JPH0553053B2 - - Google Patents

Info

Publication number
JPH0553053B2
JPH0553053B2 JP61151716A JP15171686A JPH0553053B2 JP H0553053 B2 JPH0553053 B2 JP H0553053B2 JP 61151716 A JP61151716 A JP 61151716A JP 15171686 A JP15171686 A JP 15171686A JP H0553053 B2 JPH0553053 B2 JP H0553053B2
Authority
JP
Japan
Prior art keywords
aluminum
wire
titanium
lead wire
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61151716A
Other languages
Japanese (ja)
Other versions
JPS639111A (en
Inventor
Shigeaki Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61151716A priority Critical patent/JPS639111A/en
Publication of JPS639111A publication Critical patent/JPS639111A/en
Publication of JPH0553053B2 publication Critical patent/JPH0553053B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電解コンデンサに関し、特にアルミニ
ウム−チタン合金を陽極体とする電解コンデンサ
に関する。 〔従来の技術〕 従来、アルミニウム−チタン合金を陽極体とす
る電解コンデンサは、アルミニウム電解コンデン
サ並の低価格性とタンタル電解コンデンサ並の小
型性を同時に有する電解コンデンサとして開発さ
れている(特公昭58−11477、特公昭60−48090、
特公昭60−44822)。また、この種の電解コンデン
サにおける陽極リードワイヤとしては、窒化処理
したチタンワイヤが使用されている(米国特許
4517727、特願昭57−111102)。 このような電解コンデンサでは、陽極リードワ
イヤとしての窒化処理したチタンワイヤは、出発
材料として窒化チタンを使用しながら、そのワイ
ヤ表面組成は最終的には陽極体と同一組成のアル
ミニウム−チタン合金になり、良好な特性が得ら
れるという優れた特徴を備えている。 〔発明が解決しようとする問題点〕 上述した従来の窒化処理したチタンワイヤをリ
ード・ワイヤとするAl−Ti合金電解コンデンサ
では、リード・ワイヤの原材料であるチタンがそ
の表面に強固な自然酸化膜を生成し易い性質があ
るため、窒化処理時に窒化むらを生じ易い。この
ため、焼結後のワイヤ表面の合金組成が不安定と
なり、組成むらが発生して漏れ電流不良が生じ、
大量生産時の品質の安定性に問題が生じることに
なる。 〔問題点を解決するための手段〕 本発明の電解コンデンサは、以上の問題に鑑
み、アルミニウム−チタン合金を陽極体とする電
解コンデンサの漏れ電流不良発生率を低減してそ
の安定性を向上するものである。 本発明の電解コンデンサは、アルミニウムとチ
タンもしくは水素化チタンの混合粉末のプレス成
形体を焼結する電解コンデンサのリードワイヤ
に、タングステンあるいはモリブデンのワイヤを
使用している。 本発明において、本来良好な陽極酸化被膜形成
性を有していないタングステンやモリブデンを採
用可能な理由は、次の通りである。 即ち、アルミニウムとチタンもしくは水素化チ
タンの混合粉末のプレス成形体を焼結すると、
500〜600℃で合金化反応が起こり、最終焼結温度
(1100℃程度)で均一なAl−Ti合金多孔質焼結体
となるが、アルミニウムは融点が低く蒸気圧が高
い金属なので、この過程で焼結体近傍にアルミニ
ウム蒸気が発生する。この結果、高融点金属のリ
ードワイヤ表面全体をアルミニウム蒸気が覆い、
アルミニウム成分が付着する。 一般には、高温でアルミニウムが付着した場
合、ワイヤ材料との合金化拡散反応が進み、ワイ
ヤ表面は最終的にアルミニウムとワイヤ材料との
合金となつてしまう。しかるに、リードワイヤ材
質が高融点金属であると、高融点であるがために
物質の拡散、移動が起こり難く、結果としてワイ
ヤ表面には純アルミニウム層が残されることにな
る。したがつて、リードワイヤの出発材料とし
て、陽極酸化膜形成性に問題があり、そのままで
は電解コンデンサ用リードワイヤとしての使用に
耐えない材料を用いながら、最終的にアルミニウ
ムという良質の陽極酸化膜を形成し得る材料をリ
ードワイヤに使用したのと同じ効果が得られるこ
とになる。(周知のように、アルミニウムはアル
ミ電解コンデンサとして大量に市販されているこ
とから明らかなように、優れた陽極酸化膜形成性
を有している。)つまり、電解コンデンサ材料と
して使用する場合、特性発現の上で重要なのは、
陽極酸化膜の形成される表面からの厚さが数μm
程度の層の組成であつて、これより内側のリード
ワイヤの芯部の材質は問題にはならない。 〔実施例〕 次に、本発明を図面を参照して説明する。 第1図は本発明の一実施例の電解コンデンサの
断面図であり、同図aのようにアルミニウムと水
素化チタン(Al−TiH2)又はアルミニウムとチ
タン(Al−Ti)の混合粉プレス体1に高融点金
属(タングステン)のリードワイヤ2を植設して
いる。そして、これを焼結することにより、同図
bのように混合粉プレス体はAl−Ti合金多孔質
焼結体1Aとなりリードワイヤ2の表面には純
Al層3が形成されて陽極体が構成されることに
なる。 この電解コンデンサにおいて、上記したような
陽極体を得るために、アルミニウムと水酸化チタ
ンの混合粉末にタングステンワイヤを埋込みプレ
スして1100℃で焼結後、80Vで陽極酸化した試料
を作製した。この陽極体のワイヤ表面の深さ方向
の組成分析を行つた結果(オージエ分光分析)を
第2図に示す。図において、縦軸は任意スケール
での各成分のオージエ信号強度を示し、横軸はイ
オンスパツタ時間、即ちワイヤ表面から中心方向
に向かう深さを示している。つまり、スパツタ時
間零が表面であり、時間の増加とともにワイヤ中
心方向に近くなる。 図中、酸素プロフアイルの強度が減少して行く
部分が陽極酸化膜と下地金属との界面であり、酸
化被膜厚の表面から約4/5のところ迄タングステ
ン強度は零であり、実質的に純アルミニウムの酸
化被膜(非結晶Al2O3)となつているのがわかる
(酸化膜〜下地金属の界面は、WとAlの合金の酸
化膜となつている)。タングステンそのものは、
もともと良質の陽極酸化被膜形成性に乏しい材料
であるが、焼結時のアルミニウム蒸気により、ワ
イヤ表面に純アルミニウム層が形成された結果、
良好な陽極酸化特性を示すようになつたのであ
る。 ここでは、タングステンの例を示したが、モリ
ブデン、タンタル、ニオブについても同様にその
表面に純アルミニウム層が形成できることが確認
された。 なお、融点が2400℃以下の金属については、ア
ルミニウムとの相互拡散が起こり易く、ワイヤ表
面が合金化してしまうので、目的の効果が得られ
ないことになる。 実際に、アルミニウムが54原子%となるように
水素化チタンとアルミニウムの粉末を混合し、表
1に示すような直径0.3mmの5種のリードワイヤ
を埋込みリードワイヤとして2ton/cm2の圧力で加
圧成形し、プレス成形体試料とした。プレス成形
体1個当たりの混合粉末使用量は40mgとした。リ
ードワイヤ5種の内一種(No.5)を比較例とし
て、従来使用してきた窒化チタンワイヤとした。
窒化チタンワイヤの窒化処理条件は、これまでと
同様の条件(例えば、米国特許4517727或いは特
願昭57−111102中に記載されているものと同一)
とした。 以下、第1表中、リードワイヤ番号をそのまま
実験水準番号(試料番号)として使用する。
[Industrial Field of Application] The present invention relates to an electrolytic capacitor, and particularly to an electrolytic capacitor using an aluminum-titanium alloy as an anode body. [Prior Art] Conventionally, electrolytic capacitors using an aluminum-titanium alloy as the anode body have been developed as electrolytic capacitors that are as low-priced as aluminum electrolytic capacitors and as compact as tantalum electrolytic capacitors (Special Publications No. 58 -11477, Special Publication Showa 60-48090,
Tokuko Sho 60-44822). In addition, nitrided titanium wire is used as the anode lead wire in this type of electrolytic capacitor (US patent
4517727, patent application No. 57-111102). In such electrolytic capacitors, the nitrided titanium wire used as the anode lead wire uses titanium nitride as the starting material, but the wire surface composition ultimately becomes an aluminum-titanium alloy with the same composition as the anode body. It has the excellent feature of providing good characteristics. [Problems to be Solved by the Invention] In the conventional Al-Ti alloy electrolytic capacitors using nitrided titanium wires as lead wires, titanium, the raw material for the lead wires, has a strong natural oxide film on its surface. Because of its tendency to easily generate nitriding, it tends to cause uneven nitriding during nitriding. As a result, the alloy composition on the wire surface after sintering becomes unstable, causing compositional unevenness and causing leakage current defects.
This will cause problems with quality stability during mass production. [Means for Solving the Problems] In view of the above problems, the electrolytic capacitor of the present invention reduces the leakage current defect occurrence rate of an electrolytic capacitor using an aluminum-titanium alloy as an anode body, and improves its stability. It is something. In the electrolytic capacitor of the present invention, a tungsten or molybdenum wire is used as the lead wire of the electrolytic capacitor which is made by sintering a press-molded body of mixed powder of aluminum and titanium or titanium hydride. In the present invention, the reason why tungsten and molybdenum, which do not inherently have good anodic oxide film forming properties, can be used is as follows. That is, when a press molded body of mixed powder of aluminum and titanium or titanium hydride is sintered,
An alloying reaction occurs at 500 to 600°C, and a uniform porous Al-Ti alloy sintered body is formed at the final sintering temperature (about 1100°C), but since aluminum is a metal with a low melting point and high vapor pressure, this process Aluminum vapor is generated near the sintered body. As a result, aluminum vapor covers the entire surface of the refractory metal lead wire.
Aluminum components adhere. Generally, when aluminum is deposited at high temperatures, an alloying diffusion reaction with the wire material progresses, and the wire surface eventually becomes an alloy of aluminum and the wire material. However, when the lead wire material is a high melting point metal, diffusion and movement of the substance is difficult to occur due to the high melting point, and as a result, a pure aluminum layer is left on the wire surface. Therefore, as the starting material for the lead wire, we used a material that had problems in forming an anodic oxide film and could not be used as a lead wire for electrolytic capacitors, but in the end, we decided to use aluminum, a material with a high-quality anodic oxide film. The same effect can be obtained by using a material that can be formed for the lead wire. (As is well known, aluminum has excellent anodic oxide film forming properties, as is clear from the fact that it is commercially available in large quantities as aluminum electrolytic capacitors.) In other words, when used as an electrolytic capacitor material, the characteristics What is important in terms of expression is
The thickness from the surface where the anodic oxide film is formed is several μm.
The material of the core of the lead wire inside this layer does not matter. [Example] Next, the present invention will be described with reference to the drawings. FIG. 1 is a cross - sectional view of an electrolytic capacitor according to an embodiment of the present invention, and as shown in FIG. A lead wire 2 made of a high melting point metal (tungsten) is implanted in the lead wire 1 . By sintering this, the mixed powder pressed body becomes an Al-Ti alloy porous sintered body 1A as shown in the same figure b, and the surface of the lead wire 2 is pure.
An Al layer 3 is formed to constitute an anode body. In order to obtain the anode body of this electrolytic capacitor, a sample was prepared by embedding and pressing a tungsten wire in a mixed powder of aluminum and titanium hydroxide, sintering it at 1100°C, and then anodizing it at 80V. The results of compositional analysis (Ausier spectroscopy) of the wire surface of this anode body in the depth direction are shown in FIG. In the figure, the vertical axis shows the Auger signal intensity of each component on an arbitrary scale, and the horizontal axis shows the ion sputtering time, that is, the depth from the wire surface toward the center. In other words, the sputtering time of zero is the surface, and as the time increases, the sputtering becomes closer to the center of the wire. In the figure, the part where the strength of the oxygen profile decreases is the interface between the anodic oxide film and the underlying metal, and the tungsten strength is zero up to about 4/5 of the surface of the oxide film, which is essentially zero. It can be seen that it is an oxide film (amorphous Al 2 O 3 ) of pure aluminum (the interface between the oxide film and the base metal is an oxide film of an alloy of W and Al). Tungsten itself is
Although the material originally lacks the ability to form a high-quality anodic oxide film, a pure aluminum layer is formed on the wire surface due to the aluminum vapor during sintering, and as a result,
It began to exhibit good anodic oxidation properties. Although tungsten is shown here as an example, it has been confirmed that a pure aluminum layer can be similarly formed on the surface of molybdenum, tantalum, and niobium. Note that metals with a melting point of 2400° C. or lower tend to interdiffusion with aluminum, resulting in alloying of the wire surface, making it impossible to obtain the desired effect. Actually, titanium hydride and aluminum powder were mixed so that the aluminum content was 54 atomic%, and five types of lead wires with a diameter of 0.3 mm as shown in Table 1 were embedded as lead wires at a pressure of 2 tons/cm 2 . Pressure molding was performed to obtain a press molded sample. The amount of mixed powder used per press molded body was 40 mg. One type (No. 5) of the five types of lead wires was used as a comparative example, using a conventionally used titanium nitride wire.
The nitriding conditions for the titanium nitride wire are the same as before (for example, the same as those described in U.S. Patent No. 4,517,727 or Japanese Patent Application No. 111,102/1982).
And so. Hereinafter, the lead wire numbers in Table 1 will be used as they are as experimental level numbers (sample numbers).

【表】 タンタル製蓋付き容器中に上記プレス成形体を
各水準毎に2000個づつ入れ、1×10-6mmHgの減
圧下1100℃で焼結してアルミニウム合金の多孔質
焼結体とした。蓋付き容器を使用するのは、試料
(プレス成形体)近傍のアルミニウム蒸気の充満
度を上げ、アルミニウム成分をリードワイヤ表面
に効率良く付着させるためである。 次に、各水準の焼結体2000個をすべてリン酸水
溶液中80Vの陽極酸化を行い、120Hzでの静電容
量(C120)、酸化被膜の誘電損失(tanδf)及び
16V印加時の漏れ電流(LC)を測定した。C120
tanδf測定は30%硫酸水溶液中で行つた。測定試
料数は、LCについては全数、C120,tanδfについ
ては各水準100個づつとした。 得られたデータを第2表に示す。LCは各水準
共0.2μA以下の値のものを良品としてその平均値
を示し、0.2μAより大きいものを不良品とし、不
良発生率として示した。C120,tanδfは各水準共
測定した100個全数の平均値を示した。
[Table] 2000 pieces of the above press-formed bodies were placed for each level in a tantalum container with a lid, and sintered at 1100°C under a reduced pressure of 1 x 10 -6 mmHg to form a porous sintered body of aluminum alloy. . The reason why a container with a lid is used is to increase the degree of filling of aluminum vapor near the sample (press molded body) and to efficiently adhere the aluminum component to the surface of the lead wire. Next, all 2000 sintered bodies of each level were anodized in a phosphoric acid aqueous solution at 80V, and the capacitance at 120Hz (C 120 ), dielectric loss of the oxide film (tanδf), and
Leakage current (LC) was measured when 16V was applied. C120 ,
The tanδf measurement was performed in a 30% sulfuric acid aqueous solution. The number of samples to be measured was all for LC, and 100 for each level for C 120 and tanδf. The data obtained are shown in Table 2. For LC, those with a value of 0.2 μA or less at each level were considered good products, and the average value was shown, and those with a value greater than 0.2 μA were considered defective products, and the defect incidence rate was shown. C 120 and tan δf are the average values of all 100 samples measured at each level.

【表】 次に、各水準共C120,tanδf測定に使用した100
個を除く1900個すべてについて、固体電解コンデ
ンサ製造に適用される通常の方法、即ち硝酸マン
ガンの含浸、熱分解によるMnO2陰極付けを行
い、更にグラフアイト、銀ペースト付け、半田デ
イツプ、樹脂外装を行つて固体コンデンサとし
た。 固体化後についても陽極酸化後と同様C120
tanδ及びLCの測定データを第3表に示す。但し、
ここでのtanδは、MnO2等外部陰極の透過直列抵
抗(ECR)を含むコンデンサ全体としての損失
を示す。また、LCの良品範囲は0.5μA以下とし、
0.5μAより大きいものを不良品とした。
[Table] Next, for each level, the 100 used for C 120 and tanδf measurements
All of the 1,900 capacitors, except one, were processed using the usual methods applied to solid electrolytic capacitor manufacturing, namely impregnation with manganese nitrate, MnO 2 cathodization by pyrolysis, and further addition of graphite, silver paste, solder dip, and resin outer coating. Then, it was made into a solid capacitor. After solidification, the same C 120 as after anodization,
The measurement data of tanδ and LC are shown in Table 3. however,
Tanδ here indicates the loss of the entire capacitor including the transmission series resistance (ECR) of the external cathode such as MnO2 . In addition, the good range of LC should be 0.5μA or less,
Those larger than 0.5 μA were considered defective.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、アルミニウムと
チタンもしくは水素化チタンの混合粉末のプレス
成形体を焼結する電解コンデンサのリードワイヤ
に、タングステンあるいはモリブデンのワイヤを
使用することにより、漏れ電流不良発生率が低
く、品質安定性の良い電解コンデンサを得ること
ができる。 なお、実際の適用に際しては、タングステンあ
るいはモリブデンは、タンタルやニオブのワイヤ
とは静電容量、誘電損失、良品平均値、不良発生
率がそれぞれ異なるため、所望の特性に近い側を
選択すればよい。
As explained above, the present invention reduces the incidence of leakage current defects by using tungsten or molybdenum wires for the lead wires of electrolytic capacitors that sinter press molded bodies of mixed powders of aluminum and titanium or titanium hydride. It is possible to obtain electrolytic capacitors with low resistance and good quality stability. In actual applications, tungsten or molybdenum wires differ from tantalum or niobium wires in capacitance, dielectric loss, average value of non-defective products, and failure rate, so it is best to choose the wire that has the characteristics closest to your desired characteristics. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明の一実施例を示す一部破
断斜視図、第2図はリードワイヤ表面をオージエ
分光法により深さ方向の組成分析を行つた結果を
示す図である。 1……Al−TiH2混合粉プレス体、1A……Al
−Ti合金多孔質焼結体、2……高融点金属リー
ドワイヤ、3……純Al層。
1A and 1B are partially cutaway perspective views showing an embodiment of the present invention, and FIG. 2 is a diagram showing the results of depthwise compositional analysis of the lead wire surface by Auger spectroscopy. 1...Al-TiH 2 mixed powder press body, 1A...Al
-Ti alloy porous sintered body, 2...high melting point metal lead wire, 3...pure Al layer.

Claims (1)

【特許請求の範囲】[Claims] 1 リードワイヤを植設したアルミニウムとチタ
ンもしくは水素化チタンの混合粉末のプレス成形
体を焼結して陽極体を構成する電解コンデンサに
おいて、前記リードワイヤにタングステンあるい
はモリブデンを用いたことを特徴とする電解コン
デンサ。
1. An electrolytic capacitor in which an anode body is constructed by sintering a press-molded body of a mixed powder of aluminum and titanium or titanium hydride with a lead wire implanted therein, characterized in that tungsten or molybdenum is used for the lead wire. Electrolytic capacitor.
JP61151716A 1986-06-30 1986-06-30 Electrolytic capacitor Granted JPS639111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61151716A JPS639111A (en) 1986-06-30 1986-06-30 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61151716A JPS639111A (en) 1986-06-30 1986-06-30 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS639111A JPS639111A (en) 1988-01-14
JPH0553053B2 true JPH0553053B2 (en) 1993-08-09

Family

ID=15524719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61151716A Granted JPS639111A (en) 1986-06-30 1986-06-30 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS639111A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026304A1 (en) * 2008-06-02 2009-12-03 H.C. Starck Gmbh Process for the preparation of electrolytic capacitors with low leakage current
WO2021117617A1 (en) * 2019-12-13 2021-06-17 パナソニックIpマネジメント株式会社 Metal wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814521A (en) * 1981-07-17 1983-01-27 日本電気株式会社 Electrolytic condenser
JPS59117212A (en) * 1982-12-24 1984-07-06 日本電気株式会社 Method of producing porous sintered material for electrolytic condenser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814521A (en) * 1981-07-17 1983-01-27 日本電気株式会社 Electrolytic condenser
JPS59117212A (en) * 1982-12-24 1984-07-06 日本電気株式会社 Method of producing porous sintered material for electrolytic condenser

Also Published As

Publication number Publication date
JPS639111A (en) 1988-01-14

Similar Documents

Publication Publication Date Title
US3825802A (en) Solid capacitor
US7729103B2 (en) Solid electrolytic capacitor and method of producing the same
US6521013B1 (en) Niobium sintered body for capacitor and replace with process for producing same
WO2007130234A1 (en) Capacitive element comprising an anode with flutes and process for forming a capacitor
US4041359A (en) Method of making an electrolytic capacitor and electrolytic capacitor made thereby
JPH06505829A (en) Anode for porous electrolysis
US4604260A (en) Method of producing electrolytic capacitor with Al-Ti anode body
US3599053A (en) Improved titanium alloy capacitor
US3818581A (en) Capacitor electrode
US4517727A (en) Method of producing a porous body for electrolytic capacitor having a lead wire
JP4931776B2 (en) Solid electrolytic capacitor
EP0038149B1 (en) Improvements in porous bodies for solid electrolytic capacitors and processes for producing the same
JPH0553053B2 (en)
US3564348A (en) Titanium-antimony alloy electrode electrical capacitor
US3239436A (en) Method of making titanium electrolytic capacitors
JP2004014667A (en) Solid electrolytic capacitor
US4214293A (en) Electrolytic capacitors
JP2007081067A (en) Electrolytic capacitor and its manufacturing method
JPH08162372A (en) Manufacture of electrolytic capacitor
JP2908830B2 (en) Manufacturing method of electrolytic capacitor
JP2734825B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6257090B2 (en)
JPS622452B2 (en)
JPS622450B2 (en)
JPH09167719A (en) Tantalum solid electrolytic capacitor