JPH0552433A - Device for controlling air conditioner - Google Patents

Device for controlling air conditioner

Info

Publication number
JPH0552433A
JPH0552433A JP3210775A JP21077591A JPH0552433A JP H0552433 A JPH0552433 A JP H0552433A JP 3210775 A JP3210775 A JP 3210775A JP 21077591 A JP21077591 A JP 21077591A JP H0552433 A JPH0552433 A JP H0552433A
Authority
JP
Japan
Prior art keywords
temperature
fuzzy
heat exchanger
compressor
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3210775A
Other languages
Japanese (ja)
Inventor
Yoichi Sugawara
陽一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP3210775A priority Critical patent/JPH0552433A/en
Publication of JPH0552433A publication Critical patent/JPH0552433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make the heating capacity of an air conditioner effective even when overload protection is at work by a method wherein the temperature of the indoor heat exchanger is detected during heating operation, and the rate of change of data on temperature and the deviation between the data on temperature and the temperature during overload are obtained, and the operational frequency of the compressor is controlled by fuzzy logical operation. CONSTITUTION:In a microcomputer 1 for the control a memory 2 for temporarily storing the temperature of an indoor heat exchanger which a heat-exchanger sensor detects is provided, and by comparing the temperature thus obtained with the previously detected temperature stored in the memory 2, a calculating circuit 3 for the rate of change DELTATh calculates the rate of change DELTATh. Furthermore, a calculating circuit 4 for a deviation DELTAT which calculates the difference between the temperature of the indoor heat exchanger and the temperature of the indoor heat exchanger during overloaded operation of the compressor is provided. A converter 6 to membership function reduces rules of the fuzzy control to a membership function; a fuzzy controller 5 has this membership function, and a deviation DELTAT and a rate of change DELTATh both obtained by calculation are inputted to the fuzzy controller 5; on the basis thereof the operational frequency of the compressor 8 is controlled by fuzzy operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機の制御装置
に関し、詳しくは暖房運転時の過負荷保護運転の制御装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an air conditioner, and more particularly to a control device for overload protection operation during heating operation.

【0002】[0002]

【従来の技術】従来、暖房運転時に圧縮機が運転し室内
側圧力が上昇し、一定限度を超えると圧縮機を損傷する
ため、室内側圧力を検出する代わりに室内側熱交換器の
温度を温度センサ(以下熱交センサとする)により検出
し、熱交センサの検出した温度が一定値に達すると、圧
縮機の運転周波数を下げ、一定間隔で熱交センサにより
室内側熱交換器の温度を検出し、解除温度に低下するま
で段階的に運転周波数を下げることにより圧縮機の過負
荷保護を行い、解除温度まで低下しない場合には圧縮機
を停止するようにしている。従って、過負荷保護状態に
入って運転周波数を下げても熱交センサの温度が下らな
い場合には圧縮機を停止させるため、随時に暖房能力を
発揮することができず、また暖房運転中に室内空調負荷
の変動に対応して圧縮機の運転周波数を上げ、結果とし
て室内側圧力が急激に上昇する場合には、室内側圧力が
安定し熱交センサの温度が一定温度に達するまで過負荷
保護状態に入らず、過負荷保護の対応がおくれて圧縮機
の損傷につながる場合も生じている。
2. Description of the Related Art Conventionally, when the compressor operates during heating operation and the indoor pressure rises, and exceeds a certain limit, the compressor is damaged. Therefore, instead of detecting the indoor pressure, the temperature of the indoor heat exchanger is changed. When the temperature detected by a temperature sensor (hereinafter referred to as heat exchange sensor) reaches a certain value, the operating frequency of the compressor is lowered and the temperature of the indoor heat exchanger is changed by the heat exchange sensor at regular intervals. Is detected and the operating frequency is gradually reduced until the release temperature is reached to protect the compressor from overload. When the release temperature is not reached, the compressor is stopped. Therefore, if the temperature of the heat exchange sensor does not drop even if the operating frequency is lowered after entering the overload protection state, the compressor is stopped, so that the heating capacity cannot be exerted at any time, and the room cannot be heated during the heating operation. When the operating frequency of the compressor is increased in response to changes in the air conditioning load and the indoor pressure rises rapidly as a result, overload protection is provided until the indoor pressure stabilizes and the heat exchanger sensor temperature reaches a certain temperature. There are cases in which the compressor cannot be put into a state and the overload protection is delayed, resulting in damage to the compressor.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来の
問題点に鑑みなされたもので、暖房運転中に室内空調負
荷の変動により室内側圧力が急激に上昇する場合にも、
熱交センサの検出した温度に応じて過負荷保護状態に入
り、過負荷保護状態においても随時に暖房能力を発揮す
ることができる空気調和機の制御装置を提供しようとす
ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. Even when the indoor pressure suddenly rises due to fluctuations in the indoor air conditioning load during heating operation,
It is an object of the present invention to provide an air conditioner control device that enters an overload protection state according to the temperature detected by a heat exchange sensor and can exhibit heating capacity at any time even in the overload protection state.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、暖房運転時に室内側熱交換器の温度を一定時間間隔
で検出する温度検出手段と、検出した温度データを一時
記憶する記憶手段と、検出した温度データの変化率を求
める演算手段と、検出した温度データと過負荷時温度と
の偏差を求める演算手段とを備え、前記二つの演算手段
の出力を入力とするファジィ論理演算により圧縮機の運
転周波数を制御するようにした。
To achieve the above object, temperature detecting means for detecting the temperature of the indoor heat exchanger at a constant time interval during heating operation, and storage means for temporarily storing the detected temperature data. Comprising an arithmetic means for obtaining the rate of change of the detected temperature data and an arithmetic means for obtaining the deviation between the detected temperature data and the overload temperature, and compressing by fuzzy logic operation using the outputs of the two arithmetic means as inputs. The operating frequency of the machine was controlled.

【0005】[0005]

【作用】上記の構成によれば、室内側圧力を検出する代
わりに室内側熱交換器の温度を熱交センサにより一定時
間毎に検出し、熱交センサ温度とその時間的変化の割合
を求め、過負荷温度と熱交センサ温度との差と熱交セン
サ温度の時間的変化の割合を制御部に設けたファジィ論
理回路に送り、ファジィ論理演算により圧縮機の運転周
波数を制御するようにしている。
According to the above construction, instead of detecting the indoor pressure, the temperature of the indoor heat exchanger is detected by the heat exchange sensor at regular intervals, and the heat exchange sensor temperature and the rate of change over time are obtained. The difference between the overload temperature and the heat exchange sensor temperature and the rate of temporal change of the heat exchange sensor temperature are sent to a fuzzy logic circuit provided in the control unit, and the operating frequency of the compressor is controlled by fuzzy logic operation. There is.

【0006】[0006]

【実施例】本発明の実施例を添付図面を参照して詳細に
説明する。図1は本発明の制御装置の構成を示すブロッ
ク図で、制御用マイコン1には熱交センサにより定期的
に検出された室内側熱交換器の温度を一時記憶するメモ
リ2と、メモリ2に記憶された前回の検出温度と比較し
変化率ΔTh を計算する変化率ΔTh 計算回路3と、検
出された室内側熱交換器の温度と圧縮機の過負荷時の室
内側熱交換器の温度とからその差を計算する偏差ΔT計
算回路4が設けられ、制御用マイコン1により偏差ΔT
と変化率ΔTh が求められ、ファジィコントローラ5が
駆動され、ファジィコントローラ5には予じめ設定され
たファジィ制御ルールが、メンバーシップ関数変換器6
によりメンバーシップ関数化されており、求められた偏
差ΔTと変化率ΔTh が入力され、ファジィ演算により
運転周波数の変数として出力し、周波数変換回路7によ
り圧縮機8の運転周波数を制御するようにしている。
Embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing a configuration of a control device of the present invention. In a control microcomputer 1, a memory 2 for temporarily storing the temperature of an indoor heat exchanger periodically detected by a heat exchange sensor, and a memory 2 are provided. The change rate ΔTh calculation circuit 3 for calculating the change rate ΔTh by comparing with the stored previously detected temperature, the detected temperature of the indoor heat exchanger and the temperature of the indoor heat exchanger when the compressor is overloaded. A deviation ΔT calculation circuit 4 for calculating the difference is provided, and the deviation ΔT is calculated by the control microcomputer 1.
And the rate of change ΔTh are obtained, the fuzzy controller 5 is driven, and the fuzzy control rule set in advance is set in the fuzzy controller 5 by the membership function converter 6
The calculated deviation ΔT and rate of change ΔTh are input as a membership function, which is output as a variable of the operating frequency by fuzzy calculation, and the operating frequency of the compressor 8 is controlled by the frequency conversion circuit 7. There is.

【0007】以下、図2の要部制御ブロック図により、
ファジィコントローラ5の動作について説明する。ファ
ジィコントローラ5には、予じめ図3に示すように、熱
交換器温度の変化率ΔTh 、過負荷時の熱交換器温度と
検出した熱交換器温度との偏差ΔT、運転周波数の変動
値Δfのメンバーシップ関数が設定され、夫々NB(負
方向に大きく)からPB(正方向に大きく)まで5つの
ファジィ変数が定義されている。図4に示すようにファ
ジィ制御ルールの組合わせはファジィ推論により2次元
のマトリックスを形成する。ファジィ制御ルールは、例
えばΔTが負方向に大きく(NB)、ΔThが変化ない(Z
O)の場合は運転周波数Fを正方向に少し高くする(P
S)等の人間の経験や勘による制御ルールを以下の例に
示すように言語的に表現している。 If ΔT=NB and ΔTh=Z0 then F=PS 図4には、出力Fに影響するファジィ制御ルールの一部
を列挙している。制御用マイコン1のメモリ2に記憶さ
れたt秒前の熱交温度データTh1と検出した熱交温度デ
ータTh2を比較して変化率ΔTh を求め、図3に示すΔ
Th のメンバーシップ関数により変化率ΔTh のグレー
ドを算出する。さらに、予じめ制御用マイコン1に入力
された圧縮機8の過負荷状態時の熱交換器温度データと
検出した熱交換器温度データを比較して偏差ΔTを求
め、図3に示すΔTのメンバーシップ関数により偏差Δ
Tのグレードを算出する。算出された変化率ΔTh のグ
レードと、偏差ΔTのグレードにより、図4に示すファ
ジィ制御ルールに従い、図3に示すΔfのメンバーシッ
プ関数により運転周波数変化のグレード最小値Δfを求
め、これらグレードの最小値の和集合を求め、さらに和
集合の重心を求め、実際に調整する運転周波数変化を求
めている。
Below, according to the main control block diagram of FIG.
The operation of the fuzzy controller 5 will be described. As shown in FIG. 3, the fuzzy controller 5 has a change rate ΔTh of the heat exchanger temperature, a deviation ΔT between the heat exchanger temperature at the time of overload and the detected heat exchanger temperature, and a fluctuation value of the operating frequency. A membership function of Δf is set, and five fuzzy variables are defined from NB (large in the negative direction) to PB (large in the positive direction). As shown in FIG. 4, the combination of fuzzy control rules forms a two-dimensional matrix by fuzzy reasoning. The fuzzy control rule is, for example, that ΔT is large in the negative direction (NB) and ΔTh does not change (Z
In case of (O), the operating frequency F is slightly increased in the positive direction (P
Control rules based on human experience and intuition such as S) are expressed linguistically as shown in the following example. If ΔT = NB and ΔTh = Z0 then F = PS FIG. 4 lists some of the fuzzy control rules that affect the output F. The change rate ΔTh is calculated by comparing the heat exchange temperature data Th1 stored t seconds before and the detected heat exchange temperature data Th2 stored in the memory 2 of the control microcomputer 1, and the change rate ΔTh shown in FIG.
The grade of change rate ΔTh is calculated by the membership function of Th. Further, the deviation ΔT is obtained by comparing the heat exchanger temperature data input to the pre-control microcomputer 1 when the compressor 8 is in the overload state with the detected heat exchanger temperature data, and the deviation ΔT shown in FIG. Deviation Δ due to membership function
Calculate the grade of T. Based on the calculated grade of the change rate ΔTh and the grade of the deviation ΔT, the grade minimum value Δf of the operating frequency change is obtained by the membership function of Δf shown in FIG. 3 according to the fuzzy control rule shown in FIG. 4, and the minimum of these grades is obtained. The union of the values is calculated, the center of gravity of the union is calculated, and the change in the operating frequency to be actually adjusted is calculated.

【0008】以下、データから適合する各ファジィ制御
ルールについて推論結果を求めたものが図5および図6
で、前件部の各変数と入力値のMin(共通集合)をと
ることにより前件部の適合度を求め、後件部変数と前件
部の適合度のMin(共通集合)を取ったものを、推論
結果として斜線部分で表示している。これら推論結果の
和集合(Max)を求めたものが図7に示され、この図
形の重心に対応する値Fxが求めるトータルの推論結果
である。
Below, the inference results obtained for each of the fuzzy control rules that match the data are shown in FIGS. 5 and 6.
Then, the suitability of the antecedent part is obtained by taking the Min (common set) of each variable of the antecedent part and the input value, and the min (common set) of the consequent part variable and the suitability of the antecedent part is taken. The thing is displayed in the shaded area as the inference result. FIG. 7 shows the sum of these inference results (Max), which is the total inference result of the value Fx corresponding to the center of gravity of this figure.

【0009】図8は本発明の詳細を示すフローチャート
で、暖房運転を開始し、一定時間経過した後(21)、熱
交センサにより室内側熱交換器の温度を検出し制御用マ
イコン1のメモリ2にTh1として一時記憶し(22)、同
時に制御用マイコン1に内蔵するタイマをt秒にセット
してタイマをスタートし(23)、t秒経過後に(24)、
再度熱交センサにより熱交温度を測定してTh2とし(2
5)、制御用マイコン1によりその変化率ΔTh と予じ
め測定した過負荷時の熱交温度との差ΔTを求め(2
6)、ΔTh とΔTをファジィコントローラ5に入力し
(27)、ファジィ演算結果により運転周波数変化Δfを
求め圧縮機の周波数運転制御を行い(28)、第2の熱交
温度Th2を制御用マイコン1のメモリ2に記憶すること
により、メモリ2の内容を更新し(29)、この操作を繰
り返すことにより暖房運転の効率を向上することができ
る。この例では専用のファジィコントローラ5を使用し
ているが、汎用のマイクロコンピュータやデジタルプロ
セッサによっても、同様な結果を求めることができる。
FIG. 8 is a flow chart showing the details of the present invention. After the heating operation is started and a certain time has passed (21), the temperature of the indoor heat exchanger is detected by the heat exchange sensor and the memory of the control microcomputer 1 is detected. 2 is temporarily stored as Th1 (22), at the same time, the timer built into the control microcomputer 1 is set to t seconds to start the timer (23), and after t seconds have elapsed (24),
The heat exchange temperature is measured again by the heat exchange sensor and set to Th2 (2
5) Find the difference ΔT between the rate of change ΔTh and the preliminarily measured heat exchange temperature during overload by the control microcomputer 1 (2
6) Input ΔTh and ΔT to the fuzzy controller 5 (27), calculate the operating frequency change Δf based on the fuzzy calculation result and control the frequency operation of the compressor (28), and set the second heat exchange temperature Th2 to the control microcomputer. The content of the memory 2 can be updated by storing it in the first memory 2 (29), and the efficiency of the heating operation can be improved by repeating this operation. In this example, the dedicated fuzzy controller 5 is used, but a similar result can be obtained by a general-purpose microcomputer or digital processor.

【0010】[0010]

【発明の効果】以上のように本発明においては、暖房運
転時に室内側熱交換器の温度を一定時間毎に検出し、検
出した温度データの変化率と検出した温度データと過負
荷時温度との偏差を求め、ファジィ論理演算により圧縮
機の運転周波数を制御することにより、圧縮機の過負荷
温度付近においても圧縮機の運転を停止することなく操
作することができ、暖房運転の効率を向上することがで
きる。
As described above, in the present invention, the temperature of the indoor heat exchanger is detected at regular intervals during the heating operation, and the change rate of the detected temperature data, the detected temperature data, and the overload temperature are detected. By calculating the deviation and controlling the operating frequency of the compressor by fuzzy logic operation, it is possible to operate even near the compressor overload temperature without stopping the operation and improve the heating operation efficiency. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の制御装置の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing a configuration of a control device of the present invention.

【図2】要部制御ブロック図である。FIG. 2 is a main-part control block diagram.

【図3】メンバーシップ関数を示す図である。FIG. 3 is a diagram showing a membership function.

【図4】制御ルールを示す図である。FIG. 4 is a diagram showing a control rule.

【図5】各ファジィルールについて推論結果を求めた図
である。
FIG. 5 is a diagram in which an inference result is obtained for each fuzzy rule.

【図6】同様にファジィルールについて推論結果を求め
た図である。
FIG. 6 is a diagram similarly showing an inference result for a fuzzy rule.

【図7】これらの推論結果の和集合(Max)を求めた
図である。
FIG. 7 is a diagram for obtaining the union (Max) of these inference results.

【図8】本発明のフローチャートである。FIG. 8 is a flowchart of the present invention.

【符号の説明】[Explanation of symbols]

1 制御用マイコン 2 メモリ 3 変化率ΔTh 計算回路 4 偏差ΔT計算回路 5 ファジィコントローラ 6 メンバーシップ関数変換器 7 周波数変換回路 8 圧縮機 1 Control Microcomputer 2 Memory 3 Change Rate ΔTh Calculation Circuit 4 Deviation ΔT Calculation Circuit 5 Fuzzy Controller 6 Membership Function Converter 7 Frequency Conversion Circuit 8 Compressor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 暖房運転時に室内側熱交換器の温度を一
定時間間隔で検出する温度検出手段と、検出した温度デ
ータを一時記憶する記憶手段と、検出した温度データの
変化率を求める演算手段と、検出した温度データと過負
荷時温度との偏差を求める演算手段とを備え、前記二つ
の演算手段の出力を入力とするファジィ論理演算により
圧縮機の運転周波数を制御するようにしてなることを特
徴とする空気調和機の制御装置。
1. A temperature detecting means for detecting the temperature of the indoor heat exchanger at a constant time interval during heating operation, a storage means for temporarily storing the detected temperature data, and a calculating means for obtaining a change rate of the detected temperature data. And a calculating means for obtaining a deviation between the detected temperature data and the temperature at the time of overload, and the operating frequency of the compressor is controlled by a fuzzy logic operation using the outputs of the two calculating means as inputs. A control device for an air conditioner.
JP3210775A 1991-08-22 1991-08-22 Device for controlling air conditioner Pending JPH0552433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210775A JPH0552433A (en) 1991-08-22 1991-08-22 Device for controlling air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210775A JPH0552433A (en) 1991-08-22 1991-08-22 Device for controlling air conditioner

Publications (1)

Publication Number Publication Date
JPH0552433A true JPH0552433A (en) 1993-03-02

Family

ID=16594940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210775A Pending JPH0552433A (en) 1991-08-22 1991-08-22 Device for controlling air conditioner

Country Status (1)

Country Link
JP (1) JPH0552433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669225A (en) * 1996-06-27 1997-09-23 York International Corporation Variable speed control of a centrifugal chiller using fuzzy logic
US6202431B1 (en) 1999-01-15 2001-03-20 York International Corporation Adaptive hot gas bypass control for centrifugal chillers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669225A (en) * 1996-06-27 1997-09-23 York International Corporation Variable speed control of a centrifugal chiller using fuzzy logic
US6202431B1 (en) 1999-01-15 2001-03-20 York International Corporation Adaptive hot gas bypass control for centrifugal chillers
US6427464B1 (en) 1999-01-15 2002-08-06 York International Corporation Hot gas bypass control for centrifugal chillers
US6691525B2 (en) 1999-01-15 2004-02-17 York International Corporation Hot gas bypass control for centrifugal chillers

Similar Documents

Publication Publication Date Title
WO2016140842A1 (en) Temperature control device
JPH11215700A (en) Demand control method and device thereof
KR910004393B1 (en) Frequency control apparatus of a multi-refregeration cycle system
JP3657896B2 (en) Demand control method and demand control apparatus
JPH0552433A (en) Device for controlling air conditioner
JPH06185787A (en) Controlling method of air conditioner
JP2936145B2 (en) Control device
US6241155B1 (en) Automatic adjusting control system for air-conditioner
JPS623178A (en) Air conditioner
CN115992988B (en) Exhaust control method, device, equipment and medium of portable air conditioner compressor
JPH062933A (en) Controller for air conditioner
EP3745036A1 (en) System and method for building climate control
JPH06159773A (en) Controller for air conditioner
JPH0415445A (en) Method of controlling multi-room type air conditioner
JPS644029Y2 (en)
JPH0791694A (en) Air supplying or air discharging device
JPS5844170B2 (en) temperature control device
JP2713657B2 (en) Control method of multi-room air conditioner
JPH07234001A (en) Method and apparatus for controlling air conditioner
JP2506376Y2 (en) Air conditioner
JPS6073232A (en) Demand of refrigerating and air-conditioning machine
JPH05203219A (en) Control device for air conditioner
JPH04144A (en) Control of air conditioner
JP2517444B2 (en) Absorption chiller control method and absorption chiller control device
JPH04350438A (en) Controller for air conditioner