JPH0552872A - Effective value level detector - Google Patents

Effective value level detector

Info

Publication number
JPH0552872A
JPH0552872A JP3213352A JP21335291A JPH0552872A JP H0552872 A JPH0552872 A JP H0552872A JP 3213352 A JP3213352 A JP 3213352A JP 21335291 A JP21335291 A JP 21335291A JP H0552872 A JPH0552872 A JP H0552872A
Authority
JP
Japan
Prior art keywords
hall
level
effective value
hall element
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3213352A
Other languages
Japanese (ja)
Inventor
Ichiro Arinobu
一郎 有信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3213352A priority Critical patent/JPH0552872A/en
Publication of JPH0552872A publication Critical patent/JPH0552872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To obtain an effective value level detector which is inexpensive and smaller with a higher accuracy eliminating the need for a costly effective value detection circuit by obtaining an output proportional to a square of a magnetic flux using two Hall elements to determine a means thereof and detect the level thereof. CONSTITUTION:This apparatus is provided with a core 2 having a gap, a main circuit conductor/which is provided inside the core 2 to let current flow therethrough and first and second Hall elements 11 and 12 provided in the gap. This is further provided with a means to supply a control current proportional to a Hall output voltage of the first Hall element 11 and a means to detect the level of a mean signal of the Hall output voltage of the second Hall element 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、配電線等電路に歪波
(高周波)成分を含む交流電路の実効値レベル検出装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting an effective value level of an AC electric circuit including a distorted wave (high frequency) component in an electric circuit such as a distribution line.

【0002】[0002]

【従来の技術】図6は例えばクリップオン電流計等にみ
られる従来のホール素子を用いた電流センシング部の構
造図、図7はその断面図、図8はホール素子の出力信号
の処理ブロック図である。図6において、1は主回路導
体、2は主回路導体1を流れる電流により生ずる磁束を
ホール素子11に導く為の、高透磁率磁性体より成るギ
ャップ付鉄心である。図8において、20、21、22
は正極及び負極の電源及びアース、R1、R2はホール
素子11に制御電流Ic を供給する為のバイアス抵抗、
14はオペアンプ、R3、R4、R5はオペアンプ14
の差動増幅制御の為の抵抗、30は実効値変換回路、3
1はレベル判別回路、32は出力回路、33は出力端子
である。
2. Description of the Related Art FIG. 6 is a structural diagram of a current sensing section using a conventional Hall element found in, for example, a clip-on ammeter, FIG. 7 is its sectional view, and FIG. Is. In FIG. 6, 1 is a main circuit conductor, and 2 is an iron core with a gap made of a high-permeability magnetic body for guiding a magnetic flux generated by a current flowing through the main circuit conductor 1 to the Hall element 11. In FIG. 8, 20, 21, 22
Is a positive and negative power source and ground, R1 and R2 are bias resistors for supplying a control current I c to the Hall element 11,
14 is an operational amplifier, and R3, R4, and R5 are operational amplifiers 14.
For controlling the differential amplification of, 30 is an effective value conversion circuit, 3
Reference numeral 1 is a level determination circuit, 32 is an output circuit, and 33 is an output terminal.

【0003】次に動作について説明する。図6におい
て、主回路導体1に電流iが流れると磁束が発生し、ギ
ャップは鉄心2を励磁し、ギャップ中に所定の磁束密度
Bを供給する。ホール素子11は、このギャップ中に挿
入され、次式で示されるホール電圧vh1を出力する。 vh1=kh ×Ic ×B ここで、kh はホール素子の積感度、Ic は制御電流で
ある。図8において、この出力電圧をオペアンプ14の
差動入力として、所定の利得を与える様R3、R4、R
5により決められ、増幅されてv1 なる電圧に変換され
る。この電圧を実効値に変換する為の実効値変換回路3
0に入力され、入力vh1に比例した実効値出力を得て、
レベル判別回路31に送り実効値出力が所定のレベルに
達した場合は次段の出力回路32に信号を送り出力端子
33より、その旨の出力を行う。ここで、上記実効値変
換回路30では一般に、専用の実効値変換IC等を用い
て変換される。原理としては半導体P−N接合の2乗特
性を応用したものが多く、ログ−アンチログ変換するも
のが主流である。
Next, the operation will be described. In FIG. 6, when a current i flows through the main circuit conductor 1, a magnetic flux is generated, the gap excites the iron core 2, and a predetermined magnetic flux density B is supplied into the gap. The Hall element 11 is inserted in this gap and outputs the Hall voltage v h1 represented by the following equation. v h1 = k h × I c × B where k h is the product sensitivity of the Hall element and I c is the control current. In FIG. 8, this output voltage is used as a differential input of the operational amplifier 14 so that R3, R4, R
5 and is amplified and converted to a voltage of v 1 . Effective value conversion circuit 3 for converting this voltage into an effective value
0 is input and an effective value output proportional to the input v h1 is obtained,
When the effective value output to the level discriminating circuit 31 reaches a predetermined level, a signal is sent to the output circuit 32 at the next stage and the output terminal 33 outputs the signal. Here, the RMS conversion circuit 30 generally performs conversion using a dedicated RMS conversion IC or the like. As a principle, many apply the square characteristic of the semiconductor P-N junction, and the one that performs log-antilog conversion is the mainstream.

【0004】[0004]

【発明が解決しようとする課題】従来の実効値レベル検
出装置は以上のように構成されているので、出力回路導
体1を流れる電流に比例した磁束の変化を1つのホール
素子により検出し、、そのホール出力電圧vh1を実効値
に変換する実効値変換回路手段を用いる必要がある。実
効値変換回路は一般に高価であり、かつ、構成される回
路部品にも高精度のものが要求されるなど多くの問題点
があった。
Since the conventional RMS level detecting device is constructed as described above, the change in the magnetic flux proportional to the current flowing through the output circuit conductor 1 is detected by one Hall element, It is necessary to use effective value conversion circuit means for converting the Hall output voltage v h1 into an effective value. The effective value conversion circuit is generally expensive, and there are many problems such as highly accurate circuit components are required.

【0005】この発明は上記のような問題点を解消する
為になされたもので安価で、高性能かつ安定な実効値レ
ベル検出装置を提供することを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide an inexpensive, high-performance and stable effective value level detecting device.

【0006】[0006]

【課題を解決するための手段】この発明に係る実効値レ
ベル検出装置は、空隙を有する鉄心と、この鉄心の内部
に設けられ、電流が流れる主回路導体と、前記空隙に設
けられた第1及び第2のホール素子と、この第1のホー
ル素子のホール出力電圧に比例した制御電流を前記第2
のホール素子に供給する手段と、前記第2のホール素子
のホール出力電圧の平均値信号のレベルを検出する手段
とを備える。
An effective value level detecting device according to the present invention includes an iron core having a void, a main circuit conductor provided inside the iron core, through which a current flows, and a first void provided in the void. And a control current proportional to the Hall output voltage of the first Hall element and the second Hall element.
And a means for detecting the level of the average value signal of the Hall output voltage of the second Hall element.

【0007】[0007]

【作用】この発明における実効値レベル検出装置は、二
つのホール素子を用いて磁束の自乗に比例した出力を得
て平均値をとり、そのレベルを検出する。
The effective value level detecting apparatus according to the present invention obtains an output proportional to the square of the magnetic flux using two Hall elements, takes an average value, and detects the level.

【0008】[0008]

【実施例】【Example】

実施例1.以下この発明の一実施例の図について説明す
る。図1において、1は主回路導体、2は高透磁率磁性
体のギャップ付鉄心、11及び12は上記鉄心2のギャ
ップ中に配置されたホール素子である。図2は、上記鉄
心2のギャップの断面図であり、ギャップ中に均一磁束
密度Bを供給している。図3は、上記2つのホール素子
の信号処理を示す回路ブロック図である。図3におい
て、11、12はホール素子、21、22及び23は正
極・負極の電源及びアース、R1、R2はホール素子1
1に制御電流Ic を供給する為の抵抗、14、15はオ
ペアンプであって、R3、R4、R5はホール素子11
のホール出力電圧vh1を差動増幅する為の抵抗である。
オペアンプ14の出力は第2のホール素子12の制御電
流を供給する様接続され、そのホール出力電圧vh2をR
6、R7、R8を用いてオペアンプ15により差動増幅
され出力電圧v2 を出力する。34は平均値回路であっ
てR9及びCにより上記出力電圧v2 を平均値化する。
31はレベル判別回路、32は出力回路、33は出力端
子である。
Example 1. A diagram of an embodiment of the present invention will be described below. In FIG. 1, 1 is a main circuit conductor, 2 is an iron core with a gap of a high-permeability magnetic material, and 11 and 12 are Hall elements arranged in the gap of the iron core 2. FIG. 2 is a cross-sectional view of the gap of the iron core 2 in which a uniform magnetic flux density B is supplied into the gap. FIG. 3 is a circuit block diagram showing the signal processing of the two Hall elements. In FIG. 3, 11 and 12 are Hall elements, 21, 22 and 23 are positive and negative power sources and grounds, and R1 and R2 are Hall elements 1.
1 are resistors for supplying the control current I c , 14 and 15 are operational amplifiers, and R3, R4, and R5 are Hall elements 11
Is a resistor for differentially amplifying the Hall output voltage v h1 .
The output of the operational amplifier 14 is connected so as to supply the control current of the second Hall element 12, and its Hall output voltage v h2 is R
The output voltage v 2 is output after being differentially amplified by the operational amplifier 15 using 6, R7 and R8. An average value circuit 34 averages the output voltage v 2 by R9 and C.
Reference numeral 31 is a level determination circuit, 32 is an output circuit, and 33 is an output terminal.

【0009】次に動作について説明する。図1におい
て、従来例と同様に主回路導体1に電流iが流れ、ギャ
ップは鉄心2に磁束が流れて、ギャップ中に磁束密度B
を供給している場合を考える。図3において、第1のホ
ール素子に抵抗R1、R2により制御電流Ic1が流れて
いると、磁束密度B中に置かれたホール素子のホール出
力電圧vh1は次式で与えられる。 vh1=kh1×Ic1×B オペアンプ14のゲインをA1 とするとオペアンプ14
の出力v1 は次式となる。 v1 =A1 ×vh1 次に、この出力電圧は第2のホール素子の制御電流IC2
を供給する。ここでIC2=kc ×v1 とする(定電圧駆
動とみなす。)。第2のホール素子も同一磁束内に置か
れているから、第2のホール素子のホール出力電圧vh2
は次式で与えられる。 vh2=kh2×Ic2×B =kh2×kc ×v1 ×B =(kh1×kh2×kc ×Ic1)×B2 よってvh2は磁束密度Bの2乗に比例した信号として出
力される。このvh2の出力をオペアンプ15と抵抗R
6、R7、R8により所定の電圧レベルまで差動増幅し
2 と成し、これをR9及びCによる積分回路34へ入
力し、積分する。以下、積分出力が所定のレベルになっ
たことを検出するレベル判別回路31に入力され、所定
レベルになると出力回路32へ信号出力し、出力端子3
3を介して、その旨を出力する様構成されている。ここ
で、主回路電流の実効値iRMS は次式で与えられる。 iRMS =[(1/T)×∫T O2 (t)dt]1/2 次に主回路電流と鉄心内磁束は比例することから iRMS ∝[(1/T)×∫T O2 (t)dt]1/2 の関係が成立し、両辺を2乗して ∴i2 RMS∝(1/T)×∫T O2(t)dt が成立する。以上のことから、レベル判別回路31の検
出レベル設定値を検出したい入力信号のレベルの2乗の
値で設定することで真の実効値のレベル判別が可能とな
る。特に入力信号(本例では主回路電流i)に対し、あ
る一定のレベル(実効値としての)に達しているか否か
のレベル判別には非常に有効である。また、本実施例で
はレベル判別回路31、出力回路32を設け、基本的な
レベル検出を行う例を示したが、対数指針計などを用い
ることで、本願の平均値出力の平方根表示することは可
能であり、連続的なレベル検出することも可能である。
Next, the operation will be described. In FIG. 1, as in the conventional example, a current i flows in the main circuit conductor 1, a magnetic flux flows in the iron core 2 in the gap, and a magnetic flux density B is generated in the gap.
Consider the case where you are supplying. In FIG. 3, when the control current I c1 flows through the resistors R1 and R2 in the first Hall element, the Hall output voltage v h1 of the Hall element placed in the magnetic flux density B is given by the following equation. v h1 = k h1 × I c1 × B When the gain of the operational amplifier 14 is A 1 , the operational amplifier 14
Output v 1 of v 1 = A 1 × v h1 Next, this output voltage is the control current I C2 of the second Hall element.
To supply. Here, I C2 = k c × v 1 (considered as constant voltage drive). Since the second Hall element is also placed in the same magnetic flux, the Hall output voltage v h2 of the second Hall element
Is given by v h2 = k h2 × I c2 × B = k h2 × k c × v 1 × B = (k h1 × k h2 × k c × I c1) × B 2 Therefore v h2 is proportional to the square of the magnetic flux density B Is output as a signal. The output of this v h2 is the operational amplifier 15 and the resistor R.
6, R7, form a v 2 to a differential amplifier to a predetermined voltage level by R8, which was input to the integrating circuit 34 by R9 and C, and integration. Hereinafter, the integrated output is input to the level discriminating circuit 31 which detects that it has reached a predetermined level, and when it reaches a predetermined level, a signal is output to the output circuit 32 and the output terminal 3
It is configured to output that effect via the 3. Here, the effective value i RMS of the main circuit current is given by the following equation. i RMS = [(1 / T) x ∫ T O i 2 (t) dt] 1/2 Next, since the main circuit current and the magnetic flux in the iron core are proportional, i RMS ∝ [(1 / T) x ∫ T O B 2 (t) dt] 1/2 relationship is established, by squaring both sides ∴i 2 RMS α (1 / T ) × ∫ T O B 2 (t) dt is established. From the above, by setting the detection level setting value of the level determination circuit 31 to the squared value of the level of the input signal to be detected, it is possible to determine the true effective level. In particular, it is very effective for level determination of whether or not the input signal (main circuit current i in this example) has reached a certain level (as an effective value). In the present embodiment, the level discriminating circuit 31 and the output circuit 32 are provided to perform the basic level detection. However, it is possible to display the square root of the average value output of the present application by using a logarithmic indicator or the like. It is possible, and continuous level detection is also possible.

【0010】実施例2.なお、上記実施例1では2つの
ホーム素子を同一磁内に並べて(並列に)設けた例を図
1、2に示したが図4に示す通り、磁束に対し直列に配
置することも可能であり、この場合は均一磁界を作る上
で、鉄心の断面積が小さくてすむ為、より小形の検出装
置が実現出来る。図5はその時のホール素子の配置の例
を示すもので、ホール素子の面実装(SMT)部品を用
いることで、プリント基板13の両面から同一箇所に配
置することは容易に出来ることは明白であり、精度の高
い小形の検出装置が実現出来る。
Embodiment 2. In the first embodiment, an example in which two home elements are arranged side by side (in parallel) in the same magnet is shown in FIGS. 1 and 2, but as shown in FIG. 4, it is also possible to arrange them in series with respect to the magnetic flux. In this case, in order to create a uniform magnetic field, the cross-sectional area of the iron core can be small, so a smaller detector can be realized. FIG. 5 shows an example of the layout of the Hall elements at that time, and it is clear that it is possible to easily arrange the Hall elements at the same position on both sides of the printed circuit board 13 by using surface mount (SMT) components. Yes, a highly accurate and compact detection device can be realized.

【0011】[0011]

【発明の効果】以上のように、この発明によれば、空隙
を有する鉄心と、この鉄心の内部に設けられ、電流が流
れる主回路導体と、前記空隙に設けられ第1及び第2の
ホール素子と、この第1のホール素子のホール出力電圧
に比例した制御電流を前記第2のホール素子に供給する
手段と、前記第2のホール素子のホール出力電圧の平均
値信号のレベルを検出する手段とを備えた構成にしたの
で、二つのホール素子を用いて磁束の自乗に比例した出
力を得て平均値をとり、そのレベルを検出するので、従
来の高価な実効値検出回路が不要となり、安価で小形3
かつ高精度な実効値レベル検出装置が得られる。
As described above, according to the present invention, an iron core having a void, a main circuit conductor provided inside the iron core through which a current flows, and first and second holes provided in the void. An element, a means for supplying a control current proportional to the Hall output voltage of the first Hall element to the second Hall element, and a level of an average value signal of the Hall output voltage of the second Hall element. Since it has a structure including means, it obtains an output proportional to the square of the magnetic flux using two Hall elements, takes an average value, and detects the level, so that a conventional expensive effective value detection circuit is not required. Cheap and small 3
Also, a highly accurate effective value level detection device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による実効値レベル検出装
置のホール素子配置構造斜視図である。
FIG. 1 is a perspective view of a Hall element arrangement structure of an effective value level detecting device according to an embodiment of the present invention.

【図2】この発明の一実施例による実効値レベル検出装
置のホール素子配置構造断面図である。
FIG. 2 is a sectional view of a Hall element arrangement structure of an effective value level detecting device according to an embodiment of the present invention.

【図3】この発明の一実施例による実効値レベル検出装
置の信号処理回路ブロック図である。
FIG. 3 is a block diagram of a signal processing circuit of an effective value level detecting device according to an embodiment of the present invention.

【図4】この発明の他の実施例による実効値レベル検出
装置のホール素子配置構造断面図である。
FIG. 4 is a sectional view of a Hall element arrangement structure of an effective value level detecting device according to another embodiment of the present invention.

【図5】この発明の他の実施例による実効値レベル検出
装置のホール素子配置の具体的実施例図である。
FIG. 5 is a specific embodiment diagram of the Hall element arrangement of the effective value level detecting device according to another embodiment of the present invention.

【図6】従来の実効値レベル検出装置のホール素子配置
構造斜視図である。
FIG. 6 is a perspective view of a Hall element arrangement structure of a conventional RMS level detection device.

【図7】従来の実効値レベル検出装置のホール素子配置
構造断面図である。
FIG. 7 is a sectional view of a Hall element arrangement structure of a conventional RMS level detecting device.

【図8】従来の実効値レベル検出装置の信号処理回路ブ
ロック図である。
FIG. 8 is a block diagram of a signal processing circuit of a conventional effective value level detection device.

【符号の説明】[Explanation of symbols]

1 出力回路導体 2 ギャップ(空隙)付鉄心 11、12 ホール素子 14、15 オペアンプ 31 レベル判別回路 32 出力回路 34 平均値回路 1 Output Circuit Conductor 2 Iron Core with Gap (Gap) 11, 12 Hall Element 14, 15 Operational Amplifier 31 Level Discrimination Circuit 32 Output Circuit 34 Average Value Circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空隙を有する鉄心と、この鉄心の内部に
設けられ、電流が流れる主回路導体と、前記空隙に設け
られた第1及び第2のホール素子と、この第1のホール
素子のホール出力電圧に比例した制御電流を前記第2の
ホール素子に供給する手段と、前記第2のホール素子の
ホール出力電圧の平均値信号のレベルを検出する手段と
を備えたことを特徴とする実効値レベル検出装置。
1. An iron core having a void, a main circuit conductor which is provided inside the iron core and through which a current flows, first and second Hall elements provided in the void, and a first hall element of the first Hall element. It is characterized by further comprising means for supplying a control current proportional to the Hall output voltage to the second Hall element, and means for detecting the level of the average value signal of the Hall output voltage of the second Hall element. RMS level detector.
JP3213352A 1991-08-26 1991-08-26 Effective value level detector Pending JPH0552872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213352A JPH0552872A (en) 1991-08-26 1991-08-26 Effective value level detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213352A JPH0552872A (en) 1991-08-26 1991-08-26 Effective value level detector

Publications (1)

Publication Number Publication Date
JPH0552872A true JPH0552872A (en) 1993-03-02

Family

ID=16637745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213352A Pending JPH0552872A (en) 1991-08-26 1991-08-26 Effective value level detector

Country Status (1)

Country Link
JP (1) JPH0552872A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043795A1 (en) * 1999-01-21 2000-07-27 Tdk Corporation Current sensor
JP2007155400A (en) * 2005-12-01 2007-06-21 Tokai Rika Co Ltd Current sensor and current value calculation system having the same
JP2010520448A (en) * 2007-03-02 2010-06-10 リエゾン、エレクトロニク−メカニク、エルウエム、ソシエテ、アノニム High bandwidth open loop current sensor
JP2010164594A (en) * 2003-02-21 2010-07-29 Fisher Controls Internatl Llc Magnetic position sensor including integrated hall effect switch
JP2022519060A (en) * 2019-01-30 2022-03-18 レム・インターナショナル・エスエイ Current transducer with magnetic field detector module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043795A1 (en) * 1999-01-21 2000-07-27 Tdk Corporation Current sensor
EP1067391A1 (en) * 1999-01-21 2001-01-10 TDK Corporation Current sensor
EP1067391A4 (en) * 1999-01-21 2003-06-25 Tdk Corp Current sensor
JP2010164594A (en) * 2003-02-21 2010-07-29 Fisher Controls Internatl Llc Magnetic position sensor including integrated hall effect switch
JP2007155400A (en) * 2005-12-01 2007-06-21 Tokai Rika Co Ltd Current sensor and current value calculation system having the same
JP2010520448A (en) * 2007-03-02 2010-06-10 リエゾン、エレクトロニク−メカニク、エルウエム、ソシエテ、アノニム High bandwidth open loop current sensor
JP2022519060A (en) * 2019-01-30 2022-03-18 レム・インターナショナル・エスエイ Current transducer with magnetic field detector module

Similar Documents

Publication Publication Date Title
US4283643A (en) Hall sensing apparatus
US4278940A (en) Means for automatically compensating DC magnetization in a transformer
JP2004132790A (en) Current sensor
CA2244692A1 (en) Temperature compensated current measurement device
GB1528984A (en) Alternating current transformers
CA1195735A (en) In-phase voltage elimination circuit for hall element
JPH0552872A (en) Effective value level detector
US3434048A (en) Eddy current apparatus for testing the hardness of a ferromagnetic material
US3571706A (en) Voltage measuring apparatus employing feedback gain control to obtain a predetermined output and a feedback loop to readout the gain value
KR200356237Y1 (en) The Electric current Sensor Which Used Hall Device
JPH02226074A (en) Measuring apparatus
JP2867276B2 (en) Current detector
JP2532351B2 (en) Position detector using differential transformer
JP3061805U (en) Noise measurement device
CN215728748U (en) High-precision permanent magnet characteristic detector
CN212433243U (en) Full-frequency band current sensor
JPS55129910A (en) Magnetic signal reproducing device
JPS55152415A (en) Detector for angle of rotation
JPS5512401A (en) Eddy current type range finder
CN101153882A (en) Method and device for electric power measurement by using hall device
SU1265627A1 (en) Device for contactless measurement of current intensity
JPS6324268B2 (en)
SU1308959A1 (en) Device for checking variable field magnetic induction meters
JP3000746B2 (en) Method for measuring characteristics of semiconductor device
JPH02300670A (en) Inductance measuring instrument