JPH0552737A - Grain-size measuring method for granular substance - Google Patents

Grain-size measuring method for granular substance

Info

Publication number
JPH0552737A
JPH0552737A JP20946191A JP20946191A JPH0552737A JP H0552737 A JPH0552737 A JP H0552737A JP 20946191 A JP20946191 A JP 20946191A JP 20946191 A JP20946191 A JP 20946191A JP H0552737 A JPH0552737 A JP H0552737A
Authority
JP
Japan
Prior art keywords
particle size
granular object
blast furnace
granular
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20946191A
Other languages
Japanese (ja)
Inventor
Osamu Iida
修 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20946191A priority Critical patent/JPH0552737A/en
Publication of JPH0552737A publication Critical patent/JPH0552737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To make it possible to measure the surface grain size of powder-state substance in a blast furnace wherein much dust and the like are present. CONSTITUTION:A transmitting antenna 1 is attached to the outside of a side wall 1a of a blast furnace 1. The emitting axis of the antenna 4 is directed toward the surface of powder-state substance 3 in the blast furnace 1. The transmitting antenna is connected to an electromagnetic wave generator 6. A receiving antenna 8 is arranged at the outside of the side wall 1a of the blast furnace 1. The receiving axis of the antenna 8 is directed toward the surface of the powder-shaped substance 3 in the blast furnace 1. The receiving antenna 8 can be moved along a guide rail 9, which is provided at the outside of the side wall 1a so as to form an arc in the up and down directions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉内装入物の分布状
態の確認等に適用され、例えば装入された鉱石やコーク
ス等の粒状性物体の表面粒度を、非接触式に測定する粒
状性物体の粒度測定方法に関する。
INDUSTRIAL APPLICABILITY The present invention is applied to confirmation of a distribution state of blast furnace interior contents, for example, a non-contact type granularity for measuring the surface grain size of a granular object such as charged ore or coke. The present invention relates to a particle size measuring method for a flexible object.

【0002】[0002]

【従来の技術】鉄鋼業における製鉄部門では、粒状性の
物体を扱う関係から、これら粒状性物体の粒度を測定す
る要求は高く、特に高炉においては、炉内に装入する鉱
石やコークスの粒度によって操業状態を変化させる必要
があるため、これらの粒度を測定して管理する要求が高
い。
2. Description of the Related Art In the steelmaking sector of the steel industry, there is a high demand for measuring the particle size of these granular objects because of the handling of granular objects. Especially in the blast furnace, the particle size of the ore and coke charged into the furnace is high. Since it is necessary to change the operating conditions depending on the situation, there is a strong demand for measuring and managing these particle sizes.

【0003】このため従来においては、粒状性物体が炉
内に装入される前に、コンベヤで搬送中の鉱石やコーク
ス等からなる粒状性物体を間欠的に採取し、機械的に篩
等で分級して該粒状性物体の重量を測定したり、特開昭
62−30938号公報に記載されているように、前記
コンベヤで搬送中の粒状性物体をカメラで撮影して該画
像信号を画像処理することで、装入後の粒状性物体の粒
度及び分布を予想している。
For this reason, conventionally, before the granular material is loaded into the furnace, the granular material made of ore, coke or the like being conveyed by the conveyor is intermittently sampled and mechanically sieved. Classifying and measuring the weight of the granular object, or as described in JP-A-62-30938, the granular object being conveyed by the conveyor is photographed by a camera, and the image signal is imaged. The treatment predicts the particle size and distribution of the granular material after charging.

【0004】または、特開昭59−83708号公報に
記載されているように、炉内を落下中の前記粒状性物体
に電波を入射して、該電波の反射波と透過波による透過
信号及び反射信号を検知し、その両信号間の遅れ時間に
より該粒状性物体の落下速度や粒度を測定している。
Alternatively, as described in Japanese Patent Laid-Open No. 59-83708, a radio wave is incident on the granular object falling in the furnace, and a transmitted signal and a transmitted signal by a reflected wave and a transmitted wave of the radio wave are transmitted. The reflected signal is detected, and the falling speed or granularity of the granular object is measured by the delay time between the two signals.

【0005】[0005]

【発明が解決しようとする課題】最近の高炉の操業にお
いては、粒度の異なる鉱石やコークスを分割して炉内に
装入し、炉内半径方向に任意の粒度分布を意識的に作り
出す操業が行われている。しかしながら、前記のように
炉内に装入される前の粒状性物体の粒度を測定する方法
では、装入された粒状性物体が意図した通りの粒度分布
を形成しているか確認できない。
In the recent operation of a blast furnace, there is an operation in which ores and cokes having different particle sizes are divided and charged into the furnace to intentionally create an arbitrary particle size distribution in the radial direction of the furnace. Has been done. However, as described above, the method of measuring the particle size of the granular object before being charged into the furnace cannot confirm whether the charged granular object forms the intended particle size distribution.

【0006】なお、装入後の粒状性物体の表面に対し
て、特開昭62−30938号公報に記載されている画
像処理を適用することも考えられるが、該高炉内は粉塵
が多いため測定不能である。また、特開昭59−837
08号公報に記載されている方法では、落下してくる粒
状性物体が鉱石かコークスかの判定をするだけの粒度精
度しか有せず、前記と同様に装入された粒度の分布を確
認することができない。
It is also possible to apply the image processing described in JP-A-62-30938 to the surface of the granular material after charging, but since the interior of the blast furnace contains much dust. Cannot be measured. Also, JP-A-59-837
According to the method described in Japanese Patent Publication No. 08, the particle size accuracy is sufficient to determine whether the falling granular material is an ore or coke, and the distribution of the charged particle size is confirmed in the same manner as described above. I can't.

【0007】本発明は、前記のような問題点に着目して
なされたもので、粉塵等が多い高炉内における粒状性物
体等の表面粒度を測定可能にすることを目的としてい
る。
The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to measure the surface grain size of a granular material or the like in a blast furnace which contains a lot of dust and the like.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の粒状性物体の粒度測定方法は、粒子が周期
的に配列した物体に粒子の間隔と同程度の波長を有する
電磁波を入射した際に生じる回折現象を利用して粒度を
測定する方法であって、鉱石やコークス等からなる粒状
性物体の表面粒度を測定する方法において、前記粒状性
物体の表面に、該粒状性物体の粒径に近い波長を有する
電磁波を所定の入射角度で入射して、該粒状性物体の表
面から反射した反射波のうち強度が最大となる反射角度
を求めることで粒状性物体の粒度を推定することを特徴
としている。
In order to achieve the above object, the method for measuring the particle size of a granular object of the present invention provides an object in which particles are arranged periodically with an electromagnetic wave having a wavelength similar to the interval between particles. A method for measuring a particle size by utilizing a diffraction phenomenon that occurs when incident, in a method for measuring a surface particle size of a granular object made of ore, coke, etc., the granular object is provided on the surface of the granular object. Estimate the particle size of a granular object by injecting an electromagnetic wave having a wavelength close to the particle size at a predetermined incident angle and finding the reflection angle that maximizes the intensity of the reflected waves reflected from the surface of the granular object. It is characterized by doing.

【0009】また、請求項2記載の粒状性物体の粒度測
定方法は、鉱石やコークス等からなる粒状性物体の表面
粒度を測定する方法において、前記粒状物体の表面に、
該粒状性物体の粒径に近い所定範囲の波長を有する複数
の電磁波を、同一強度で順次、所定の入射角度から入射
し且つ所定の反射角度で反射波を受信し、その所定反射
角度における反射波強度が最大となる前記電磁波の波長
を求めることで表面粒度を推定することを特徴としてい
る。
The particle size measuring method of the granular object according to claim 2 is a method for measuring the surface particle size of a granular object made of ore, coke or the like, wherein the surface of the granular object is
A plurality of electromagnetic waves having a wavelength in a predetermined range close to the particle size of the granular object are sequentially incident at the same intensity from a predetermined incident angle and a reflected wave is received at a predetermined reflection angle, and the reflected wave is reflected at the predetermined reflection angle. The surface grain size is estimated by obtaining the wavelength of the electromagnetic wave having the maximum wave intensity.

【0010】[0010]

【作用】粒子が周期的に配列した物体の表面に、該粒径
に近い波長の電磁波を入射すると、該電磁波は表面にお
いて回折を起こし、反射波強度が最大となる反射角との
間に、次の式が成立する。 sin θ1 − sin θ2 = n・λ/d ここで、θ1は反射角を,θ2は入射角を,dは粒径
(粒子間距離)を,λは電磁波の波長を、nは整数値を
夫々示している。
When an electromagnetic wave having a wavelength close to the particle diameter is incident on the surface of an object in which particles are periodically arranged, the electromagnetic wave causes diffraction on the surface and a reflection angle at which the intensity of the reflected wave is maximum, The following equation holds. sin θ1 − sin θ2 = n · λ / d where θ1 is the reflection angle, θ2 is the incident angle, d is the particle size (distance between particles), λ is the wavelength of the electromagnetic wave, and n is an integer value. Shows.

【0011】本発明の粒度測定方法は、この原理に基づ
き、測定対象の粒状性物体の表面に対して、対象となる
粒状性物体の粒径に近いと思われる波長を有する電磁波
を一定の入射角で入射し、該粒状性物体の表面で反射し
た反射波を受信位置を変更しながら受信することで、反
射波強度が最大となる反射角を求める。そして、上記の
式に代入して、粒径dを求める。
The particle size measuring method of the present invention is based on this principle, and an electromagnetic wave having a wavelength that is considered to be close to the particle size of the target granular object is made incident on the surface of the granular object to be measured. The reflection angle that maximizes the intensity of the reflected wave is obtained by receiving the reflected wave that is incident at an angle and reflected on the surface of the granular object while changing the receiving position. Then, the particle diameter d is obtained by substituting the above equation.

【0012】これを使用して高炉内の装入物の分布状態
を検査するときには、径方向の複数の位置にて前記測定
をすることによって該分布状態が確認できる。また、請
求項2記載の粒度測定方法も前記原理に基づいている。
請求項2記載の粒度測定方法では、電磁波の入射角及び
反射角を一定にして、電磁波の波長を変更しながら該反
射波強度が最高となる電磁波の波長を求め、前記式を適
用することで粒径を求めている。
When the distribution state of the charged material in the blast furnace is inspected using this, the distribution state can be confirmed by performing the above-mentioned measurement at a plurality of positions in the radial direction. The particle size measuring method according to claim 2 is also based on the principle.
In the particle size measuring method according to claim 2, the incident angle and the reflection angle of the electromagnetic wave are kept constant, the wavelength of the electromagnetic wave is changed while the wavelength of the electromagnetic wave is changed, and the wavelength of the electromagnetic wave at which the intensity of the reflected wave is maximum is obtained. Seeking particle size.

【0013】なお、本発明の粒度測定方法は、静止され
ている粒状性物体だけに適用されものではなく、落下中
の粒状性物体の粒度測定に使用されてもよい。また、前
記式における整数値nは複数選択可能であるが、高炉内
に装入される粒状性物体等の粒径は所定範囲におさまる
ため該整数値nは確定可能であり、さらには、前記式か
ら分かるように反射波強度の最大値は周期的にピーク値
として測定可能であるので、反射波強度が最大となる反
射角若しくは波長を2つ求めて、整数値nを確定しても
よい。
The particle size measuring method of the present invention is not only applied to a stationary granular object, but may be used to measure the particle size of a falling granular object. Further, a plurality of integer values n in the above formula can be selected, but since the particle size of the granular material or the like charged in the blast furnace falls within a predetermined range, the integer value n can be determined. As can be seen from the formula, the maximum value of the reflected wave intensity can be periodically measured as a peak value, and thus the integer value n may be determined by obtaining two reflection angles or wavelengths at which the reflected wave intensity is maximum. ..

【0014】[0014]

【実施例】本発明の実施例を図面に基づいて説明する。
本実施例は、高炉内に装入された鉱石やコークスからな
る粒状性物体の表面粒度の測定に、本発明の測定方法を
適用した一例である。まず構成を説明すると、図1に示
すように、高炉1の側壁1aに発信アンテナ用覗き窓2
が設けられ、その窓2の外側に発射軸を高炉1内の粒状
性物体3表面に向けた発信アンテナ4が取り付けられお
り、該発信アンテナ4には、該発射軸を旋回させる旋回
手段4aが設けられ、該旋回手段4aを、発信アンテナ
制御装置5が制御している。
Embodiments of the present invention will be described with reference to the drawings.
The present example is an example in which the measuring method of the present invention is applied to the measurement of the surface grain size of a granular object made of ore or coke charged in a blast furnace. First, the structure will be described. As shown in FIG. 1, a transmitting antenna viewing window 2 is formed on a side wall 1a of a blast furnace 1.
Is provided on the outside of the window 2, and a transmitting antenna 4 whose emission axis is directed to the surface of the granular object 3 in the blast furnace 1 is attached. The transmitting antenna 4 has a rotating means 4a for rotating the emission axis. The turning antenna 4a is provided and is controlled by the transmitting antenna control device 5.

【0015】また、前記発信アンテナは電磁波発生器6
に接続されて、該電磁波発生器6から伝達された電磁波
を粒状性物体3に向けて放射する。また、前記高炉1の
側壁1aには、前記発信アンテナ用覗き窓2と対向する
位置に受信アンテナ用覗き窓7が設けられ、その窓7の
外側に受光軸を高炉1内の粒状性物体3表面に向けた受
信アンテナ8が配設されている。その受信アンテナ8
は、該側壁1aの外方に上下に円弧を描いて設けられた
ガイドレール9に沿って移動可能になっていると共に、
反射波と同軸にするために受信軸を上下に旋回する旋回
手段8aが設けられ、前記移動及び旋回を受信アンテナ
制御装置10によって制御されている。
The transmitting antenna is an electromagnetic wave generator 6
The electromagnetic wave transmitted from the electromagnetic wave generator 6 is radiated toward the granular object 3 by being connected to. Further, a side wall 1a of the blast furnace 1 is provided with a peek window 7 for a receiving antenna at a position facing the peek window 2 for the transmitting antenna, and a light receiving axis is provided outside the window 7 and the granular object 3 in the blast furnace 1 is provided. A receiving antenna 8 facing the surface is provided. Its receiving antenna 8
Is movable along a guide rail 9 which is provided on the outside of the side wall 1a so as to draw a circular arc in the vertical direction.
A turning means 8a for turning the receiving shaft up and down is provided so as to be coaxial with the reflected wave, and the movement and the turning are controlled by the receiving antenna control device 10.

【0016】また、前記受信アンテナ8は信号強度測定
器11に接続されて、受信した反射波を該信号強度測定
器11に供給する。また前記発信アンテナ角度制御装置
5,電磁波発生器6,受信アンテナ制御装置10,及び
信号強度測定器11はマイクロコンピュータを内蔵した
演算手段を有する測定制御装置12に夫々接続され、該
測定制御装置12は図示しない表示手段等に接続されて
いる。
The receiving antenna 8 is connected to the signal strength measuring instrument 11 and supplies the received reflected wave to the signal strength measuring instrument 11. Further, the transmitting antenna angle control device 5, the electromagnetic wave generator 6, the receiving antenna control device 10, and the signal strength measuring device 11 are respectively connected to a measurement control device 12 having a computing means incorporating a microcomputer, and the measurement control device 12 Is connected to a display means (not shown).

【0017】前記高炉1においては、コンベヤによって
搬送されてきた粒状性物体が、高炉1頂部に装着されて
いる図示しない旋回ホッパや旋回シュート等によって、
炉内半径方向に所定の粒度分布を形成するように旋回さ
せて落下させられて、図1に示すように堆積している。
前記のように堆積している粒状性物体3に対して、前記
構成の粒度測定装置では、まず、発信アンテナ制御装置
5を作動して、該発信アンテナ4の発射軸を粒状性物体
3表面の所定の測定点Sに向ける。
In the blast furnace 1, the granular material conveyed by the conveyor is moved by a turning hopper, a turning chute, etc. (not shown) mounted on the top of the blast furnace 1.
It is swirled so as to form a predetermined particle size distribution in the radial direction in the furnace, dropped, and deposited as shown in FIG.
With respect to the particulate matter 3 deposited as described above, in the particle size measuring apparatus having the above-described configuration, first, the transmitting antenna control device 5 is operated so that the emission axis of the transmitting antenna 4 is set to the surface of the granular body 3. Aim at a predetermined measurement point S.

【0018】次に、電磁波発信器6を作動させて、粒状
性物体の粒径に近い波長を有する電磁波であるマイクロ
波を発生させて発信アンテナ4に供給し、該発信アンテ
ナ4から前記測定点Sに向けてマイクロ波を放射させ
る。該測定点Sに入力されたマイクロ波は該測定点Sに
おいて回折を生じ反射波を発生する。
Next, the electromagnetic wave transmitter 6 is operated to generate a microwave which is an electromagnetic wave having a wavelength close to the particle size of the granular object and supplies the microwave to the transmitting antenna 4, and the transmitting antenna 4 measures the measuring point. The microwave is radiated toward S. The microwave input to the measurement point S causes diffraction at the measurement point S to generate a reflected wave.

【0019】このとき、受信アンテナ8は、旋回手段8
aによって常に受光軸を測定点Sに向けたまま、ガイド
レール9に沿って移動しながら、前記反射波を受信し、
その反射波を信号強度測定器11に伝達する。該信号強
度測定器11は、前記伝達された反射波の強度に応じた
強度信号を測定制御装置12に供給する。すると、該測
定制御装置12は、該強度信号が最大となった時点の受
信アンテナ8の位置を受信アンテナ制御装置10を介し
て決定する。
At this time, the receiving antenna 8 is the turning means 8
While the light receiving axis is always directed toward the measurement point S by a, the reflected wave is received while moving along the guide rail 9.
The reflected wave is transmitted to the signal strength measuring device 11. The signal strength measuring device 11 supplies an intensity signal according to the strength of the transmitted reflected wave to the measurement control device 12. Then, the measurement control device 12 determines, via the reception antenna control device 10, the position of the reception antenna 8 when the intensity signal becomes maximum.

【0020】前記測定制御装置12においては、まず、
前記測定点Sにおける粒状性物体3表面の接線の傾きか
ら、前記マイクロ波の入射角αと反射波強度が最大とな
った反射角βを求める。なお、前記測定点Sにおける接
線の傾きは、従来判明されている装入された粒状性物体
表面の曲率と中心からの距離によって決定可能であり、
その値は前もって測定制御手段12の記憶装置に記憶さ
れている。
In the measurement control device 12, first,
From the inclination of the tangent line of the surface of the granular object 3 at the measurement point S, the incident angle α of the microwave and the reflection angle β at which the reflected wave intensity is maximized are obtained. The inclination of the tangent line at the measurement point S can be determined by the curvature of the surface of the inserted granular object that has been known so far and the distance from the center,
The value is stored in advance in the storage device of the measurement control means 12.

【0021】次に、予め判明しているマイクロ波の波長
λと前記求めた入射角α及び反射角βをもとに、次式の
演算を実施する。なお、dは粒径を指す。 d = (sin β −sin α)/n・λ ・・・(A) このとき、上記(A)式において整数値nが決定されて
いないが、高炉内に装入される粒状性物体の粒径は所定
範囲に限られるため、該nに順次整数値を代入していき
粒径dが所定範囲内にある整数値を採用する。もしく
は、測定する反射角の変化に応じて前記反射波強度の最
大値は周期的に出現するため、該反射波強度が最大とな
る反射角を2か所測定して、該整数値nを確定しても構
わない。
Next, the following equation is calculated based on the wavelength λ of the microwave and the incident angle α and the reflection angle β which have been obtained in advance. In addition, d indicates a particle size. d = (sin β −sin α) / n · λ (A) At this time, although the integer value n is not determined in the above formula (A), the grain of the granular material charged into the blast furnace is Since the diameter is limited to a predetermined range, an integer value is sequentially substituted into the n to adopt an integer value in which the particle diameter d is within the predetermined range. Alternatively, since the maximum value of the reflected wave intensity periodically appears in accordance with the change in the measured reflection angle, the reflection angle at which the reflected wave intensity is maximum is measured at two places and the integer value n is determined. It doesn't matter.

【0022】前記のように測定制御装置12が演算を行
うことによって粒径dが求められ、該粒径dに応じた信
号が図示しない表示手段等に供給される。前記のように
して、発信アンテナ4の発信軸及び受信アンテナ8の受
信軸を旋回させて測定点Sを半径方向にずらしながら複
数測定を行うことで、高炉1内に装入された粒状性物体
の実際の粒度分布が測定され、意図した粒度分布が形成
されているか確認可能となる。
As described above, the particle diameter d is obtained by the calculation performed by the measurement control device 12, and a signal corresponding to the particle diameter d is supplied to a display means or the like (not shown). As described above, a plurality of measurements are performed while rotating the transmission axis of the transmission antenna 4 and the reception axis of the reception antenna 8 to shift the measurement point S in the radial direction, so that the granular object loaded in the blast furnace 1 The actual particle size distribution of can be measured and it can be confirmed whether the intended particle size distribution is formed.

【0023】なお、前記実施例においては、受信アンテ
ナ8をガイドレール9に沿って移動させることで受信す
る反射角度を変更しているが、該ガイドレール9に沿っ
て複数の受信アンテナ8を設置して該複数の受信アンテ
ナ8から反射波を入力し、該複数の反射波のうち、強度
が一番強い反射波を入力した受信アンテナ8の設置位置
から反射角度を求めても構わない。
In the above embodiment, the reception angle is changed by moving the reception antenna 8 along the guide rail 9, but a plurality of reception antennas 8 are installed along the guide rail 9. Then, the reflected waves may be input from the plurality of receiving antennas 8 and the reflection angle may be obtained from the installation position of the receiving antenna 8 that receives the reflected wave having the highest intensity among the plurality of reflected waves.

【0024】また、本実施例で使用しているマイクロ波
は、高ダスト雰囲気内であっても、空間を伝搬可能であ
るため、本装置を適用している粉塵が多い高炉内であっ
ても装入されている粒状性物体の表面粒度を測定するこ
とができる。次に、第2実施例を説明する。第2実施例
の測定装置においては、受信アンテナ8を受信アンテナ
用覗き窓7の外側に旋回可能に設置し、該受信アンテナ
8の受信軸を旋回させる旋回手段8aを受信アンテナ制
御装置10によって制御させる。他の構成は第1実施例
と同様である。
Further, since the microwave used in this embodiment can propagate in the space even in a high dust atmosphere, even in a blast furnace with a large amount of dust to which the present apparatus is applied. The surface particle size of the charged granular material can be measured. Next, a second embodiment will be described. In the measuring device of the second embodiment, the receiving antenna 8 is rotatably installed outside the viewing window 7 for the receiving antenna, and the turning means 8a for turning the receiving axis of the receiving antenna 8 is controlled by the receiving antenna control device 10. Let The other structure is similar to that of the first embodiment.

【0025】この粒度測定装置においては、まず、発信
アンテナ制御装置5及び受信アンテナ制御装置10を作
動させて、発信アンテナ4の入射軸と受信アンテナ8の
受信軸とを夫々、粒状性物体3表面の所定の測定点Sに
向けて固定し、入射角αと反射角βを予め確定する。次
に、所定範囲の波長のマイクロ波を順次間欠的に電磁波
発生器6によって発生させて、該マイクロ波を順次、発
信アンテナ4を介して測定点Sに放射し、該測定点Sに
て反射した反射波のうち、反射角βの反射波を順次,受
信アンテナ8で受信される。その反射波は順次信号強度
測定器11に伝達され、該反射波に応じた強度信号が測
定制御装置12に供給される。なお、前記電磁波発生器
6によって発生されるマイクロ波は波長を変更しても一
定の強度になるように制御されている。
In this particle size measuring apparatus, first, the transmitting antenna control device 5 and the receiving antenna control device 10 are operated to make the incident axis of the transmitting antenna 4 and the receiving axis of the receiving antenna 8 respectively, the surface of the granular object 3. The angle of incidence α and the angle of reflection β are fixed in advance while being fixed toward a predetermined measurement point S of. Next, a microwave having a wavelength in a predetermined range is generated intermittently by the electromagnetic wave generator 6, and the microwave is sequentially radiated to the measurement point S via the transmitting antenna 4 and reflected at the measurement point S. Among the reflected waves, the reflected waves having the reflection angle β are sequentially received by the receiving antenna 8. The reflected waves are sequentially transmitted to the signal intensity measuring device 11, and the intensity signal corresponding to the reflected waves is supplied to the measurement control device 12. The microwave generated by the electromagnetic wave generator 6 is controlled to have a constant intensity even if the wavelength is changed.

【0026】測定制御装置12は信号強度測定器11か
ら供給されう強度信号のうち、最大強度となる信号に対
応する、電磁波発生器6によって発生されたマイクロ波
の波長を求め、もって上記(A)式の演算を行い、前記
測定点Sにおける粒状性物体3の粒径を測定する。これ
を、測定点Sを半径方向にずらしながら複数の地点の粒
径を求め、高炉1内に装入された粒状性物体3の実際の
粒度分布が測定され、意図した粒度分布が形成されてい
るか確認できる。
The measurement control device 12 obtains the wavelength of the microwave generated by the electromagnetic wave generator 6 corresponding to the signal having the maximum intensity among the intensity signals supplied from the signal intensity measuring device 11, and the above (A) ) Is calculated, and the particle size of the granular material 3 at the measurement point S is measured. The particle diameters at a plurality of points are obtained by shifting the measurement point S in the radial direction, and the actual particle size distribution of the granular material 3 charged in the blast furnace 1 is measured to form the intended particle size distribution. You can check if

【0027】なお、両実施例において、装入された粒状
性物体の表面粒度を測定するが、炉内を落下中の粒状性
物体の粒径を測定するために使用してもよい。この場合
には、落下速度等の影響による補正を施す。
In both examples, the surface particle size of the charged granular material is measured, but it may be used to measure the particle size of the granular material falling in the furnace. In this case, correction is performed due to the influence of the falling speed and the like.

【0028】[0028]

【発明の効果】以上説明してきたように、本発明の粒状
性物体の粒度測定方法では、粉塵が多い高炉等の高ダス
ト雰囲気内においても、粒状性物体の表面粒度が非接触
式に測定することができる。
As described above, according to the particle size measuring method of the granular object of the present invention, the surface particle size of the granular object is measured in a non-contact manner even in a high dust atmosphere such as a blast furnace with a lot of dust. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる粒度測定装置の第1実施例を示
す概要構成図である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of a particle size measuring apparatus according to the present invention.

【図2】本発明に係わる粒度測定装置の第2実施例を示
す概要構成図である。
FIG. 2 is a schematic configuration diagram showing a second embodiment of the particle size measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1 高炉 3 粒状性物体 4 発信アンテナ 6 電磁波発生器 8 受信アンテナ 11 信号強度測定器 1 Blast Furnace 3 Granular Object 4 Transmitting Antenna 6 Electromagnetic Wave Generator 8 Receiving Antenna 11 Signal Strength Measuring Instrument

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉱石やコークス等からなる粒状性物体の
表面粒度を測定する方法において、前記粒状性物体の表
面に、該粒状性物体の粒径に近い波長を有する電磁波を
所定の入射角度で入射して、該粒状性物体の表面から反
射した反射波のうち強度が最大となる反射角度を求める
ことで粒状性物体の粒度を推定することを特徴とする粒
状性物体の粒度測定方法。
1. A method for measuring the surface particle size of a granular object made of ore, coke or the like, wherein an electromagnetic wave having a wavelength close to the particle size of the granular object is incident on the surface of the granular object at a predetermined incident angle. A particle size measuring method for a granular object, comprising estimating a particle size of the granular object by obtaining a reflection angle having a maximum intensity of a reflected wave which is incident and reflected from the surface of the granular object.
【請求項2】 鉱石やコークス等からなる粒状性物体の
表面粒度を測定する方法において、前記粒状物体の表面
に、該粒状性物体の粒径に近い所定範囲の波長を有する
複数の電磁波を、同一強度で順次、所定の入射角度から
入射し、且つ所定の反射角度で反射波を受信して、その
所定反射角度における反射波強度が最大となる前記電磁
波の波長を求めることで表面粒度を推定することを特徴
とする粒状物体の粒度測定方法。
2. A method for measuring the surface particle size of a granular object made of ore, coke or the like, wherein a plurality of electromagnetic waves having a wavelength in a predetermined range close to the particle size of the granular object are provided on the surface of the granular object. Estimate the surface grain size by sequentially injecting at the same intensity from a predetermined incident angle, receiving a reflected wave at a predetermined reflection angle, and obtaining the wavelength of the electromagnetic wave that maximizes the intensity of the reflected wave at the predetermined reflection angle. A method for measuring the particle size of a granular object, comprising:
JP20946191A 1991-08-21 1991-08-21 Grain-size measuring method for granular substance Pending JPH0552737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20946191A JPH0552737A (en) 1991-08-21 1991-08-21 Grain-size measuring method for granular substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20946191A JPH0552737A (en) 1991-08-21 1991-08-21 Grain-size measuring method for granular substance

Publications (1)

Publication Number Publication Date
JPH0552737A true JPH0552737A (en) 1993-03-02

Family

ID=16573259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20946191A Pending JPH0552737A (en) 1991-08-21 1991-08-21 Grain-size measuring method for granular substance

Country Status (1)

Country Link
JP (1) JPH0552737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802482B2 (en) 2005-08-10 2010-09-28 Horiba Stec Co., Ltd. Diaphragm attaching structure of electrostatic capacity type pressure gauge
JP2011021915A (en) * 2009-07-13 2011-02-03 Nippon Steel Corp Grain size measurement system, method, and program for coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802482B2 (en) 2005-08-10 2010-09-28 Horiba Stec Co., Ltd. Diaphragm attaching structure of electrostatic capacity type pressure gauge
JP2011021915A (en) * 2009-07-13 2011-02-03 Nippon Steel Corp Grain size measurement system, method, and program for coal

Similar Documents

Publication Publication Date Title
JP5412947B2 (en) Apparatus and method for measuring profile of blast furnace interior
KR101740874B1 (en) Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace
JP6669907B2 (en) Coking furnace coal level measurement method
JP5787607B2 (en) Profile measuring device for blast furnace interior
JP5674542B2 (en) Profile measurement method for blast furnace interior
JP5220690B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP5441730B2 (en) Profile measuring device for blast furnace interior
JP6932368B2 (en) Coal charge level measuring device
JPH0552737A (en) Grain-size measuring method for granular substance
EP0198670A2 (en) Measurement of sizes of particles in falling state
JP3855639B2 (en) Profile measurement method of blast furnace interior entrance surface
JP6033690B2 (en) Profile measuring device for blast furnace interior
JPH03144391A (en) Remote measuring apparatus and method for distance and application thereof for radar probe determining topography of load surface of blast furnace
JP6147602B2 (en) Profile measurement method for blast furnace interior
JP2014219299A (en) Method of processing profile measurement data on charge in blast furnace
JP2005233783A (en) Position telemetering method using electromagnetic-wave radar
WO2024063081A1 (en) Water content measurement method, water content measurement device, and manufacturing method for coke
JPS6055252A (en) Detection of boundary and grain size of material charged in blast furnace
JP7315213B2 (en) object detector
JPH055299B2 (en)
JP5509944B2 (en) Surface condition measuring apparatus and method for measuring surface condition of granular deposit
JPS6236082Y2 (en)
Mitra et al. Measuring coal levels using radar
JP5482369B2 (en) Gas flow velocity measuring method and gas flow velocity measuring device
JP3755349B2 (en) Radar equipment