JPH0553126U - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH0553126U
JPH0553126U JP114320U JP11432091U JPH0553126U JP H0553126 U JPH0553126 U JP H0553126U JP 114320 U JP114320 U JP 114320U JP 11432091 U JP11432091 U JP 11432091U JP H0553126 U JPH0553126 U JP H0553126U
Authority
JP
Japan
Prior art keywords
battery
separator
aqueous electrolyte
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP114320U
Other languages
Japanese (ja)
Inventor
徹 萬ヶ原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP114320U priority Critical patent/JPH0553126U/en
Publication of JPH0553126U publication Critical patent/JPH0553126U/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

(57)【要約】 【目的】 内部短絡を著しく減少し、而も急放電特性な
どの電池特性を向上した非水電解液電池を提供するにあ
る。 【構成】 電池容器1内に対向配設した正極2及び負極
3との間に少なくとも片面に凸部4aと凹部4bを多数
有する凹凸面としたセパレータ4を、その凹凸面をデン
ドライトを生成する負極3面に向けて介在して成る。
(57) [Abstract] [Purpose] To provide a non-aqueous electrolyte battery in which internal short circuits are significantly reduced and battery characteristics such as rapid discharge characteristics are improved. A separator 4 having an uneven surface having a large number of convex portions 4a and concave portions 4b on at least one surface between a positive electrode 2 and a negative electrode 3 which are arranged opposite to each other in a battery container 1, and the negative surface which produces dendrites It is intervened toward the 3rd surface.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial application]

本考案は、リチウム電池などの非水電解液電池に関する。 The present invention relates to a non-aqueous electrolyte battery such as a lithium battery.

【0002】[0002]

【従来の技術】[Prior Art]

従来、リチウムを負極活物質として使用する非水電解液電池として、電池容器 内に、正極板と負極板とを対向して収容し、これらの極板との間にセパレータを 介在させ且つ非水電解液を含有せしめて成るものが公知である。 而してそのセパレータは、電解液を十分保持し、正極板と負極板とを隔離して 短絡を防止する一方、電池の充放電反応を円滑に行わせなければならないので、 耐電解液性であり、ある程度の機械的強度を有し、而も極板間の抵抗を低減する ため、できるだけ肉薄のものが要求されて居り、従って、ポリプロピレン、ポリ エチレンなどのオレフィン系の合成樹脂を素材とした肉薄成形シートが使用され ている。 Conventionally, as a non-aqueous electrolyte battery using lithium as a negative electrode active material, a positive electrode plate and a negative electrode plate are housed in a battery container so as to face each other, and a separator is interposed between the positive electrode plate and the negative electrode plate. It is known that an electrolytic solution is contained. Thus, the separator must sufficiently hold the electrolytic solution and separate the positive electrode plate and the negative electrode plate to prevent a short circuit, and at the same time, to smoothly carry out the charge / discharge reaction of the battery. Yes, it has a certain degree of mechanical strength, and in order to reduce the resistance between the electrode plates, it is required to be as thin as possible. Therefore, olefin-based synthetic resins such as polypropylene and polyethylene are used as materials. Thin molded sheets are used.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

然し乍ら、上記従来のセパレータは、単なる平板状シートであるため、電解液 保持能力が低いため、リチウムイオンの十分な拡散が行えず、特に急放電の場合 は分極が著しく大きくなる。そこで、そのような極間抵抗を著しく低減するべく できる限り肉薄のものを使用すると、サイクル試験を繰り返して行くに従い、該 負極に析出するデンドライトの生長により極間の短絡を生じ易くなるなどの問題 があった。 However, since the above-mentioned conventional separator is a mere flat sheet and has a low ability to retain an electrolyte solution, lithium ions cannot be sufficiently diffused, and the polarization becomes extremely large especially in the case of rapid discharge. Therefore, if the thinnest possible material is used to significantly reduce the inter-electrode resistance, the problem that the inter-electrode short circuit easily occurs due to the growth of dendrites deposited on the negative electrode as the cycle test is repeated. was there.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、上記課題を解消し、極間の短絡の発生を減少せしめると共に、充放 電サイクル毎の容量低下の少ない充放電特性の優れた非水電解液電池を提供する もので、電池容器内に、正極と負極とを対向して収容し、これら極板との間にセ パレータを介在させ且つ非水電解液を含有させて成る非水電解液電池において、 該セパレータの少なくとも片面を凹凸面に形成し、その凹凸面をデンドライトを 発生する電極面に向けて成る。 The present invention solves the above problems, reduces the occurrence of short circuit between electrodes, and provides a non-aqueous electrolyte battery with excellent charge / discharge characteristics with less capacity reduction at each charge / discharge cycle. In a non-aqueous electrolyte battery, in which a positive electrode and a negative electrode are housed opposite to each other, a separator is interposed between these electrode plates, and a non-aqueous electrolytic solution is contained, at least one surface of the separator is uneven. It is formed on the surface and the concavo-convex surface is directed to the electrode surface that generates dendrites.

【0005】[0005]

【作用】[Action]

上記のようなセパレータの面を凹凸面とすることにより、その表面積を増大す るに加え、その凹部内に電解液が十分に保持でき、リチウムイオンの十分な拡散 ができると共に、電解液保持能力が向上する。その結果、電極表面での充放電反 応にかゝわる反応領域が広がり、電極反応が一層円滑に行われ易くなり、充放電 特性を向上する。また、その多数の凸部はクッション材のような役割を果たし、 また、電極の表面にデンドライトが生成しても、その凹部にデンドライトを収容 できる余地を生じ、異極との距離も遠くなり、デンドライトによる短絡が生じ難 くなり、電池特性、電池寿命の向上をもたらす。 By making the surface of the separator uneven as described above, in addition to increasing the surface area, the electrolytic solution can be sufficiently retained in the concave section and lithium ions can be sufficiently diffused, and at the same time, the electrolytic solution retention capability can be achieved. Is improved. As a result, the reaction region related to the charge / discharge reaction on the electrode surface is expanded, the electrode reaction is facilitated more smoothly, and the charge / discharge characteristics are improved. In addition, the large number of convex portions function as cushioning materials, and even if dendrites are formed on the surface of the electrode, there is room for accommodating the dendrites in the concave portions, and the distance between the different poles is increased, Short circuits due to dendrites are less likely to occur, improving battery characteristics and battery life.

【0006】[0006]

【実施例】【Example】

次に本考案の非水電解液電池の実施例を説明する。 図1は、本考案実施の1例のリチウム電池を示し、図面で1はテフロン製の電 池容器、2はMnOなどの正極活物質から成る円板状の正極、3はリチウムか ら成る円板状負極、4はポリオレフィン系の合成樹脂を材料とした肉薄に成形し たセパレータ、5は該極板2,3間に含有させた非水電解液、6は正極リード端 子、7は負極リード端子を示す。 本考案によれば、該セパレータ4の少なくとも片面を凹凸面に形成し、且つこ れを充放電サイクルの繰り返しでデンドライトを生成する電極面を設けることを 特徴とする。図示の例では、該セパレータ4の片面を凹凸面とし、これをリチウ ム負極3面に向けて正,負極2,3間に介在せしめたものであるが、その両面を 凹凸面に形成しても良い。 その1例は、図2に明示のように、該セパレータ4の凹凸面は、その全面に無 数の突起を所定間隔で配設し、これら突起4a,4a間を凹部4bとしたもので ある。Next, an embodiment of the non-aqueous electrolyte battery of the present invention will be described. FIG. 1 shows a lithium battery according to an embodiment of the present invention. In the drawing, 1 is a Teflon battery container, 2 is a disk-shaped positive electrode made of a positive electrode active material such as MnO 2 , and 3 is made of lithium. A disk-shaped negative electrode, 4 is a thin-walled separator made of a polyolefin-based synthetic resin, 5 is a non-aqueous electrolyte contained between the electrode plates 2 and 3, 6 is a positive electrode lead terminal, and 7 is A negative electrode lead terminal is shown. According to the present invention, at least one surface of the separator 4 is formed into an uneven surface, and an electrode surface is provided which generates dendrites by repeating this charging / discharging cycle. In the illustrated example, one surface of the separator 4 is an uneven surface, and the positive and negative electrodes 2 and 3 are interposed so as to face the surface of the lithium negative electrode 3. However, both surfaces are formed to have an uneven surface. Is also good. As one example, as clearly shown in FIG. 2, in the uneven surface of the separator 4, innumerable projections are arranged at predetermined intervals on the entire surface, and the projections 4a, 4a are formed as recesses 4b. ..

【0007】 本考案の上記凹凸面をもつセパレータ4の具体的な例を述べれば、該セパレー タの直径36mm、セパレータの平坦基板の厚さ25〜101μm、凸部4aの 高さは2.5〜10μm、従って、該凸部4aを含めたセパレータ4の厚さは2 7.5〜110μm、凸部4a,4a間の距離約5mmとした。 図1に示す具体的なリチウム電池において、該正極は、二酸化マンガン粉を主 体とした正極活物質合剤を乾燥、粉砕後、加圧成形により直径36mm、厚さ0 .4mmの円板状に成形したものを使用し、該正極はリチウムフォイルより直径 36mm、厚さ0.75mmの円板状に打ち抜いたものを使用し、電解液として は、1モルの過塩素酸リチウムのプロピレンカーボネート溶液から成る非水電解 液5を、該容器1内に気液密に注入したものであり、上記の凹凸面をもつセパレ ータ4を該正,負極板2,3間に介在せしめると共に、その凹凸面を該負極3面 に向け当接せしめたものである。The specific example of the separator 4 having the uneven surface of the present invention will be described. The separator has a diameter of 36 mm, the separator has a flat substrate thickness of 25 to 101 μm, and the convex portion 4 a has a height of 2.5. Therefore, the thickness of the separator 4 including the protrusions 4a is set to 27.5 to 110 μm, and the distance between the protrusions 4a and 4a is set to about 5 mm. In the specific lithium battery shown in FIG. 1, the positive electrode was manufactured by drying and crushing a positive electrode active material mixture containing manganese dioxide powder as a main component, followed by pressure molding to give a diameter of 36 mm and a thickness of 0. The positive electrode was formed into a disk shape of 4 mm, and the positive electrode was punched out from a lithium foil into a disk shape having a diameter of 36 mm and a thickness of 0.75 mm. The electrolyte solution was 1 mol of perchloric acid. A non-aqueous electrolyte solution 5 consisting of a propylene carbonate solution of lithium is injected into the container 1 in a gas-liquid tight manner, and the separator 4 having the above-mentioned uneven surface is provided between the positive and negative electrode plates 2 and 3. In addition to being interposed, the uneven surface is brought into contact with the negative electrode 3 surface.

【0008】 かくして、該セパレータ4は、電解液を含浸保持するばかりでなく、その凹凸 面により、電解液5との接触面積を増大するばかりでなく、その凸部4a,4a ,…間に形成された凹部4b,4b,…内に電解液5を保有し、リチウムイオン の十分な拡散をもたらす。更に、該セパレータ4の多数の凸部4a,4a,…は 、該負極板3面に当接して、クッションの作用をすると共に、該負極板3と該正 極板2との間の距離を離隔を増大するので、充放電の繰り返しで該負極板3に生 ずるデンドライトが生長して、該セパレータ4を突き破り、該正極板2と接触し て内部短絡を起こすことを可及的に防止するに役立つ。かくして、後記するよう に、短絡の発生率を著しく減少でき、而も、充放電サイクルによる電圧の低下傾 向が少なくなり、長期に亘り高い放電容量を維持することができる。Thus, the separator 4 not only not only impregnates and holds the electrolytic solution, but also increases the contact area with the electrolytic solution 5 due to the uneven surface, and also forms between the convex portions 4a, 4a ,. The electrolytic solution 5 is retained in the recesses 4b, 4b, ... Created so that the lithium ions are sufficiently diffused. Further, the large number of convex portions 4a, 4a, ... Of the separator 4 are in contact with the surface of the negative electrode plate 3 to act as a cushion, and the distance between the negative electrode plate 3 and the positive electrode plate 2 is reduced. Since the separation is increased, it is prevented as much as possible that the dendrites generated on the negative electrode plate 3 grow by repeated charging and discharging to penetrate the separator 4 and come into contact with the positive electrode plate 2 to cause an internal short circuit. To help. Thus, as will be described later, the rate of occurrence of short circuits can be significantly reduced, and the tendency of voltage drop due to charge / discharge cycles can be reduced, and high discharge capacity can be maintained for a long period of time.

【0009】 比較のため、従来のリチウム電池として、セパレータ以外は全く図1示の構成 を有し、セパレータとして直径36mm、厚さ27.5〜110μmにおいて上 記と同じであるが、両面平坦な従来型のセパレータを使用したものを多数作成し 、上記本考案の電池の多数と共に、下記のように比較試験を行った。For comparison, the conventional lithium battery has the structure shown in FIG. 1 except for the separator. As a separator, the diameter is 36 mm and the thickness is 27.5 to 110 μm. A large number of conventional separators were prepared, and a comparative test was carried out as follows together with a large number of the batteries of the present invention.

【0010】 本考案電池と従来電池について、短絡試験を次のように行った。即ち、電圧範 囲2.0〜3.8Vで、電流1mA/cmで充放電を繰り返し、サイクル試験 毎の充放電挙動を観察したところ、従来電池の短絡発生率は0.46%であった に対し、本考案電池の短絡発生率は0.03%に過ぎなかった。A short circuit test was conducted on the battery of the present invention and the conventional battery as follows. That is, when charging / discharging was repeated at a voltage range of 2.0 to 3.8 V and a current of 1 mA / cm 2 and the charging / discharging behavior of each cycle test was observed, the short-circuit occurrence rate of the conventional battery was 0.46%. On the other hand, the short circuit occurrence rate of the battery of the present invention was only 0.03%.

【0011】 また一方、本考案電池と従来電池につき、1mA/cmの電流密度で3.8 V迄充電した後、2mA/cmで2.0V迄放電を行う充放電サイクルを行っ た。その結果は図3に示す通りであった。同図示の本考案電池の特性曲線aと従 来電池の特性曲線bとから明らかなように、本考案電池は、従来電池に比し、高 電圧、高容量を保持し、急放電に適した優れた電池特性をもたらす。On the other hand, the battery of the present invention and the conventional battery were charged and discharged at a current density of 1 mA / cm 2 up to 3.8 V, and then discharged at 2.0 mA / cm 2 up to 2.0 V. The result was as shown in FIG. As is clear from the characteristic curve a of the battery of the present invention and the characteristic curve b of the conventional battery shown in the figure, the battery of the present invention retains a higher voltage and a higher capacity than the conventional battery and is suitable for rapid discharge. Provides excellent battery characteristics.

【0012】 また、本考案電池の上記に示したセパレータ4は、図示の例では、その凹部の 底面は平坦面であるが、凹曲面に形成してもよく、これにより、更にその接触表 面積の増大、電解液の保持量の増大をもたらすことができる。 上記の実施例では、セパレータ4の一方の面のみを凹凸面にしたが、その他方 の面も凹凸面を形成することにしてもよく、これにより、更に電解液との接触面 積、液保持量を増大できる。 また、その凸部4aは点状であるが、線状でもよいことは言うまでもない。 更に、セパレータ4の凹凸面の形成は、任意の手段が考えられる。例えば、一 対の金型の対向面の少なくとも一方を凹凸面に形成したものを使用し、セパレー タの合成樹脂材を加熱成形することにより得られる。また、その金型の少なくと も一方に、成形用空間と外部の真空減圧装置とを連通する吸引用貫通孔を多数穿 設し、空間内のセパレータの加熱軟化シートを該吸引用貫通孔を介して吸引して その吸引力により突出する突起を設けるようにしても良い。更には、線状の突起 を配設したセパレータを製造するには、押出成形機によって押出し成形するよう にしても良い。In addition, in the illustrated example, the separator 4 of the battery of the present invention has a flat bottom surface in the concave portion, but it may be formed in a concave curved surface. Can be increased, and the amount of electrolyte retained can be increased. In the above embodiment, only one surface of the separator 4 is made uneven, but the other surface may also be made uneven so that the contact area with the electrolytic solution and the liquid retention are further increased. The amount can be increased. Further, although the convex portion 4a is dot-shaped, it goes without saying that it may be linear. Further, any means can be considered for forming the uneven surface of the separator 4. For example, it can be obtained by heat-molding a synthetic resin material of a separator using a pair of molds in which at least one of the facing surfaces is formed into an uneven surface. In addition, at least one of the molds is provided with a large number of suction through-holes for communicating the molding space with an external vacuum decompression device, and the heat-softening sheet of the separator in the space is provided with the suction through-holes. It is also possible to provide a projection that is sucked through and that projects by the suction force. Furthermore, in order to manufacture a separator provided with linear protrusions, extrusion molding may be performed with an extruder.

【0013】[0013]

【考案の効果】[Effect of the device]

このように本考案の非水電解液電池は、電池容器内に対向せしめた正極及び負 極間に介在させるセパレータを、その少なくとも片面を凹凸面に形成し、該凹凸 面をデンドライトを生ずる電極面に対向せしめて介在せしめるようにしたので、 従来の此種電池に比し、電池の内部短絡の発生率を著しく減少せしめることがで きるばかりでなく、電池特性の向上をもたらす等の効果を有する。 Thus, in the non-aqueous electrolyte battery of the present invention, at least one surface of the separator interposed between the positive electrode and the negative electrode facing each other in the battery container is formed as an uneven surface, and the uneven surface is an electrode surface for generating dendrites. As opposed to this type of conventional battery, it is possible to significantly reduce the occurrence rate of internal short circuit of the battery and also to improve the battery characteristics, since it is made to face each other and intervene. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案実施の1例の非水電解液電池の断面図で
ある。
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery according to an embodiment of the present invention.

【図2】本考案の電池に用いる1例のセパレータの斜面
図である。
FIG. 2 is a perspective view of an example of a separator used in the battery of the present invention.

【図3】本考案電池と従来電池の電池特性の比較グラフ
である。
FIG. 3 is a comparative graph of the battery characteristics of the battery of the present invention and the conventional battery.

【符号の説明】[Explanation of symbols]

1 電池容器 2 正極 3
負極 4 セパレータ 4a 凸部 4
b 凹部
1 battery container 2 positive electrode 3
Negative electrode 4 Separator 4a Convex portion 4
b recess

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 電池容器内に、正極と負極とを対向して
収容し、これら電極極との間にセパレータを介在させ且
つ非水電解液を含有させて成る非水電解液電池におい
て、該セパレータの少なくとも片面を凹凸面に形成し、
その凹凸面をデンドライトを発生する電極面に向けて成
る非水電解液電池。
1. A non-aqueous electrolyte battery in which a positive electrode and a negative electrode are housed in a battery container so as to face each other, a separator is interposed between these electrode electrodes, and a non-aqueous electrolytic solution is contained. At least one side of the separator is formed into an uneven surface,
A non-aqueous electrolyte battery in which the uneven surface faces the electrode surface that generates dendrites.
JP114320U 1991-12-21 1991-12-21 Non-aqueous electrolyte battery Pending JPH0553126U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP114320U JPH0553126U (en) 1991-12-21 1991-12-21 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP114320U JPH0553126U (en) 1991-12-21 1991-12-21 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH0553126U true JPH0553126U (en) 1993-07-13

Family

ID=14634897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP114320U Pending JPH0553126U (en) 1991-12-21 1991-12-21 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0553126U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059717A1 (en) * 2006-11-15 2008-05-22 Toyota Jidosha Kabushiki Kaisha Method for manufacturing lithium rechargeable battery, and lithium rechargeable battery
JP2008135289A (en) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd Secondary battery, and its manufacturing method
JP2014241283A (en) * 2013-05-15 2014-12-25 株式会社半導体エネルギー研究所 Secondary battery and capacity recovery method of the same
JP2016066629A (en) * 2016-01-27 2016-04-28 ソニー株式会社 Separator, nonaqueous electrolyte battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JP2019169336A (en) * 2018-03-23 2019-10-03 旭化成株式会社 Porous film having fine pattern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365930A (en) * 1976-11-26 1978-06-12 Ito Ichirou Separator for storage battery
JPS57196474A (en) * 1981-05-27 1982-12-02 Shin Kobe Electric Mach Co Ltd Storage battery
JPS60856B2 (en) * 1979-04-20 1985-01-10 松下電器産業株式会社 electric cooker
JPH025878B2 (en) * 1981-10-30 1990-02-06 Seiken Co

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365930A (en) * 1976-11-26 1978-06-12 Ito Ichirou Separator for storage battery
JPS60856B2 (en) * 1979-04-20 1985-01-10 松下電器産業株式会社 electric cooker
JPS57196474A (en) * 1981-05-27 1982-12-02 Shin Kobe Electric Mach Co Ltd Storage battery
JPH025878B2 (en) * 1981-10-30 1990-02-06 Seiken Co

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059717A1 (en) * 2006-11-15 2008-05-22 Toyota Jidosha Kabushiki Kaisha Method for manufacturing lithium rechargeable battery, and lithium rechargeable battery
JP2008135289A (en) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd Secondary battery, and its manufacturing method
JP2014241283A (en) * 2013-05-15 2014-12-25 株式会社半導体エネルギー研究所 Secondary battery and capacity recovery method of the same
JP2016066629A (en) * 2016-01-27 2016-04-28 ソニー株式会社 Separator, nonaqueous electrolyte battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JP2019169336A (en) * 2018-03-23 2019-10-03 旭化成株式会社 Porous film having fine pattern

Similar Documents

Publication Publication Date Title
US4164068A (en) Method of making bipolar carbon-plastic electrode structure-containing multicell electrochemical device
US4125680A (en) Bipolar carbon-plastic electrode structure-containing multicell electrochemical device and method of making same
US7132195B2 (en) Separator for sealed lead-acid battery
CA2333017C (en) Electrochemical battery structure and method
JP6665465B2 (en) Lead storage battery
US20220320645A1 (en) All-solid-state battery
JP4313992B2 (en) Design method for prismatic secondary battery
JPH0553126U (en) Non-aqueous electrolyte battery
JPS614167A (en) Flat-type nonaqueous electrolyte cell
JP2588631Y2 (en) Sealed lead-acid battery
US6045949A (en) Apparatus for improving the compression uniformity of a cell stack in a battery
JP2680570B2 (en) Rechargeable battery
JPS6051783B2 (en) Anode plate for lead acid battery
JP3261417B2 (en) Sealed lead-acid battery
KR940007635B1 (en) Layered-type manganese dry battery
JPS63166151A (en) Silver oxide-lithium battery
JPS61281458A (en) Nonaqueous electrolyte secondary battery
JP2773208B2 (en) Manufacturing method of thin storage battery
JP2809634B2 (en) Manufacturing method of sealed lead-acid battery
JPS5987754A (en) Separator for secondary battery and its manufacturing method
JP2804557B2 (en) Prismatic battery and method of manufacturing the same
JPS5887757A (en) Paste type lead-acid battery
JP2874527B2 (en) Lithium battery
JPH11273633A (en) Sealed lead-acid battery
JPS60193265A (en) Flat type battery