle of 90 degrees. An element using a ferroelectric liquid crystal is a system in which a spontaneous polarization is generated by the interaction between a liquid crystal material and an alignment film, and the liquid crystal is driven by the interaction between the spontaneous polarization and an electric field, so that the response speed is improved. It is effective for Next, more specific embodiments of the present invention (second embodiment, third embodiment)
Example) will be described. Example 2 First, a polymer composition was prepared using the following raw materials. Thermoplastic resin: Polyimide resin (Hitachi Kasei, trade name P
IX-5400) Solvent: γ-butyrolactone

【0029】得られた高分子組成物を、洗浄されたガラ
ス基板にスピンナーにより塗布した後、150℃で60
分間加熱して溶媒を飛散させ、厚さ1μmの高分子膜を
形成した。この膜の上方から、CW−YAGレーザをビ
ーム径を2μmに絞り、20μm間隔で一定方向に縞状
に照射した。このときのパワー密度は1kW/cm2
ある。この結果、収縮部位及びこれに隣接する延伸部位
を有する液晶配向膜が形成された。
The polymer composition obtained was washed with glass.
After applying it to the substrate with a spinner,
Heat for a minute to disperse the solvent and form a 1 μm thick polymer film.
Formed. A CW-YAG laser is projected from above this film.
The dome diameter is reduced to 2 μm, and stripes are formed in 20 μm intervals in a fixed direction.
Was irradiated. The power density at this time is 1 kW / cm2 so
is there. As a result, the contracted area and the stretched area adjacent to the contracted area
A liquid crystal alignment film having the following was formed.

【0030】次いで、上記のようにして得られた2枚の
基板を、スペーサを介して5μm間隔で隔てて保持し、
これらの周縁部をシール剤でシールし、基板間にネマテ
ィック液晶(Merk社製,ZLI−1370)を封入
して液晶セルを作成した。各セルを偏光顕微鏡を用いて
観察し、液晶の配向性を評価した。この結果、液晶の配
向が良好であることが確認された。また、液晶配向膜表
面の汚染、きずなどの欠陥は全く観察されず、静電気の
発生も全く観察されなかった。なお、レーザのパワー密
度は、液晶配向膜,基板の材質などで最適値が変わる。 (実施例3)図3は、本発明の第3の実施例に係わる液
晶表示素子の概略構成を示す断面図である。この素子を
製造方法に従って説明する。
Next, the two substrates obtained as described above are held at a distance of 5 μm via a spacer,
These peripheral portions were sealed with a sealant, and nematic liquid crystal (ZLI-1370 manufactured by Merk) was sealed between the substrates to form a liquid crystal cell. Each cell was observed using a polarization microscope to evaluate the orientation of the liquid crystal. As a result, it was confirmed that the alignment of the liquid crystal was good. Further, no defects such as contamination and scratches on the surface of the liquid crystal alignment film were observed, and generation of static electricity was not observed at all. The optimum power density of the laser varies depending on the liquid crystal alignment film, the material of the substrate, and the like. (Embodiment 3) FIG. 3 is a sectional view showing a schematic structure of a liquid crystal display element according to a third embodiment of the present invention. This device will be described according to the manufacturing method.

【0031】まず、洗浄されたガラス基板1上に、例え
ばスパッタ法でMo−Ta合金を300nm成膜し、ゲ
ート電極,ゲート線20及び負荷容量線17をパターニ
ングする。次いで、ゲート絶縁膜(SiO膜)10を3
50nm、SiN膜11を50nm、a−Si膜12を
100nm、エッチングストッパとして機能する保護膜
(SiN膜)13を100nm連続成膜する。続いて、
保護膜13をパターニングし、さらにSiN膜11及び
a−Si膜12を縞状にパターニングする。次いで、I
TO膜18を100nm成膜したのち、これを画素電極
形状にパターニングし、さらにソース・ドレイン領域の
オーミックコンタクト層である燐等の不純物をドープし
たn+ 型a−Si膜14を50nm成膜する。
First, a 300 nm Mo-Ta alloy film is formed on the cleaned glass substrate 1 by, for example, a sputtering method, and the gate electrode, the gate line 20, and the load capacitance line 17 are patterned. Next, the gate insulating film (SiO film) 10 is formed to 3
50 nm, SiN film 11 is 50 nm, a-Si film 12 is 100 nm, and a protective film (SiN film) 13 that functions as an etching stopper is continuously formed to 100 nm. continue,
The protective film 13 is patterned, and the SiN film 11 and the a-Si film 12 are patterned in stripes. Then I
After a TO film 18 having a thickness of 100 nm is formed, the TO film 18 is patterned into a pixel electrode shape, and n + is doped with impurities such as phosphorus, which is an ohmic contact layer in the source / drain regions. The type a-Si film 14 is formed to a thickness of 50 nm.

【0032】次いで、ゲート電極の端子部分の上の第1
の絶縁膜であるSiO膜10をエッチング除去する。そ
の後、Crを100nm,Alを400nm成膜し、信
号線及びドレイン電極15とソース電極16を形成す
る。続いて、ドレイン電極15及びソース電極16をマ
スクとしてn+ 型a−Si膜14をエッチング除去して
ドレイン電極15とソース電極16を電気的に分離し、
これによりアクティブマトリックス基板を形成する。最
後に、パッシベーション膜としてSiN膜19を150
nm成膜し、パターニングする。
Next, the first electrode on the terminal portion of the gate electrode
The SiO film 10 which is the insulating film is removed by etching. After that, Cr is deposited to a thickness of 100 nm and Al is deposited to a thickness of 400 nm to form the signal line and the drain electrode 15 and the source electrode 16. Then, using the drain electrode 15 and the source electrode 16 as a mask, n + The type a-Si film 14 is removed by etching to electrically separate the drain electrode 15 and the source electrode 16,
This forms an active matrix substrate. Finally, the SiN film 19 is used as a passivation film for 150
nm film formation and patterning.

【0033】次に、従来技術であるラビング法により液
晶配向膜及び対向基板に配向処理を施した。この対向基
板と図3に示す基板を、液晶配向膜が形成された面を対
向させ、スペーサにより所定の間隔を保持した状態で、
基板の周縁部をシール材で接着した。注入口から一対の
基板の間に液晶を封入したのち、注入口を閉じる。
Next, the liquid crystal alignment film and the counter substrate were subjected to alignment treatment by a rubbing method which is a conventional technique. With this counter substrate and the substrate shown in FIG. 3 facing each other with the surfaces on which the liquid crystal alignment film is formed, and with a predetermined spacing maintained by spacers,
The peripheral portion of the substrate was adhered with a sealing material. After the liquid crystal is filled between the inlet and the pair of substrates, the inlet is closed.

【0034】ところで、一般にラビング法ではアクティ
ブマトリックス基板の凹凸があるため、ラビング方向に
よっては液晶配向膜がラビング用布でうまく擦られない
箇所が生じることが知られている。この配向不良は、液
晶表示素子では輝点として視認される。輝点状欠陥は表
示上かなり目立つため、配向不良を修正することが必要
である。
By the way, it is known that, in the rubbing method, the liquid crystal alignment film may not be rubbed well with the rubbing cloth depending on the rubbing direction because the active matrix substrate has irregularities. This alignment defect is visually recognized as a bright spot on the liquid crystal display element. Since bright spot defects are noticeable on the display, it is necessary to correct the misalignment.

【0035】そこで本実施例では、まず輝点欠陥にCW
−YAGレーザを、アクティブマトリックス基板の裏面
から、ビーム径20μm,パワー密度0.1kW/cm
2 で液晶配向膜に焦点を合わせて画素内全面を照射し
た。これにより、アクティブマトリックス基板上で液晶
は配向されなくなった。
Therefore, in the present embodiment, first, CW is applied to the bright spot defects.
-Using a YAG laser from the back surface of the active matrix substrate, a beam diameter of 20 μm and a power density of 0.1 kW / cm
2 Then, the entire surface of the pixel was irradiated by focusing on the liquid crystal alignment film. As a result, the liquid crystal is no longer aligned on the active matrix substrate.

【0036】その後、ビーム径を2μmに絞り、20μ
m間隔で基板の裏面から初期に配向された方向と90度
ずれた方向に縞状に照射した。このときのエネルギー密
度は1kW/cm2 とした。その結果、液晶はレーザビ
ームを照射した方向と90°ずれた方向に沿って配向さ
れ、配向を制御することができた。なお、レーザビーム
の照射による周辺の液晶の損傷は見られなかった。ま
た、レーザビームのパワー密度は、液晶配向膜,基板の
材質などで最適値が変わる。
After that, the beam diameter was reduced to 2 μm and the beam diameter was changed to 20 μm.
Irradiation was performed in stripes at a distance of m from the back surface of the substrate in a direction deviated by 90 degrees from the initially oriented direction. The energy density at this time is 1 kW / cm 2 And As a result, the liquid crystal was aligned along the direction deviated by 90 ° from the direction irradiated with the laser beam, and the alignment could be controlled. No damage to the surrounding liquid crystal was observed due to the laser beam irradiation. Further, the optimum power density of the laser beam changes depending on the material of the liquid crystal alignment film, the substrate, and the like.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、エ
ネルギービームの照射により高分子膜の表面に、延伸部
位と収縮部位を形成することによって液晶の配向を制御
することができる。従って、表面の汚染や静電気の発生
を伴うことなく、短時間で優れた液晶配向膜を製造する
ことができ、大型で精密な液晶表示装置への適用も可能
となる。
As described above, according to the present invention, the orientation of the liquid crystal can be controlled by forming the stretched portion and the contracted portion on the surface of the polymer film by irradiation with the energy beam. Therefore, an excellent liquid crystal alignment film can be produced in a short time without causing contamination of the surface or generation of static electricity, and can be applied to a large and precise liquid crystal display device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例方法に係わる液晶配向膜
の製造工程を示す断面図、
FIG. 1 is a sectional view showing a manufacturing process of a liquid crystal alignment film according to a method of a first embodiment of the present invention,

【図2】第1の実施例の液晶配向膜を用いた液晶表示素
子の概略構成を示す断面図、
FIG. 2 is a sectional view showing a schematic configuration of a liquid crystal display element using the liquid crystal alignment film of the first embodiment,

【図3】本発明の第3の実施例に係わる液晶表示素子の
概略構成を示す断面図。
FIG. 3 is a sectional view showing a schematic configuration of a liquid crystal display element according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、 2…高分子膜、 3…エネルギービーム、 4…収縮部位、 5…延伸部位、 6…液晶分子、 7…スペーサ、 8…シール剤、 9…電極。 1 ... Substrate, 2 ... Polymer film, 3 ... Energy beam, 4 ... Contraction site, 5 ... Stretching site, 6 ... Liquid crystal molecule, 7 ... Spacer, 8 ... Sealing agent, 9 ... Electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された高分子膜の表面に、所
定方向に沿ってエネルギービームを照射し、照射部分と
該照射部分に隣接する非照射部分の体積変化を利用し
て、前記高分子膜に延伸部位と収縮部位を形成すること
を特徴とする液晶配向膜の製造方法。
1. A surface of a polymer film formed on a substrate is irradiated with an energy beam along a predetermined direction, and the volume change of an irradiated portion and a non-irradiated portion adjacent to the irradiated portion is utilized to make a change. A method for producing a liquid crystal alignment film, which comprises forming a stretched portion and a contracted portion in a polymer film.
JP21362191A 1991-08-26 1991-08-26 Method for manufacturing liquid crystal alignment film Expired - Fee Related JP3267989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21362191A JP3267989B2 (en) 1991-08-26 1991-08-26 Method for manufacturing liquid crystal alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21362191A JP3267989B2 (en) 1991-08-26 1991-08-26 Method for manufacturing liquid crystal alignment film

Publications (2)

Publication Number Publication Date
JPH0553513A true JPH0553513A (en) 1993-03-05
JP3267989B2 JP3267989B2 (en) 2002-03-25

Family

ID=16642203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21362191A Expired - Fee Related JP3267989B2 (en) 1991-08-26 1991-08-26 Method for manufacturing liquid crystal alignment film

Country Status (1)

Country Link
JP (1) JP3267989B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684500A2 (en) 1994-05-27 1995-11-29 Sharp Kabushiki Kaisha Liquid crystal display device, method for producing the same, and apparatus for producing the same
EP0875781A2 (en) * 1997-04-30 1998-11-04 JSR Corporation Liquid crystal alignment layer, production method for the same, and liquid crystal display device comprising the same
US6191836B1 (en) 1996-11-07 2001-02-20 Lg Philips Lcd, Co., Ltd. Method for fabricating a liquid crystal cell
US6226066B1 (en) 1996-01-09 2001-05-01 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
EP1139154A1 (en) * 2000-03-27 2001-10-04 Hewlett-Packard Company, A Delaware Corporation Liquid crystal alignment
EP1139150A1 (en) * 2000-03-27 2001-10-04 Hewlett-Packard Company, A Delaware Corporation Liquid crystal alignment structure
US6383579B1 (en) 1999-04-21 2002-05-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6399165B1 (en) 1997-11-21 2002-06-04 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6476894B1 (en) 1998-05-13 2002-11-05 Nec Corporation Liquid crystal display device and method of manufacturing the same
US6479218B1 (en) 1999-10-14 2002-11-12 Lg Philips Lcd Co., Ltd Method for manufacturing multi-domain liquid crystal cell
US6764724B1 (en) 1999-03-25 2004-07-20 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US6770335B2 (en) 2000-10-28 2004-08-03 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display device and method for fabricating the same with said materials
US6793987B2 (en) 2000-10-28 2004-09-21 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display fabricated with such photoalignment materials
US6798481B2 (en) 2000-03-27 2004-09-28 Hewlett-Packard Development Company, L.P. Liquid crystal alignment
US6808766B1 (en) 1998-08-26 2004-10-26 Nissan Chemical Industries, Ltd. Liquid crystal alignment agent and liquid crystal device using the liquid crystal alignment and method for alignment of liquid crystal molecules
US6903790B2 (en) 2000-03-27 2005-06-07 Hewlett-Packard Development Company Bistable nematic liquid crystal device
US6992741B2 (en) 2001-06-22 2006-01-31 Hewlett-Packard Development Company, L.P. Bistable nematic liquid crystal device
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
US7460200B2 (en) 2000-03-27 2008-12-02 Helwett-Packard Development Company, L.P. Liquid crystal alignment

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684500A2 (en) 1994-05-27 1995-11-29 Sharp Kabushiki Kaisha Liquid crystal display device, method for producing the same, and apparatus for producing the same
US5604615A (en) * 1994-05-27 1997-02-18 Sharp Kabushiki Kaisha Liquid crystal display device and methods for producing same with alignment layer having new bond formation or bond cleavage reaction of molecular chains by light irradiation
US6879363B2 (en) 1996-01-09 2005-04-12 Lg.Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6433850B2 (en) 1996-01-09 2002-08-13 Lg. Phillips Lcd Co., Ltd. Pretilt angle direction in a liquid crystal cell
US6226066B1 (en) 1996-01-09 2001-05-01 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US7145618B2 (en) 1996-01-09 2006-12-05 Lg.Philips Lcd Co., Ltd Method for controlling pretilt angle direction in a liquid crystal cell
US6633355B2 (en) 1996-01-09 2003-10-14 Lg. Philips Lcd Co., Ltd. Method for controlling pretilt angle direction in a liquid crystal cell
US6191836B1 (en) 1996-11-07 2001-02-20 Lg Philips Lcd, Co., Ltd. Method for fabricating a liquid crystal cell
US6721025B2 (en) 1996-11-07 2004-04-13 Lg.Philips Lcd Co., Ltd Method for fabricating a liquid crystal cell
US6462797B1 (en) 1996-11-07 2002-10-08 Lg. Philips Lcd Co., Ltd. Method for fabricating a liquid crystal cell
US6417905B1 (en) 1996-11-07 2002-07-09 Lg. Philips Lcd Co., Ltd. Method for fabricating a liquid crystal cell
EP0875781A2 (en) * 1997-04-30 1998-11-04 JSR Corporation Liquid crystal alignment layer, production method for the same, and liquid crystal display device comprising the same
EP0875781A3 (en) * 1997-04-30 2000-05-10 JSR Corporation Liquid crystal alignment layer, production method for the same, and liquid crystal display device comprising the same
US7911696B1 (en) 1997-05-28 2011-03-22 Lg Display Co., Ltd. Large scale polarizer and polarizer system employing it
US7016113B2 (en) 1997-05-28 2006-03-21 Lg.Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US7016112B2 (en) 1997-05-28 2006-03-21 Lg.Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US6639720B2 (en) 1997-05-28 2003-10-28 Lg.Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
US6399165B1 (en) 1997-11-21 2002-06-04 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6572939B2 (en) 1997-11-21 2003-06-03 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6717643B2 (en) 1998-05-13 2004-04-06 Nec Lcd Technologies, Ltd. Liquid crystal display device
US6570635B2 (en) 1998-05-13 2003-05-27 Nec Corporation Method of manufacturing liquid crystal display device
US6476894B1 (en) 1998-05-13 2002-11-05 Nec Corporation Liquid crystal display device and method of manufacturing the same
US6808766B1 (en) 1998-08-26 2004-10-26 Nissan Chemical Industries, Ltd. Liquid crystal alignment agent and liquid crystal device using the liquid crystal alignment and method for alignment of liquid crystal molecules
US7901605B2 (en) 1999-03-25 2011-03-08 Lg Display Co., Ltd. Method of forming an alignment layer for liquid crystal display device
US6764724B1 (en) 1999-03-25 2004-07-20 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US7608211B2 (en) 1999-03-25 2009-10-27 Lg Display Co., Ltd. Method of making a liquid crystal display device
US7014892B2 (en) 1999-03-25 2006-03-21 Lg.Philips Lcd Co., Ltd. Alignment layer for a liquid crystal display device
US6582784B2 (en) 1999-04-21 2003-06-24 Lg.Philips Lcd Co., Ltd. Liquid crystal display
US6383579B1 (en) 1999-04-21 2002-05-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US6479218B1 (en) 1999-10-14 2002-11-12 Lg Philips Lcd Co., Ltd Method for manufacturing multi-domain liquid crystal cell
US6787292B2 (en) 1999-10-14 2004-09-07 Lg.Philips Lcd Co., Ltd. Method for manufacturing multi-domain liquid crystal cell
US6903790B2 (en) 2000-03-27 2005-06-07 Hewlett-Packard Development Company Bistable nematic liquid crystal device
US7460200B2 (en) 2000-03-27 2008-12-02 Helwett-Packard Development Company, L.P. Liquid crystal alignment
US6798481B2 (en) 2000-03-27 2004-09-28 Hewlett-Packard Development Company, L.P. Liquid crystal alignment
JP2001281660A (en) * 2000-03-27 2001-10-10 Hewlett Packard Co <Hp> Liquid crystal device
US7633596B2 (en) 2000-03-27 2009-12-15 Hewlett-Packard Development Company, L.P. Liquid crystal alignment
US7106410B2 (en) 2000-03-27 2006-09-12 Hewlett-Packard Development Company, L.P. Bistable nematic liquid crystal device comprising an array of upstanding alignment posts
EP1139150A1 (en) * 2000-03-27 2001-10-04 Hewlett-Packard Company, A Delaware Corporation Liquid crystal alignment structure
EP1139154A1 (en) * 2000-03-27 2001-10-04 Hewlett-Packard Company, A Delaware Corporation Liquid crystal alignment
US7397526B2 (en) 2000-03-27 2008-07-08 Hewlett-Packard Development Company, L.P. Liquid crystal device comprising alignment posts having a random or pseudorandom spacing therebetween
US6793987B2 (en) 2000-10-28 2004-09-21 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display fabricated with such photoalignment materials
US7083833B2 (en) 2000-10-28 2006-08-01 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display fabricated with such photoalignment materials
US6770335B2 (en) 2000-10-28 2004-08-03 Lg.Philips Lcd Co., Ltd. Photoalignment materials and liquid crystal display device and method for fabricating the same with said materials
US6992741B2 (en) 2001-06-22 2006-01-31 Hewlett-Packard Development Company, L.P. Bistable nematic liquid crystal device
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device

Also Published As

Publication number Publication date
JP3267989B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
JP3267989B2 (en) Method for manufacturing liquid crystal alignment film
JPH06294959A (en) Liquid crystal display device and its production
JPH09197420A (en) Liquid crystal element
KR101093253B1 (en) In-Plane Switching mode LCD and the fabrication method thereof
JP3015434B2 (en) Liquid crystal alignment film, method of manufacturing the same, and liquid crystal display device using the same
JPH06289358A (en) Production of liquid crystal display device and liquid crystal display device
KR101097537B1 (en) fabrication method for in-plane switching mode LCD
KR100268031B1 (en) Fabrication method for photosensitive alignment layer of lcd
JPH0743716A (en) Production of liquid crystal display device
JPH0815707A (en) Liquid crystal display element and its production
JPH06337405A (en) Liquid crystal electro-optical device and manufacture thereof
JPH06332012A (en) Production of liquid crystal electrooptical device
US7679704B2 (en) Method of fabricating an in-plane switching mode liquid crystal display comprising rubbing and applying a beam to set pre-tilt angles
JP3218780B2 (en) LCD panel
JPS62247327A (en) Production of ferroelectric liquid crystal element
JPH08101390A (en) Liquid crystal display device and its production
JP3155900B2 (en) Liquid crystal element
JPH0682787A (en) Liquid crystal display element
KR100963029B1 (en) A method of forming IPS mode LCD
JPH06337418A (en) Liquid crystal electro-optical device
JPS62174723A (en) Liquid crystal element
JP3241502B2 (en) Method for manufacturing liquid crystal electro-optical device
JPH03125117A (en) Manufacture of ferroelectric liquid crystal element
JP2699999B2 (en) Liquid crystal element
KR101244528B1 (en) In-Plane Switching mode LCD and the fabrication method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees