JPH0553034A - Semiconductor optical device - Google Patents

Semiconductor optical device

Info

Publication number
JPH0553034A
JPH0553034A JP23572691A JP23572691A JPH0553034A JP H0553034 A JPH0553034 A JP H0553034A JP 23572691 A JP23572691 A JP 23572691A JP 23572691 A JP23572691 A JP 23572691A JP H0553034 A JPH0553034 A JP H0553034A
Authority
JP
Japan
Prior art keywords
semiconductor optical
substrate
optical device
waveguide
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23572691A
Other languages
Japanese (ja)
Inventor
Koichi Wakita
紘一 脇田
Isamu Odaka
勇 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23572691A priority Critical patent/JPH0553034A/en
Publication of JPH0553034A publication Critical patent/JPH0553034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide the semiconductor optical device which is small in stray inductance and capacity, can stably operate by efficiently radiating the heat generated from chip resistance and metallic film resistance, and is used for long-distance and large-capacity optical transmission and optical information processing. CONSTITUTION:This semiconductor optical is controlled and driven by a corner planar waveguide circuit consisting of a substrate 11 having a prescribed thickness, at least one piece of microwave guides 15 disposed on the substrate 11, and electrode parts 12 provided apart a prescribed spacing on both sides of at least one piece of the waveguides 15. The above-mentioned substrate 11 is formed of synthetic diamond. In addition, metallic film resistors 13 having a prescribed value are installed on both sides or one side of the spacing provided between the electrode parts 12 and the microwave guide 15 via the microwave guide 15 on one side of the above-mentioned substrate in parallel with the semiconductor optical element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体光素子が、高速
にかつ安定に、光変調や光スイッチ、レーザ動作を行う
ための半導体光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical device for a semiconductor optical element to perform optical modulation, optical switch, and laser operation at high speed and stably.

【0002】[0002]

【従来の技術】長距離・大容量光伝送や高速光情報処理
では、高速に光デバイスを駆動、制御することが、近年
ますます必要となってきている。そこでは光変調や光ス
イッチ、レーザ動作を高速に行うために、半導体光素子
と駆動系とのインピーダンスマッチングが必要で、マイ
クロ波回路やストリップラインなどのマイクロ波実装技
術が用いられている。通常、光変調や光スイッチに適用
する光デバイスは、逆方向にバイヤスして電界を印加す
ることが行われており、そのインピーダンスは非常に高
いので、チップ抵抗や金属被膜抵抗を素子に並列に用い
て駆動系とのインピーダンスのマッチングを行っている
(図3参照)。
2. Description of the Related Art In long-distance, large-capacity optical transmission and high-speed optical information processing, it has become more and more necessary in recent years to drive and control optical devices at high speed. There, impedance matching between a semiconductor optical device and a drive system is required in order to perform optical modulation, an optical switch, and a laser operation at high speed, and a microwave packaging technique such as a microwave circuit or a strip line is used. Optical devices used for optical modulation and optical switches are usually biased in the opposite direction to apply an electric field, and their impedance is so high that a chip resistor or metal film resistor should be placed in parallel with the device. It is used to match the impedance with the drive system (see FIG. 3).

【0003】なお、図3では、図示していないが、光変
調器34の裏面電極とチップ抵抗33の左端電極は結線され
ている。また、半導体レーザでは、順方向にバイヤスし
て電流を流すので、そのインピーダンスは非常に低く、
チップ抵抗や金属被膜抵抗を素子に直列に用いて駆動系
とのインピーダンスのマッチングを行っている(図4参
照)。光変調や光スイッチでは、消光比10 dBを得るの
に必要な電圧は、3〜5ボルトであり、通常用いられる
50オームの抵抗では、180 〜500 mWの電力が消費され、
発熱して一般に温度敏感な半導体光素子に多大な影響を
与える。また、半導体レーザでは、2〜5オームの抵抗
があるので、45〜48オームのチップ抵抗や金属被膜抵抗
を素子に直列に用いており、同程度に多大の電力が消費
され、発熱して半導体光素子に多大な影響を与え、ひい
ては素子の信頼性にも重大な影響を与える。また、従来
は前記発熱の影響を避けるためチップ抵抗をヒートシン
ク上に載せて発生する熱を逃がしていたが、駆動部分お
よび半導体光素子の間をリード線でつなぐ必要があり、
浮遊インダクタンス、浮遊容量も増加し、高周波特性に
不具合を生じる問題があった。
Although not shown in FIG. 3, the back surface electrode of the optical modulator 34 and the left end electrode of the chip resistor 33 are connected. Further, in a semiconductor laser, the impedance is very low because the current is biased in the forward direction to pass the current.
A chip resistor or a metal film resistor is used in series with the element to match the impedance with the drive system (see FIG. 4). For optical modulation and optical switches, the voltage required to obtain an extinction ratio of 10 dB is 3 to 5 volts, which is normally used.
With a 50 ohm resistor, it consumes 180-500 mW of power,
It generates heat and has a great influence on a semiconductor optical device which is generally temperature sensitive. In addition, since the semiconductor laser has a resistance of 2 to 5 ohms, a chip resistance of 45 to 48 ohms or a metal film resistance is used in series with the element, and a large amount of power is consumed to the same extent and heat is generated to the semiconductor. It has a great influence on the optical element and, in turn, the reliability of the element. Further, in the past, in order to avoid the influence of the heat generation, the heat generated by mounting the chip resistor on the heat sink was released, but it is necessary to connect the driving portion and the semiconductor optical element with a lead wire,
There is a problem that stray inductance and stray capacitance also increase, causing a problem in high frequency characteristics.

【0004】これまで用いられていたマイクロ波回路
は、基板に誘電体であるアルミナなどのセラミックスが
一般に使用されており、セラミックスは熱伝導率が低
く、例えばアルミナの熱伝導率は 0.04 (cal/cm sec de
g)で、半導体光素子のような消費電力の大きな素子には
不適当であった。また、一般に金属は熱伝導に優れてい
るが、電気的には導体であり、マイクロ波回路の基板に
は不向きである。また、従来前記発熱の影響を避けるた
め、チップ抵抗をヒートシンク上に載せて発生する熱を
逃がしていたが、半導体光素子とチップ抵抗および駆動
部分の間をリード線でつなぐ必要があり、高速動作させ
るには、駆動部分およびチップ抵抗と半導体光素子の間
を、できるだけ短くして浮遊インダクタンス、浮遊容量
の源であるリード線をなくすか、短くする必要があっ
た。
In the microwave circuits that have been used so far, ceramics such as alumina, which is a dielectric, are generally used for the substrate, and the ceramics have a low thermal conductivity. For example, the thermal conductivity of alumina is 0.04 (cal / cal / cm sec de
In g), it was unsuitable for devices with large power consumption such as semiconductor optical devices. Further, generally, although metal is excellent in heat conduction, it is electrically a conductor and is not suitable for a substrate of a microwave circuit. Further, conventionally, in order to avoid the influence of the heat generation, the heat generated by mounting the chip resistor on the heat sink has been released, but it is necessary to connect the semiconductor optical element to the chip resistor and the driving portion with a lead wire, which enables high-speed operation. In order to achieve this, it is necessary to make the distance between the driving portion and the chip resistor and the semiconductor optical element as short as possible so as to eliminate or shorten the lead wire that is the source of the stray inductance and stray capacitance.

【0005】[0005]

【発明が解決しようとする課題】本発明、浮遊インダク
タンスや浮遊容量が小さく、かつチップ抵抗や金属被膜
抵抗より発生する熱を効率よく放散して、安定に動作す
ることができ、長距離・大容量光伝送や光情報処理に用
いられる半導体光装置を提供することにある。
According to the present invention, the stray inductance and stray capacitance are small, and the heat generated by the chip resistance and the metal film resistance can be efficiently dissipated to stably operate, and the long distance and large size can be achieved. It is to provide a semiconductor optical device used for capacitive optical transmission and optical information processing.

【0006】[0006]

【課題を解決するための手段】本発明の半導体光装置
は、所定の厚さを持つ基板と、該基板の上に配置された
少なくとも1本のマイクロ波導波路と、該少なくとも1
本の導波路の両側に、所定の間隔だけ隔てて設けられた
導体とからなるコープレーナ導波回路により、制御、駆
動される半導体光素子において、該基板を合成ダイヤモ
ンドとし、かつその片側に前記マイクロ波導波路を介し
て、所定の値の金属被膜抵抗を、前記導体とマイクロ波
導波路の間に設けられた間隙の両側または片側に、かつ
該半導体光素子に並列に設置する。
A semiconductor optical device according to the present invention comprises a substrate having a predetermined thickness, at least one microwave waveguide disposed on the substrate, and the at least one microwave waveguide.
In a semiconductor optical device controlled and driven by a coplanar waveguide circuit composed of conductors provided on both sides of a book waveguide at a predetermined distance, the substrate is made of synthetic diamond, and the micro diamond is provided on one side thereof. Through the wave waveguide, metal film resistors having a predetermined value are installed on both sides or one side of the gap provided between the conductor and the microwave waveguide and in parallel with the semiconductor optical device.

【0007】または所定の厚さを持つ合成ダイヤモンド
基板と、該基板上に配置された少なくとも1本のマイク
ロ波導波路と、該少なくとも1本の導波路の裏面にある
電極部とからなる回路により、制御、駆動される半導体
光素子において、所定の値の金属被膜抵抗を、該少なく
とも1本の導波路の片側に、かつ該半導体光素子に直列
に設置する。
Alternatively, a synthetic diamond substrate having a predetermined thickness, at least one microwave waveguide arranged on the substrate, and an electrode portion on the back surface of the at least one waveguide are used. In the controlled and driven semiconductor optical device, a metal film resistor having a predetermined value is installed on one side of the at least one waveguide and in series with the semiconductor optical device.

【0008】[0008]

【作用】セラミックスと同程度に比抵抗が大きく、誘電
率は小さく、かつ熱伝導率は2.5 (cal/cm sec deg)と桁
違いに大きい気相合成ダイヤモンドを用いているので、
その上に搭載されたチップ抵抗や金属被膜抵抗より発生
する熱を効率よく放散することが可能となる。また、直
接ストリップラインやコプレーナ線路にチップ抵抗や金
属被膜抵抗が接続されているので、リード線は短くで
き、浮遊インダクタンス、浮遊容量を大幅に減らすこと
ができ、良好な高周波特性が得られる。このため半導体
光装置を安定に、かつ高速に動作させることができる。
[Function] Since vapor-phase synthetic diamond is used, which has a resistivity as large as that of ceramics, a small permittivity, and a thermal conductivity of 2.5 (cal / cm sec deg), which is an order of magnitude larger.
It is possible to efficiently dissipate the heat generated by the chip resistor and the metal film resistor mounted on it. Further, since the chip resistor and the metal film resistor are directly connected to the strip line or the coplanar line, the lead wire can be shortened, the stray inductance and the stray capacitance can be greatly reduced, and good high frequency characteristics can be obtained. Therefore, the semiconductor optical device can be operated stably and at high speed.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は、本発明の半導体光装置の一実施例
の構成を示す平面図であって、11は合成ダイヤモンドか
らなる基板、その上に導体からなる電極部12、薄膜抵抗
(100オーム) 13があり、14は光変調器である。2個の薄
膜抵抗13が光変調器14に並列につけられており、全体で
50オームとなるように、かつ熱容量は2倍になってい
る。誘電率の値より決まる中心導体15の幅および中心導
体15と電極部12の間隙は、それぞれ 350μm 、44μm で
ある。光変調器14はリード線で中心導体15につながって
おり、その下は金属を介してアースにおちている。基板
の厚さは 250〜300 μm である。この光変調器には、電
界が印加され、その吸収係数、屈折率が変調される。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a plan view showing the configuration of an embodiment of the semiconductor optical device of the present invention, in which 11 is a substrate made of synthetic diamond, an electrode portion 12 made of a conductor thereon, and a thin film resistor.
There are 13 (100 ohms) and 14 is an optical modulator. Two thin film resistors 13 are attached in parallel to the optical modulator 14,
The heat capacity is doubled to be 50 ohms. The width of the central conductor 15 determined by the value of the dielectric constant and the gap between the central conductor 15 and the electrode portion 12 are 350 μm and 44 μm, respectively. The optical modulator 14 is connected to the center conductor 15 by a lead wire, and the lower part thereof is grounded via a metal. The thickness of the substrate is 250-300 μm. An electric field is applied to this optical modulator, and its absorption coefficient and refractive index are modulated.

【0010】図2は本発明の半導体光装置の他の実施例
の構成を示す平面図であって、21は合成ダイヤモンドか
らなる基板、その上に電極部22、薄膜抵抗(47 オーム)
23があり、24は半導体レーザである。1個の薄膜抵抗23
が半導体レーザに直列に接続されている。半導体レーザ
には、電流が注入され、所定の光が出射される。
FIG. 2 is a plan view showing the configuration of another embodiment of the semiconductor optical device of the present invention, in which 21 is a substrate made of synthetic diamond, on which an electrode portion 22 and a thin film resistor (47 ohm) are provided.
There are 23 and 24 are semiconductor lasers. One thin film resistor 23
Are connected in series to the semiconductor laser. A current is injected into the semiconductor laser, and predetermined light is emitted.

【0011】[0011]

【発明の効果】本発明ではセラミックスと同程度に比抵
抗が大きく、誘電率は小さく、かつ熱伝導率は 2.5 (ca
l/cm sec deg) と桁違いに大きい気相合成ダイヤモンド
を用いているので、その上に搭載されたチップ抵抗や金
属被膜抵抗より発生する熱を効率よく放散することが可
能となり、温度に敏感な半導体光装置を安定に動作する
ことができた。また、直接ストリップラインやコプレー
ナ線路に、チップ抵抗や金属被膜抵抗が接続されている
ので、リード線は短くでき、浮遊インダクタンス、浮遊
容量を大幅に減らすことができ、長距離・大容量光伝送
や光情報処理に用いられる半導体光装置において、良好
な高周波特性が得られた。
According to the present invention, the specific resistance is as large as that of ceramics, the dielectric constant is small, and the thermal conductivity is 2.5 (ca).
l / cm sec deg), which is an order of magnitude larger than that of diamond, makes it possible to efficiently dissipate the heat generated by the chip resistor and metal film resistor mounted on it, making it sensitive to temperature. The stable semiconductor optical device could be operated stably. In addition, since the chip resistor and metal film resistor are directly connected to the strip line and coplanar line, the lead wire can be shortened, stray inductance and stray capacitance can be greatly reduced, and long-distance and large-capacity optical transmission and Good high frequency characteristics were obtained in a semiconductor optical device used for optical information processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体光装置の一実施例の構成を示す
平面図である。
FIG. 1 is a plan view showing a configuration of an embodiment of a semiconductor optical device of the present invention.

【図2】本発明の半導体光装置の他の実施例の構成を示
す平面図である。
FIG. 2 is a plan view showing the configuration of another embodiment of the semiconductor optical device of the present invention.

【図3】従来の半導体光装置の一例の構成を示す平面図
である。
FIG. 3 is a plan view showing the configuration of an example of a conventional semiconductor optical device.

【図4】従来の半導体光装置の他の例の構成を示す平面
図である。
FIG. 4 is a plan view showing the configuration of another example of the conventional semiconductor optical device.

【符号の説明】[Explanation of symbols]

11, 21 気相合成ダイヤモンド基板 31, 41 セラミック基板 12, 22, 32, 42 電極部 13, 23, 43 薄膜抵抗 14, 34 光変調器 24, 44 半導体レーザ 15 中心導体 33 チップ抵抗。 11, 21 Vapor phase synthetic diamond substrate 31, 41 Ceramic substrate 12, 22, 32, 42 Electrode part 13, 23, 43 Thin film resistor 14, 34 Optical modulator 24, 44 Semiconductor laser 15 Center conductor 33 Chip resistor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定の厚さを持つ基板と、該基板上に配
置された少なくとも1本のマイクロ波導波路と、該少な
くとも1本の導波路の両側に、所定の間隔だけ隔てて設
けられた導体とからなるコープレーナ導波回路により、
制御、駆動される半導体光素子において、該基板を合成
ダイヤモンドとし、かつその片側に前記マイクロ波導波
路を介して、所定の値の金属被膜抵抗を、前記導体とマ
イクロ波導波路の間に設けられた間隙の両側または片側
に、かつ該半導体光素子に並列に設置したことを特徴と
する半導体光装置。
1. A substrate having a predetermined thickness, at least one microwave waveguide arranged on the substrate, and provided on both sides of the at least one waveguide at a predetermined distance. With a coplanar waveguide circuit consisting of a conductor,
In the controlled and driven semiconductor optical device, the substrate is made of synthetic diamond, and a metal film resistor having a predetermined value is provided on one side of the substrate through the microwave waveguide between the conductor and the microwave waveguide. A semiconductor optical device, which is installed on both sides or one side of a gap and in parallel with the semiconductor optical element.
【請求項2】 所定の厚さを持つ合成ダイヤモンド基板
と、該基板上に配置された少なくとも1本のマイクロ波
導波路と、該少なくとも1本の導波路の裏面にある電極
部とからなる回路により、制御、駆動される半導体光素
子において、所定の値の金属被膜抵抗を、該少なくとも
1本の導波路の片側に、かつ該半導体光素子に直列に設
置したことを特徴とする半導体光装置。
2. A circuit comprising a synthetic diamond substrate having a predetermined thickness, at least one microwave waveguide arranged on the substrate, and an electrode portion on the back surface of the at least one waveguide. In the controlled and driven semiconductor optical device, a metal film resistor having a predetermined value is provided on one side of the at least one waveguide and in series with the semiconductor optical device.
JP23572691A 1991-08-23 1991-08-23 Semiconductor optical device Pending JPH0553034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23572691A JPH0553034A (en) 1991-08-23 1991-08-23 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23572691A JPH0553034A (en) 1991-08-23 1991-08-23 Semiconductor optical device

Publications (1)

Publication Number Publication Date
JPH0553034A true JPH0553034A (en) 1993-03-05

Family

ID=16990322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23572691A Pending JPH0553034A (en) 1991-08-23 1991-08-23 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JPH0553034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257435A (en) * 2000-03-08 2001-09-21 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257435A (en) * 2000-03-08 2001-09-21 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter

Similar Documents

Publication Publication Date Title
US4989930A (en) Optoelectronics package
JP5188625B2 (en) Semiconductor light modulator
EP1617279B1 (en) Optical module
US11641240B2 (en) Optical module
JP2005062855A (en) Distributed low-pass filter transmission line circuit apparatus
JP2004020708A (en) Travelling wave optical modulator
JP2003279907A (en) Optical modulator excitation circuit
JP4090401B2 (en) Optical transmission module
JP7468846B2 (en) Optical semiconductor device and carrier
JPH0553034A (en) Semiconductor optical device
JPH0774420A (en) Optical semiconductor circuit, optical module for constituting it, and power source circuit
US20220149590A1 (en) Optical semiconductor module
US6990256B2 (en) Segmented modulator for high-speed opto-electronics
JP7020590B1 (en) Laser light source device
JP2885218B2 (en) Light control device
JP2005038984A (en) Optical transmission module
JPH06230328A (en) Method for mounting electric field absorption type optical modulator
JPH06318763A (en) Semiconductor laser device
JP5967518B2 (en) Signal transmission path
JPH03259584A (en) Semiconductor laser apparatus
JPH0719932B2 (en) Laser diode module
JP2000164970A (en) Optical element module
JP4640733B2 (en) Semiconductor device
JPH06216364A (en) Optical semiconductor device
US7085442B2 (en) Optoelectronic device, method of manufacturing thereof, and system including the same