JPH0552895B2 - - Google Patents

Info

Publication number
JPH0552895B2
JPH0552895B2 JP60023993A JP2399385A JPH0552895B2 JP H0552895 B2 JPH0552895 B2 JP H0552895B2 JP 60023993 A JP60023993 A JP 60023993A JP 2399385 A JP2399385 A JP 2399385A JP H0552895 B2 JPH0552895 B2 JP H0552895B2
Authority
JP
Japan
Prior art keywords
main body
light
particles
flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60023993A
Other languages
Japanese (ja)
Other versions
JPS61182549A (en
Inventor
Shinichi Hirako
Yoshitaka Shirakawa
Fumio Konuma
Shigeru Makita
Akitoshi Miki
Juzo Nakase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP60023993A priority Critical patent/JPS61182549A/en
Priority to DE19863603905 priority patent/DE3603905A1/en
Publication of JPS61182549A publication Critical patent/JPS61182549A/en
Publication of JPH0552895B2 publication Critical patent/JPH0552895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N15/1436Optical arrangements the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、液中の粒子に光を照射して光学特
性を測定する流れ式粒子分析装置において、粒子
を案内するフローセルに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a flow cell that guides particles in a flow type particle analyzer that measures optical characteristics by irradiating particles in a liquid with light.

(ロ) 従来の技術 一般に、血液細胞などの各種微粒子を測定する
装置には、粒子の光学特性、つまり螢光量などを
利用して高速に分類計数するものがある。この分
析装置は、粒子の浮遊液を層流状態で細く絞り、
光を照射し、粒子の光学特性を測定して細胞など
の粒子を分類計数している。
(B) Prior Art Generally, some devices for measuring various types of fine particles such as blood cells classify and count them at high speed by utilizing the optical properties of the particles, that is, the amount of fluorescence. This analyzer squeezes a suspended liquid of particles into a thin layer in a laminar flow state.
Cells and other particles are classified and counted by irradiating them with light and measuring their optical properties.

(ハ) 発明が解決しようとする問題点 上述した流れ式粒子分析装置のうち、光学特性
を利用したものは、従来より大別してレーザ光を
照射するものと、水銀灯などを光源としたものが
ある。
(c) Problems to be solved by the invention Among the flow-type particle analyzers mentioned above, those that utilize optical characteristics can be roughly divided into those that use laser light and those that use a mercury lamp as a light source. .

しかし、レーザ光を用いたものが、粒子の螢光
量等に対して光が強いものが多く、高感度である
が、出力の大きな連続発振のレーザ光源を必要と
し、高価になるという問題があつた。しかも、特
別に冷却装置や大容量電源などの設備を要し、更
にメンテナンスにも熟練を要するなどの欠点があ
つた。
However, many of the laser beams that use laser light are strong compared to the amount of fluorescent light emitted by the particles, and although they are highly sensitive, they require a continuous wave laser light source with high output and are expensive. Ta. In addition, it required special equipment such as a cooling device and a large-capacity power source, and also had drawbacks such as requiring skill for maintenance.

一方、水銀灯などを用いたものは、安価で操作
が容易であるが、レーザ光に比して光が弱いた
め、光照射部の構造が複雑となり、得られる光学
信号が制限されていた。つまり、粒子の浮遊液を
流すフローセルは、第6図及び第7図に示す構造
となつている。第6図のフローセルaは、カバー
グラスbの下面側に流路cが形成され、上面側に
対物レンズdが近接されている。これでは、カバ
ーグラスbに沿つて粒子の浮遊液eとシース液f
のを流す必要から、流路cをU字状に屈折形成し
なければならなず、目詰まり等を生起し易いとい
う欠点があつた。また、第7図のフローセルg
は、円柱状に形成され、中心に流路hが穿設され
ており、近接して対物レンズiと光フアイバjと
が設けられている。これでは、円柱のフローセル
であるために対物レンズiとの間の〓間が大き
く、光の屈折などの点から油浸液kを多量に要
し、取扱いが不便であつた。また、何れのフロー
セルa,gでも1つの対物レンズd,iを用い、
励起光lの照射と螢光mの集光と同一方向で行う
落射式で、光フアイバjも単に散乱光を検出する
のみであり、透過光など背向性の信号を検出でき
ないという欠点があつた。
On the other hand, those using a mercury lamp or the like are inexpensive and easy to operate, but the light is weaker than laser light, so the structure of the light irradiation part is complicated, and the optical signals that can be obtained are limited. In other words, the flow cell through which the particle suspension flows has the structure shown in FIGS. 6 and 7. In the flow cell a shown in FIG. 6, a flow path c is formed on the lower surface side of a cover glass b, and an objective lens d is placed close to the upper surface side. In this case, the particle suspension e and the sheath liquid f are distributed along the cover glass b.
Because of the need to flow water, the flow path c had to be bent into a U-shape, which had the disadvantage of being prone to clogging. Also, the flow cell g in Figure 7
is formed in a cylindrical shape, has a flow path h bored in the center, and has an objective lens i and an optical fiber j provided in close proximity. Since this is a cylindrical flow cell, there is a large distance between the flow cell and the objective lens i, and a large amount of oil immersion liquid k is required for refraction of light, making handling inconvenient. Also, using one objective lens d, i in both flow cells a, g,
It is an epi-illumination method in which the irradiation of the excitation light L and the collection of the fluorescent light M are carried out in the same direction, and the optical fiber J only detects scattered light, and has the disadvantage that backward signals such as transmitted light cannot be detected. Ta.

(ニ) 問題点を解決するための手段及び作用 この発明は、粒子が流通し、且つ光の照射部に
設けられる本体の前面と背面とが平行な平坦面に
形成されて断面が略短形に形成されると共に、こ
の本体が無色透明で螢光放射の少ない材質で構成
され、前記粒子と流路が本体の上下面に亘つて真
直に穿設され、この流路が本体の前面側に偏心し
て設けられて成り、本体前面より光が流路内入射
し、粒子に照射されることを特徴としている。
(d) Means and action for solving the problems This invention provides a main body through which particles flow and which is provided in a light irradiation section, and the front and back surfaces of the main body are formed into parallel flat surfaces and have a substantially rectangular cross section. The main body is made of a material that is colorless and transparent and emits little fluorescent light, and the particles and the flow channel are formed straight across the top and bottom of the main body, and the flow channel is formed on the front side of the main body. It is provided eccentrically and is characterized in that light enters the channel from the front surface of the main body and is irradiated onto the particles.

(ホ) 実施例 以下、この発明の実施例を図面に基づいて詳細
に説明する。
(e) Embodiments Examples of the present invention will be described in detail below with reference to the drawings.

第1図乃至第5図に示すように、1は流れ式粒
子分析装置であつて、血液細胞などの粒子を分析
するもので、この粒子の光学特性である螢光量を
測定して粒子を分類計数するように構成されてい
る。
As shown in Figures 1 to 5, 1 is a flow-type particle analyzer that analyzes particles such as blood cells, and classifies the particles by measuring the amount of fluorescence, which is an optical property of the particles. configured to count.

この流れ式粒子分析装置1は、ケース2内に光
照射系3、測定系4及び光検出系5が収納されて
構成されている。そして、測定系4にフローセル
6が取付けられている。
This flow-type particle analyzer 1 includes a light irradiation system 3, a measurement system 4, and a light detection system 5 housed in a case 2. A flow cell 6 is attached to the measurement system 4.

このフローセル6は、第2図に拡大して示すよ
うに、本体7に流路8が穿設されて構成されてい
る。この本体7は、光学的に無色透明で、螢光放
射を生じない材料で、材質の均一な、例えば光学
用ガラス、石英ガラス又は光学プラスチツクで構
成されている。更に、本体7は断面が短形の角柱
体に形成され、前面7aと背面7bとが平行な平
坦面に形成され、この前面7aより光が入射する
ようになつている。
As shown in an enlarged view in FIG. 2, the flow cell 6 includes a main body 7 with a flow path 8 formed therein. The main body 7 is made of a uniform material that is optically colorless and transparent and does not emit fluorescent light, such as optical glass, quartz glass, or optical plastic. Furthermore, the main body 7 is formed into a prismatic body with a rectangular cross section, and a front surface 7a and a back surface 7b are formed as parallel flat surfaces, so that light enters from the front surface 7a.

流路8は、本体7の上下面積に貫通して真直に
穿設されており、断面が正方形に形成され、一辺
が200μmに構成されている。そして、この流路
8は本体7の前面7aとの距離Lが0.4mmに構成
されており、流路8と前面7aの厚さが背面7b
との厚さより薄く形成されている。
The flow path 8 is formed straight through the upper and lower areas of the main body 7, and has a square cross section and a side of 200 μm. The distance L between the flow path 8 and the front surface 7a of the main body 7 is 0.4 mm, and the thickness of the flow path 8 and the front surface 7a is equal to that of the rear surface 7b.
It is formed thinner than the thickness of the

更に、本体7の前面7aにおいて、上下面両端
部には、前方に突出した厚肉部7c,7cが形成
され、中央部より厚くなつている。この厚肉部7
c,7cは本体7を補強している。一方、流路8
の下端部8aは、本体7を切削して漏斗状に形成
され、流路8を流れる層流が安定であるように構
成さている。
Further, on the front surface 7a of the main body 7, thick portions 7c, 7c protruding forward are formed at both ends of the upper and lower surfaces, and are thicker than the central portion. This thick part 7
c and 7c reinforce the main body 7. On the other hand, flow path 8
The lower end portion 8a is formed into a funnel shape by cutting the main body 7, and is configured so that the laminar flow flowing through the flow path 8 is stable.

前記光照射系3は、超高圧水銀灯やキセノン灯
などの光源9を備えており、弱い光10を出射し
ている。この光源9の背面には凹面鏡11が、前
面にはコンデンサレンズ12が設けられて、この
コンデンサレンズ12の前方にフイルタ13が設
けられて、測定に必要な波長の光10のみを透過
させるように構成されている。このフイルタ13
の前方にはダイクロツクミラー14が設けられ、
光源9からの光10を測定系4に屈折反射させて
いる。
The light irradiation system 3 includes a light source 9 such as an ultra-high pressure mercury lamp or a xenon lamp, and emits weak light 10. A concave mirror 11 is provided on the back side of the light source 9, and a condenser lens 12 is provided on the front side.A filter 13 is provided in front of the condenser lens 12 to transmit only the light 10 of the wavelength necessary for measurement. It is configured. This filter 13
A dichroic mirror 14 is provided in front of the
Light 10 from a light source 9 is refracted and reflected by a measurement system 4.

測定系4は、顕微鏡に適用される1つの対物レ
ンズ15(レンズ手段)を備えており、落射式に
構成されている。つまり、光照射と集光とを1つ
対物レンズ15で同一方向に行うようになつてお
り、この対物レンズ15は前方に前記フローセル
6が取付けられ、開口数1.25のレンズで構成され
ている。
The measurement system 4 includes one objective lens 15 (lens means) applied to a microscope, and is configured in an epi-illumination type. In other words, light irradiation and condensation are performed in the same direction by one objective lens 15, which has the flow cell 6 attached to the front thereof and is composed of a lens having a numerical aperture of 1.25.

このフローセル6は、支持部材16により取付
けられ、流路8の上下端にガイド管17a,17
bが連接されている。そして、下部ガイド管17
aには粒子18の浮遊液流入用管19とシース液
流入用管20とが、上部ガイド管17bにはドレ
ン管21とが連接されており、血液細胞等の粒子
18の浮遊液を送り込み、この浮遊液をシース液
で囲繞して流路8を通過させるように構成されて
いる。尚、22a,22bはフローセル6の位置
決めを行う調節ネジである。
This flow cell 6 is attached by a support member 16, and guide tubes 17a, 17 are provided at the upper and lower ends of the flow path 8.
b are connected. And the lower guide pipe 17
A tube 19 for inflowing a suspension liquid of particles 18 and a tube 20 for inflowing a sheath liquid are connected to the upper guide tube 17b, and a drain tube 21 is connected to the upper guide tube 17b. The floating liquid is surrounded by a sheath liquid and allowed to pass through the channel 8. Note that 22a and 22b are adjustment screws for positioning the flow cell 6.

このフローセル6は前面7aを対物レンズ15
に近接して取付けられ、この対物レンズ15との
間に油浸液23が介設され、光10が前面7aよ
り入射して流路8内の粒子18に照射される。そ
して、その粒子18が発する螢光10aは、再び
対物レンズ15で集光され、ダイクロイツクミラ
ー14を透過して光検出系5に至る。
This flow cell 6 has a front surface 7a as an objective lens 15.
The oil immersion liquid 23 is interposed between the objective lens 15 and the objective lens 15, and the light 10 enters from the front surface 7a and irradiates the particles 18 in the flow path 8. The fluorescent light 10a emitted by the particles 18 is again focused by the objective lens 15, transmitted through the dichroic mirror 14, and reaches the photodetection system 5.

光検出系5は、ピンホール24、フイルタ25
及び光検出器26が順に並設されて成り、ピンホ
ール24で迷光を除去し、フイルタ25で分光し
た後、光検出器26で電気信号に変換するように
なつている。
The photodetection system 5 includes a pinhole 24 and a filter 25.
A pinhole 24 removes stray light, a filter 25 separates the light, and the photodetector 26 converts it into an electrical signal.

次に、この流れ式粒子分析装置1の測定動作に
ついて説明する。
Next, the measurement operation of this flow type particle analyzer 1 will be explained.

先ず、フローセル6の流路8に粒子18を流
す。すなわち、粒子の浮遊液をシース液で囲繞し
て流路8に流入させる。
First, particles 18 are caused to flow through the channel 8 of the flow cell 6 . That is, the suspended liquid of particles is surrounded by the sheath liquid and allowed to flow into the channel 8.

一方、光源9から光10を出射し、この光10
はフイルタ13を通つてダイクロイツクミラー1
4で反射して対物レンズ15で絞られることにな
る。そこで、この対物レンズ15より光10はフ
ローセル6の前面7aから入射し、流路8に至
り、粒子18の照射される。この照射により、粒
子18は螢光10aを発することになる。
On the other hand, light 10 is emitted from the light source 9, and this light 10
passes through filter 13 to dichroic mirror 1
4 and is focused by the objective lens 15. The light 10 enters from the front surface 7a of the flow cell 6 through the objective lens 15, reaches the flow path 8, and irradiates the particles 18. This irradiation causes the particles 18 to emit fluorescent light 10a.

この螢光10aとの相対関係からみて、光源9
の光10はレーザ光と比較して弱いことになる
が、流路8が前面7aに偏心して対物レンズ15
に近接しているので、対物レンズ15の開口数が
大きく、充分な螢光10aが集光される。
In view of the relative relationship with this fluorescent light 10a, the light source 9
Although the light 10 is weak compared to laser light, the flow path 8 is eccentric to the front surface 7a and the objective lens 15
Since the objective lens 15 has a large numerical aperture, sufficient fluorescent light 10a is collected.

この螢光10aは、対物レンズ15よりダイク
ロイツクイラー14を通り、ピンホール24で迷
光が除去され、フイルタ25で分光された後、光
検出器26に入射する。そして、電気信号に変換
されて出力され、この信号は通常螢光10aパル
ス状となるので、パルス信号となり、螢光量の多
い粒子18の場合、信号パルスのピーク値又は面
積が大きく、この信号より粒子18が分析され
る。
The fluorescent light 10a passes through the objective lens 15 and the dichroic quiller 14, has stray light removed by the pinhole 24, is separated into spectra by the filter 25, and then enters the photodetector 26. Then, it is converted into an electrical signal and output, and this signal is usually in the form of a pulse of the fluorescent light 10a, so it becomes a pulse signal, and in the case of particles 18 with a large amount of fluorescent light, the peak value or area of the signal pulse is large, and this signal is Particles 18 are analyzed.

第3図は、他のフローセル6を示しており、こ
のフローセル6は前面7aが上下端に亘つて平坦
に形成されたものである。即ち、本体7に所定の
強度が存する場合、第2図に示すように、厚肉部
7cを形成する必要なはい。また、流路8の下端
部8aも漏斗状に形成しなくてもよい。
FIG. 3 shows another flow cell 6, and this flow cell 6 has a front surface 7a formed flat across the upper and lower ends. That is, if the main body 7 has a predetermined strength, there is no need to form the thick portion 7c as shown in FIG. Furthermore, the lower end 8a of the flow path 8 does not have to be formed into a funnel shape.

尚、実施例におけるフローセル6の流路8は、
断面正方形としたが、長方形や真円でもよい。
Note that the flow path 8 of the flow cell 6 in the example is as follows:
Although the cross section is square, it may be rectangular or perfectly circular.

また、流路8は、断面200μm平行としたが、
この大きさは粒子18の種類により適宜変更して
もよいのであり、流路8の中心と前面7aとの距
離Lは、1mm以下で0.1mm以上が好ましい。
In addition, the flow path 8 was made parallel with a cross section of 200 μm,
This size may be changed as appropriate depending on the type of particles 18, and the distance L between the center of the channel 8 and the front surface 7a is preferably 1 mm or less and 0.1 mm or more.

また、対物レンズ15は、開口数が0.8以上で
よく、焦点が流路に位置するものでもよい。
Further, the objective lens 15 may have a numerical aperture of 0.8 or more, and the focal point may be located in the flow path.

更にまた、この発明のフローセル6は、螢光1
0aを測定する分析装置1に限られるものではな
い。
Furthermore, the flow cell 6 of the present invention has fluorescent light 1
The analyzer 1 is not limited to measuring 0a.

(ヘ) 発明の効果 以上のように、この発明のフローセルによれ
ば、本体の前面と背面とを平行な平坦面とし、流
路を真直にし、前面側に偏心したために、レンズ
手段を極めて近接して設けることができ、開口数
を大きくすることができるので、光学信号を効率
よく集光することができる。
(F) Effects of the Invention As described above, according to the flow cell of the present invention, the front and back surfaces of the main body are made parallel flat surfaces, the flow path is straight, and the lens means is eccentric to the front side, so that the lens means can be placed very close to each other. Since the numerical aperture can be increased, optical signals can be efficiently focused.

更に、水銀灯など比較的弱い光の光源を用いる
ことができるので、操作が容易で安価であり、し
かも、レーザ光などの如く特別な設備が不要であ
る。
Furthermore, since a relatively weak light source such as a mercury lamp can be used, operation is easy and inexpensive, and special equipment such as a laser beam is not required.

また、流路を真直に形成するので、目詰まり等
を未然に防止することができ、その上、前面が平
坦であるから、前面が円筒面の場合のように光が
歪んだり、散乱したりすることなく、光を流路に
効率よく集中させることができる。
In addition, since the flow path is formed straight, it is possible to prevent clogging, etc. Furthermore, since the front surface is flat, light will not be distorted or scattered like when the front surface is a cylindrical surface. It is possible to efficiently concentrate light in the flow path without having to do so.

また、透過光などの背向性の光をも抽出するこ
とができる。
Further, backward light such as transmitted light can also be extracted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は、この発明の実施態様を例
示し、第1図は、流れ式粒子分析装置の概略構成
図、第2図aは、フローセルの平面図、第2図b
は、同中央縦断面図、第3図は、他のフローセル
を示し、同図aは平面図、同図bは中央縦断面
図、第4図は、流れ式粒子分析装置の一部断面
図、第5図は同一断面側面図、第6図は従来のフ
ローセルを示す概略構成図、第7図は、従来の他
のフローセルを示す概略構成図である。 1:流れ式粒子分析装置、3:光照射系、4:
測定系、5:光検出系、6:フロセール、7:本
体、7a:前面、7b:背面、8:流路、9:光
源、15:対物レンズ。
1 to 5 illustrate embodiments of the present invention, FIG. 1 is a schematic configuration diagram of a flow-type particle analyzer, FIG. 2a is a plan view of a flow cell, and FIG. 2b
3 shows another flow cell, FIG. 3 shows a plan view, FIG. 4 shows a central longitudinal sectional view, and FIG. , FIG. 5 is a side view of the same cross section, FIG. 6 is a schematic configuration diagram showing a conventional flow cell, and FIG. 7 is a schematic configuration diagram showing another conventional flow cell. 1: Flow type particle analyzer, 3: Light irradiation system, 4:
Measurement system, 5: Photodetection system, 6: Flosser, 7: Main body, 7a: Front surface, 7b: Back surface, 8: Channel, 9: Light source, 15: Objective lens.

Claims (1)

【特許請求の範囲】 1 光源からの光をレンズ手段を介して液中の粒
子に照射し、この粒子の光学特性を測定する流れ
式粒子分析装置において、 前記粒子が流通し、且つ光の照射部に設けられ
る本体の前面と背面とが平行な平坦面に形成され
て断面が略短形状に形成されると共に、この本体
が無色透明で螢光放射の少ない材質で構成され、
前記粒子の流路が本体の上下面に亘つて真直に穿
設され、この流路が本体の前面側に偏心して設け
られて成り、本体前面より光が流路内に入射し、
粒子に照射されることを特徴とするフローセル。 2 前記本体における流路の流入端部は漏斗状に
形成されると共に、本体の前面における上下両端
部は中央部より厚肉に形成されていることを特徴
とする特許請求の範囲第1項記載のフローセル。
[Scope of Claims] 1. A flow-type particle analyzer that irradiates particles in a liquid with light from a light source through a lens means and measures the optical properties of the particles, comprising: The front and back surfaces of the main body provided in the section are formed into parallel flat surfaces and the cross section is formed into a substantially rectangular shape, and the main body is made of a material that is colorless and transparent and emits little fluorescent light,
The flow path for the particles is formed straight across the upper and lower surfaces of the main body, and the flow path is eccentrically provided on the front side of the main body, and light enters the flow path from the front surface of the main body,
A flow cell characterized by irradiating particles. 2. Claim 1, characterized in that the inlet end of the flow path in the main body is formed in a funnel shape, and both upper and lower ends of the front surface of the main body are formed thicker than the central part. flow cell.
JP60023993A 1985-02-08 1985-02-08 Flow cell Granted JPS61182549A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60023993A JPS61182549A (en) 1985-02-08 1985-02-08 Flow cell
DE19863603905 DE3603905A1 (en) 1985-02-08 1986-02-07 Flow-rate and particle analyser and flow cell therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023993A JPS61182549A (en) 1985-02-08 1985-02-08 Flow cell

Publications (2)

Publication Number Publication Date
JPS61182549A JPS61182549A (en) 1986-08-15
JPH0552895B2 true JPH0552895B2 (en) 1993-08-06

Family

ID=12126101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023993A Granted JPS61182549A (en) 1985-02-08 1985-02-08 Flow cell

Country Status (1)

Country Link
JP (1) JPS61182549A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1272120B (en) * 1993-03-22 1997-06-11 Bio Rad Spd Srl MEASUREMENT CHAMBER FOR FLOW CYTOMETER
US8248604B2 (en) 2009-09-24 2012-08-21 On-Chip Biotechnologies Co., Ltd Flow cytometer and flow cell for the same
JP5814567B2 (en) * 2011-03-07 2015-11-17 浜松ホトニクス株式会社 Sample observation apparatus and sample observation method
US9891160B1 (en) * 2017-04-14 2018-02-13 Fluid Imagine Technologies, Inc. Oil-immersion enhanced imaging flow cytometer
JP7097718B2 (en) * 2018-02-27 2022-07-08 シスメックス株式会社 Particle measuring device and particle measuring method

Also Published As

Publication number Publication date
JPS61182549A (en) 1986-08-15

Similar Documents

Publication Publication Date Title
EP0068404B1 (en) Analyzer for simultaneously determining volume and light emission characteristics of particles
US4989977A (en) Flow cytometry apparatus with improved light beam adjustment
US5552885A (en) Measuring chamber for flow cytometer
JP3891925B2 (en) Device for obtaining information on biological particles
JP4602975B2 (en) Photodetector for particle classification system
US6154276A (en) Waveguide detection of right-angle-scattered light in flow cytometry
US4200802A (en) Parabolic cell analyzer
US20100327184A1 (en) Fluorescence detection device and fluorescence detection method
US20040022685A1 (en) Identification apparatus
US20070159619A1 (en) Cytometer
JPS60238762A (en) Fluid blood corpuscle inspection device
JPH0715437B2 (en) Biological cell scattered light measurement device for flow cytometer
JP2004537720A (en) In particular, devices for sample analysis by flow cytometry
GB2125181A (en) Flow cells for particle study
US4953979A (en) Optical system for signal light detection in a flow particle analysis apparatus
JPH0552895B2 (en)
CN113008768A (en) Reflection type fluorescence collecting device for flow cytometer
JPH05172732A (en) Method and apparatus for detecting particle in liquid
CN111771117B (en) Particle measurement device and particle measurement method
JP4763159B2 (en) Flow cytometer
JP4594810B2 (en) Method for controlling position of particles in sample liquid and particle measuring apparatus
JPS61186835A (en) Flow type particle analyzing instrument
JPH01129161A (en) Flow cell optical system for measuring particle
WO2021090708A1 (en) Optical measurement device and information processing system
JPS60214238A (en) Fine particle detector