JPH0551293B2 - - Google Patents

Info

Publication number
JPH0551293B2
JPH0551293B2 JP63278974A JP27897488A JPH0551293B2 JP H0551293 B2 JPH0551293 B2 JP H0551293B2 JP 63278974 A JP63278974 A JP 63278974A JP 27897488 A JP27897488 A JP 27897488A JP H0551293 B2 JPH0551293 B2 JP H0551293B2
Authority
JP
Japan
Prior art keywords
sensor
movement member
jaw
movement
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63278974A
Other languages
Japanese (ja)
Other versions
JPH021241A (en
Inventor
Eiichi Bando
Tetsuya Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63278974A priority Critical patent/JPH021241A/en
Publication of JPH021241A publication Critical patent/JPH021241A/en
Publication of JPH0551293B2 publication Critical patent/JPH0551293B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、顎の動きを測定する装置に関し、特
に、上下の顎の動きを高精度に測定できる装置に
関する。
TECHNICAL FIELD The present invention relates to a device for measuring jaw movement, and particularly to a device that can measure upper and lower jaw movement with high precision.

【従来の技術】[Conventional technology]

下顎に光源を装着し、光源の動きを光センサー
で受光して、下顎の動きを測定する装置は提案さ
れている(特開昭53−89296号公報)。 この装置は、下顎歯茎に、前方に向けて光を発
する光源を装着し、光源の前方に、レンズを介し
て光センサーを配設し、光センサーからの信号を
増幅してXYレコーダとデータレコーダに記録し
ている。 更に別の顎運動測定装置として、下顎の動き
を、顎の前方に取り付けた3個のポテンシオメー
タで検出する装置も提案されている(実開昭54−
34290号公報)。 この装置は、患者の頭部にフレームを固定し、
3個のポテンシオメータでもつて下顎の前後、左
右、上下の運動を検出している。
A device has been proposed that measures the movement of the lower jaw by attaching a light source to the lower jaw and detecting the movement of the light source with an optical sensor (Japanese Patent Laid-Open Publication No. 89296/1989). This device attaches a light source that emits light forward to the mandibular gums, places a light sensor in front of the light source through a lens, and amplifies the signal from the light sensor to generate an XY recorder and a data recorder. It is recorded in Another jaw movement measuring device has been proposed that detects the movement of the mandible using three potentiometers attached to the front of the jaw (Utility Model 1989-1999).
Publication No. 34290). This device secures a frame to the patient's head and
Three potentiometers detect the movement of the lower jaw back and forth, left and right, and up and down.

【従来技術の問題点】[Problems with conventional technology]

下顎歯茎に光源を固定した装置は、光の受光位
置に無数のCCDやフオトトランジスタ等の受光
センサーを配設し、この受光センサーで受光位置
を検出している。下顎が上下左右に運動すると、
光源がこれと一緒に運動して、光の照射方向が変
化する。光を受光センサーで受けて、顎の運動を
測定している。この装置は、下顎が運動すると光
の照射方向が大幅に変化する。従つて、原理的
に、CCD等の受光センサーの数が著しく増加し、
または、大きなレンズを必要として高価になる欠
点がある。 又、光を前に照射して、前方に設けられた受光
センサーで検出する装置は、顎が運動すると光の
照射位置と照射方向の両方が変わる為、受光セン
サーの出力信号で顎の動きを特定する演算処理が
難しく、演算処理回路も複雑になる欠点があつ
た。 又、光で下顎の動きを測定する従来の装置は、
頭を下顎と一緒に動かすと、頭の動きが下顎の動
きとして検出され、顎の動きと頭の動きとを判別
できない。この為、測定中に患者が頭を動かすと
誤差の原因となるので、頭を固定して顎を運動す
る必要がある。ところが、顎をいつぱいに下げて
口を大きく開いた状態は、頭を少し上向きに動か
さなければ、最大限に顎を下げで、口をいつぱい
に開くことができない。この為、測定中に、患者
の頭が動いて測定誤差を起こし易く、高精度の測
定ができ難い欠点があつた。 更に、ポテンシオメータを使用する下顎運動測
定装置は、顎の上下、前後、左右の動きを、前方
に配設されたポテンシオメータに伝達するので、
下顎と上顎との相対運動距離に対するポテンシオ
メータの移動範囲が大きく、測定範囲が広いセン
サーを使用する必要があつた。 本発明は、従来のこれ等の欠点を除去すること
を目的に開発されたもので、本発明の重要な目的
は、上顎と下顎に装着して、それぞれの相対運動
を測定する為、測定中に頭が動いても測定誤差の
原因とならず簡単かつ容易に、しかも正確に顎の
動きが測定できる顎運動の測定装置を提供するこ
とにある。 また、本発明の他の重要な目的は、測定装置は
顎を軽く運動でき、顎の動きが高精度に測定でき
る顎運動の測定装置を提供することにある。
The device, which has a light source fixed to the mandibular gums, has numerous light receiving sensors such as CCDs and phototransistors placed at the light receiving position, and these light receiving sensors detect the light receiving position. When the lower jaw moves up and down and left and right,
The light source moves along with this, changing the direction of light irradiation. The movement of the jaw is measured by receiving light with a light-receiving sensor. With this device, the direction of light irradiation changes significantly when the lower jaw moves. Therefore, in principle, the number of light-receiving sensors such as CCDs will increase significantly,
Another drawback is that it requires a large lens and is expensive. In addition, devices that emit light forward and detect it with a light receiving sensor installed in the front change both the irradiation position and direction of the light when the jaw moves, so the movement of the jaw can be detected using the output signal of the light receiving sensor. This has the disadvantage that the arithmetic processing for specifying is difficult and the arithmetic processing circuitry is also complicated. In addition, conventional devices that measure mandibular movement using light,
When the head moves together with the lower jaw, the head movement is detected as lower jaw movement, making it impossible to distinguish between jaw movement and head movement. For this reason, if the patient moves his or her head during measurement, it may cause errors, so it is necessary to keep the head fixed and move the jaw. However, if you have to lower your jaw and open your mouth as wide as possible, you will not be able to lower your jaw and open your mouth as wide as possible unless you move your head slightly upwards. For this reason, the patient's head moves during measurement, which tends to cause measurement errors, making it difficult to perform highly accurate measurements. Furthermore, the mandibular movement measurement device using a potentiometer transmits the vertical, longitudinal, and horizontal movements of the jaw to the potentiometer placed in front of it.
The potentiometer has a large movement range with respect to the relative movement distance between the lower jaw and the upper jaw, so it was necessary to use a sensor with a wide measurement range. The present invention was developed with the aim of eliminating these conventional drawbacks, and an important purpose of the present invention is to attach the device to the upper and lower jaws to measure their relative movements. To provide a jaw movement measuring device which can easily and accurately measure jaw movements without causing measurement errors even when the head moves. Another important object of the present invention is to provide a jaw movement measuring device that allows the measuring device to move the jaw lightly and to measure jaw movement with high precision.

【従来の問題点を解決する為の手段】[Means to solve conventional problems]

顎運動の測定装置は、上顎と下顎に別々に装着
される上顎運動部材1と、下顎運動部材2と、こ
れ等の上顎運動部材1、下顎運動部材2の相対的
な変位を検出するセンサー3とからなる。 上顎運動部材1と下顎運動部材2とは、人体に
装着した状態で両端が後方に折曲されている。上
顎運動部材1と下顎運動部材2は、後方の折曲端
に、上顎運動部材1と下顎運動部材2の相対位置
を電気的に検出するセンサー3が配設されてい
る。
The jaw movement measuring device includes an maxillary movement member 1 and a mandibular movement member 2 that are separately attached to the upper and lower jaws, and a sensor 3 that detects relative displacement between the maxillary movement member 1 and the mandibular movement member 2. It consists of Both ends of the upper jaw movement member 1 and the lower jaw movement member 2 are bent rearward when worn on the human body. A sensor 3 for electrically detecting the relative position of the upper jaw moving member 1 and the lower jaw moving member 2 is disposed at the rear bent ends of the upper jaw moving member 1 and the lower jaw moving member 2.

【作用、効果】[Action, effect]

本発明の好ましい実施例を示す第1図の顎運動
の測定装置は、上顎と下顎とが相対運動すると、
これに取り付けられている上顎運動部材1と、下
顎運動部材2とが相対運動する。上顎運動部材1
と下顎運動部材2との相対運動は、上顎運動部材
と下顎運動部材とに配設されているセンサー3で
検出される。 上顎運動部材と下顎運動部材とは、これを人体
に装着した状態で両端が後方に折曲されている。
両端が後方に折曲された上顎運動部材と下顎運動
部材は、両端を下顎近傍の両側に位置させること
ができる。下顎は、付根部を中心に運動してい
る。言い替えれば、下顎を開く時、下顎は後端の
付根部を中心に回動する。従つて、下顎は、付根
部の変位が最も少ない。この発明の上顎運動部材
と下顎運動部材とは、両端が後方に折曲されて、
折曲端にセンサーが配設されているので、センサ
ーを顎付根部の近傍に配設できる。従つて、セン
サーは少ない変位を測定して下顎と上顎との相対
移動を検出できる。この為、センサーに測定幅が
少ないものを使用して、上顎と下顎の運動を正確
に検出でき、安価なセンサーで高精度な測定が実
現できる。 また、センサーは、上顎運動部材と下顎運動部
材との両端に配設されて両者の相対的な変位を測
定している。この為、下顎を運動するときに上顎
が動いてもこのことが誤差の原因とならない。従
つて、簡単かつ正確に、下顎と上顎との相対運動
を測定することができる。 更にまた、センサーが変位量の少ない箇所に配
設されているので、下顎が上顎に対して相対運動
した時に、センサー取付部分の上顎運動部材と下
顎運動部材とは強い力で運動される。言い替えれ
ば、テコの原理で力が増幅されたような状態で、
上顎運動部材と下顎運動部材のセンサー取付部分
が運動される。この為、上顎運動部材と下顎運動
部材とに軽くて細い部材を使用して、センサーを
確実に駆動できる特長が実現でき、また、センサ
ーから下顎運動部材と上顎運動部材とが受ける反
作用を極めて少なくできて、下顎を軽く運動でき
る特長がある。 この発明の顎運動の測定装置は、センサーの構
造を特定するものではないが、センサーには、セ
ンサーコイル5と、界磁コイル6と、位相検出回
路とからなるものが使用できる。 以下、このセンサーの動作を説明する。 センサーコイル5は、移動する位置に対応して
位相が変わる交流が誘導される。従つて、センサ
ーコイル5に誘導される交流の位相を、位相検出
回路で測定して、センサーコイル5の位置を測定
する。 第1図に示すように、ひとつのセンサーコイル
5でもつて移動した位置を測定する場合、センサ
ーコイル5は、第2図に於て、X,Y,Z軸の位
置、並びにY軸まわりの回転角θを、順番に一定
周期で繰り返し測定し、各測定時間に対するセン
サーコイル5の位置を検出する。 X,Y,Z軸方向の位置、並びにY軸まわりの
回転角θの1回の測定時間は、顎の動きに対して
充分に短く、例えば10μ秒〜100m秒の範囲に決定
される。 下顎運動部材2両端の、X,Y,Z軸方向、並
びにY軸まわりの回転角θが測定されると、上顎
運動部材1の下顎運動部材2に対する相対位置は
特定できる。 ところで、図示しないが、上顎運動部材1の両
端ともうひとつの一点、例えば上顎運動部材1の
中央部分の合計3点の、X,Y,Z軸の変位を測
定するなら、回転角θの測定をすることなく、下
顎運動部材2の上顎運動部材1に対する相対位置
は特定できる。従つて、本発明は、センサー取付
位置、並びにセンサーの検出方向を特定するもの
でない。 センサーコイルが、移動した位置によつて誘導
される交流の位相が変わる状態を、第3図に基づ
いて説明する。 この図に於て、界磁コイル6BをEcosωtの交
流で励磁し、前方の界磁コイル6AをEsinωtの
交流で励磁するとき、即ち、両界磁コイル6A,
6Bを位相差が90度で同一周波数の交流で励磁す
ると、センサーコイル5が両界磁コイルの中央に
位置するとき、センサーコイル5には、両界磁コ
イル6A,6Bの中間の位相の交流、即ちcos
(ωt+π/4)の交流が誘導される。 センサーコイル5が中央から矢印Aの方向に移
動する程、センサーコイル5に誘導される交流の
位相は、sinωtに近付き、中央から矢印Bの方向
に移動する程、cosωtの交流に近付く。従つて、
センサーコイル5に誘導される交流の位相を検出
して、センサーコイル5のX軸方向の位置が測定
できる。但し、センサーコイル5に誘導される交
流の位相と、X軸方向の変位量は、両界磁コイル
6A,6Bの中間全ての領域に渡つて直線的に変
化するものでない。従つて、検出された位相から
変位量を補正する。 センサーコイル5のY軸方向の変位測定は、第
4図に示すように、センサーコイル5の両側でY
軸方向に離して2組の界磁コイル6C,6Dを配
設し、図に於て右側の界磁コイル6CをEsinωt
の交流で励磁し、左側の界磁コイル6Dを
Ecosωtの交流で励磁する。このとき、センサー
コイル5が両界磁コイル6C,6Dの中間に位置
すると、X軸方向と同様に、センサーコイル5に
は両励磁コイルの中間の位相差、即ち、cos(ωt
+π/4)の交流が誘導される。センサーコイル
5が右に移動すると、センサーコイルに誘導され
る交流の位相はsinωtに近付き、反対に左に移動
すると、cosωtに近付く。 従つて、この場合も、センサーコイル5の位相
を測定してY軸方向の位置が測定できる。 同様にして、第5図に示すように、センサーコ
イル5の上下、即ちZ軸方向に2組の界磁コイル
6E,6Fを配設し、両界磁コイル6E,6Fに
位相差90度の交流を加え、センサーコイル5に誘
導される交流の位相を検出して、Z軸方向の位置
が検出できる。 更に、Y軸まわりの回転角θの測定は、第6図
に示すように、センサーコイル5の前後に同方向
に巻かれた1組の界磁コイル6A,6Bを、上下
に同方向に巻かれた別の1組の界磁コイル6G,
6Hを配設し、前後の界磁コイル6A,6Bを
Esinωtの交流で、上下の界磁コイル6G,6H
をEcosωt交流で励磁して測定する。 センサーコイル5の中心軸がX軸と平行のと
き、センサーコイル5には、これと同方向に巻か
れた前後の界磁コイル6A,6Bと同相、即ち、
sinωtの交流が誘導される。センサーコイル5が
Y軸を中心に回転するに従つて、誘導される交流
の位相がずれてcosωtに近付く。従つて、位相の
ずれを検出し、Y軸まわりの回転角θを測定す
る。 センサーコイル5に誘導される交流の位相差
は、位相検出回路で測定され、必要ならば、位相
検出回路の出力をコンピユーターで演算処理し
て、下顎運動部材と上顎運動部材の各点、並びに
上顎と下顎各点の相対運動曲線をモニターテレ
ビ、XYプロツタ、プリンタ等に表示させる。 位相検出回路の出力を演算処理する技術は、現
在既にこの分野で使用されている公知の技術が使
用される。 位相検出回路には、交流の位相が測定できる全
ての回路が使用できる。第7図にその実施例を示
す。 この回路は、位相差を有するふたつの交流入力
信号を、波形整形回路11で矩形波に整形し、こ
の矩形波をエクスクルーシブオア回路12に入力
して、両入力信号のいずれか片方が1のときにの
み1のパルス信号を作り、このパルス信号のパル
ス幅をカウンター13で計測している。 第8図に位相検出回路の動作波形を示す。 図の2に示す波形の交流がセンサーコイルに誘
導されると、この信号と界磁コイルの励磁電圧波
形とが3,4で示される矩形波に整形され、3,
4の矩形波がエクスクルーシブオア回路12で比
較されて5のパルス信号を得る。5のパルス幅t
は、1,2の入力信号の位相差に相当する。 両入力信号の位相差が大きい程、エクスクルー
シブオア回路12の出力パルスの時間幅が広くな
る。パルス幅tをカウンターで計測すると、位相
差が検出できる。これがカウンターで測定され
る。
The jaw movement measuring device shown in FIG. 1, which shows a preferred embodiment of the present invention, is capable of
The upper jaw movement member 1 and the lower jaw movement member 2 attached thereto move relative to each other. Maxillary movement member 1
The relative movement between the upper jaw moving member and the lower jaw moving member 2 is detected by a sensor 3 disposed on the upper jaw moving member and the lower jaw moving member. Both ends of the upper jaw movement member and the lower jaw movement member are bent rearward when they are worn on the human body.
The upper jaw movement member and the lower jaw movement member, both ends of which are bent rearward, can have both ends positioned on both sides near the lower jaw. The lower jaw moves mainly at its base. In other words, when opening the lower jaw, the lower jaw rotates around the base of the rear end. Therefore, the lower jaw has the least displacement at its base. The upper jaw movement member and the lower jaw movement member of the present invention have both ends bent backward,
Since the sensor is placed at the bent end, the sensor can be placed near the base of the jaw. Therefore, the sensor can measure small displacements to detect relative movement between the lower and upper jaws. Therefore, it is possible to accurately detect the movement of the upper and lower jaws by using a sensor with a small measurement width, and high-precision measurement can be achieved with an inexpensive sensor. Further, the sensors are disposed at both ends of the upper jaw movement member and the lower jaw movement member to measure relative displacement between the two. Therefore, even if the upper jaw moves when the lower jaw moves, this will not cause errors. Therefore, relative movement between the lower jaw and the upper jaw can be measured easily and accurately. Furthermore, since the sensor is disposed at a location where the amount of displacement is small, when the lower jaw moves relative to the upper jaw, the upper jaw movement member and the lower jaw movement member at the sensor attachment portion are moved with a strong force. In other words, the force is amplified by the lever principle,
The sensor mounting portions of the upper jaw movement member and the lower jaw movement member are moved. Therefore, by using light and thin members for the maxillary movement member and the mandibular movement member, the sensor can be reliably driven, and the reaction force that the mandibular movement member and the maxillary movement member receive from the sensor is extremely reduced. It has the advantage of being able to easily exercise the lower jaw. Although the jaw movement measuring device of the present invention does not specify the structure of the sensor, a sensor consisting of a sensor coil 5, a field coil 6, and a phase detection circuit can be used as the sensor. The operation of this sensor will be explained below. The sensor coil 5 is induced with alternating current whose phase changes depending on the position to which it moves. Therefore, the phase of the alternating current induced in the sensor coil 5 is measured by a phase detection circuit, and the position of the sensor coil 5 is measured. As shown in Fig. 1, when measuring a moved position with one sensor coil 5, the sensor coil 5 measures the position of the X, Y, and Z axes as well as the rotation around the Y axis in Fig. 2. The angle θ is sequentially and repeatedly measured at a constant period, and the position of the sensor coil 5 for each measurement time is detected. The time for one measurement of the position in the X, Y, and Z axis directions and the rotation angle θ about the Y axis is determined to be sufficiently short with respect to jaw movement, for example, in the range of 10 μsec to 100 msec. When the rotation angle θ of both ends of the mandibular movement member 2 in the X, Y, and Z axis directions and around the Y axis is measured, the relative position of the maxillary movement member 1 with respect to the mandibular movement member 2 can be specified. By the way, although not shown, if you want to measure the displacement of the X, Y, and Z axes at both ends of the maxillary movement member 1 and one other point, for example, the central part of the maxillary movement member 1, you will need to measure the rotation angle θ. The relative position of the mandibular movement member 2 with respect to the maxillary movement member 1 can be specified without doing so. Therefore, the present invention does not specify the sensor mounting position or the detection direction of the sensor. A state in which the phase of the induced alternating current changes depending on the position to which the sensor coil is moved will be explained based on FIG. 3. In this figure, when the field coil 6B is excited with an alternating current of Ecosωt and the front field coil 6A is excited with an alternating current of Esinωt, that is, both field coils 6A,
When 6B is excited with an alternating current of the same frequency with a phase difference of 90 degrees, when the sensor coil 5 is located in the center of both field coils, the sensor coil 5 receives an alternating current with a phase between the two field coils 6A and 6B. , i.e. cos
An alternating current of (ωt+π/4) is induced. As the sensor coil 5 moves from the center in the direction of arrow A, the phase of the alternating current induced in the sensor coil 5 approaches sinωt, and as it moves from the center in the direction of arrow B, the phase of the alternating current of cosωt approaches. Therefore,
By detecting the phase of the alternating current induced in the sensor coil 5, the position of the sensor coil 5 in the X-axis direction can be measured. However, the phase of the alternating current induced in the sensor coil 5 and the amount of displacement in the X-axis direction do not change linearly over the entire region between the field coils 6A and 6B. Therefore, the amount of displacement is corrected from the detected phase. To measure the displacement of the sensor coil 5 in the Y-axis direction, as shown in FIG.
Two sets of field coils 6C and 6D are arranged axially apart, and the field coil 6C on the right side in the figure is set to Esinωt.
Excite the left field coil 6D with alternating current.
Excited by Ecosωt alternating current. At this time, when the sensor coil 5 is located between the two field coils 6C and 6D, the sensor coil 5 has a phase difference between the two excitation coils, that is, cos(ωt
+π/4) alternating current is induced. When the sensor coil 5 moves to the right, the phase of the alternating current induced in the sensor coil approaches sinωt, and on the other hand, when it moves to the left, the phase approaches cosωt. Therefore, in this case as well, the position in the Y-axis direction can be determined by measuring the phase of the sensor coil 5. Similarly, as shown in FIG. 5, two sets of field coils 6E and 6F are arranged above and below the sensor coil 5, that is, in the Z-axis direction, and both field coils 6E and 6F have a phase difference of 90 degrees. By applying alternating current and detecting the phase of the alternating current induced in the sensor coil 5, the position in the Z-axis direction can be detected. Furthermore, to measure the rotation angle θ around the Y-axis, as shown in FIG. Another set of field coils 6G,
6H is installed, and the front and rear field coils 6A, 6B are installed.
With AC of Esinωt, upper and lower field coils 6G, 6H
is excited by Ecosωt alternating current and measured. When the central axis of the sensor coil 5 is parallel to the X-axis, the sensor coil 5 has the same phase as the front and rear field coils 6A and 6B wound in the same direction, that is,
An alternating current of sinωt is induced. As the sensor coil 5 rotates around the Y axis, the phase of the induced alternating current shifts and approaches cosωt. Therefore, the phase shift is detected and the rotation angle θ around the Y axis is measured. The phase difference of the alternating current induced in the sensor coil 5 is measured by a phase detection circuit, and if necessary, the output of the phase detection circuit is processed by a computer to detect each point of the mandibular movement member and the maxillary movement member, as well as the maxillary movement member. Display the relative movement curve of each point of the mandible on a monitor TV, XY plotter, printer, etc. As a technique for processing the output of the phase detection circuit, a known technique that is currently used in this field is used. Any circuit that can measure the phase of alternating current can be used as the phase detection circuit. An example of this is shown in FIG. This circuit shapes two AC input signals having a phase difference into a rectangular wave in a waveform shaping circuit 11, inputs this rectangular wave to an exclusive OR circuit 12, and when one of both input signals is 1, A pulse signal of 1 is generated only for the pulse signal, and the pulse width of this pulse signal is measured by a counter 13. FIG. 8 shows operating waveforms of the phase detection circuit. When an alternating current with the waveform shown in 2 in the figure is induced into the sensor coil, this signal and the excitation voltage waveform of the field coil are shaped into rectangular waves shown in 3 and 4.
The 4 rectangular waves are compared by an exclusive OR circuit 12 to obtain a 5 pulse signal. 5 pulse width t
corresponds to the phase difference between input signals 1 and 2. The larger the phase difference between the two input signals, the wider the time width of the output pulse of the exclusive OR circuit 12. By measuring the pulse width t with a counter, the phase difference can be detected. This is measured with a counter.

【好ましい実施例】[Preferred embodiment]

以下、本発明の実施例を図面に基づいて説明す
る。 第1図に示す顎運動機構部の測定原理は、上顎
または頭蓋に座標系を設定し、下顎に剛体結合し
た2標点を設け、この標点の運動と、標点間を結
ぶ軸の回転を測定することによつて、上下顎の任
意点の顎運動を計測する。 第1図に示す顎運動の測定装置は、上顎と下顎
とに別々に装着される上顎運動部材1と下顎運動
部材2と、これ等の上顎運動部材1と下顎運動部
材2の両端に設けられて変位を測定するセンサー
3とからなる。 上顎運動部材1と下顎運動部材2とは、全体形
状がU字状ないしコ字状に折曲され、両端が下顎
の運動枢軸、即ち、顎の付根部で顔の両側に位置
する。 下顎運動部材2と上顎運動部材1の両端であつ
て、センサー3の取り付け位置が、下顎の付根部
分に位置すると、下顎を大きく開く運動をして
も、センサー変位量が少なく、従つて、非接触セ
ンサーの外径、特に界磁コイルの外形をコンパク
トにでき、全体を軽くできる。 上顎運動部材1と下顎運動部材2は、通常、歯
に嵌着される取付部材4を介して上顎と下顎とに
固定される為、可能な限り軽量化するのがよい。
従つて、上顎運動部材1と下顎運動部材2とは、
アルミニウム等の軽金属、あるいは合成樹脂や木
等で作られる。 センサー3は、センサーコイル5と、界磁コイ
ル6と、位相検出回路7とからなる。 センサーコイル5と界磁コイル6とが相対運動
してその変位が測定できる。センサーコイル5を
上顎運動部材1と下顎運動部材2のいずれか一方
に、界磁コイル6を他の一方に固定して上顎運動
部材1と下顎運動部材2の変位を測定できる。 第1図は、下顎運動部材2の両端にセンサーコ
イル5を、上顎運動部材1の両端に界磁コイル6
を固定している。 センサーコイル5は、下顎運動部材2の先端部
分に、下顎運動部材2の軸と同軸に巻かれてい
る。センサーコイル5は巻回数が多い程、誘導さ
れる電圧が大きくなるが、多すぎると、重くて応
答性が遅くなるので、通常数十〜数千回程度に決
定される。 界磁コイル6は、センサーコイル5の、X,
Y,Z軸方向の変位検出用、並びに回転角θ検出
用からなる。界磁コイル6は、センサーコイル5
の周囲に、センサーコイル5が移動してもこれと
接触しないように離されて配設されている。 センサーコイル5のX軸方向の変位を測定する
界磁コイル6A,6Bは、第3図に示すように、
センサーコイル5からX軸方向に離されて、即
ち、図に於て前後に離されて2組み設けられてい
る。2組の界磁コイル6A,6Bはセンサーコイ
ル5と同方向に巻かれている。 センサーコイル5のY軸方向の変位を測定する
界磁コイル6C,6Dは、第4図に示すように、
センサーコイル5からY軸方向に離されて、即
ち、図に於て左右に離されて2組み設けられてい
る。2組の界磁コイル6C,6Dはセンサーコイ
ル5と同方向に巻かれている。 Z軸変位測定用の界磁コイル6E,6Fは、第
5図に示すように、センサーコイル5からZ軸方
向に離されて、即ち、図に於て上下に離されて2
組み設けられている。2組の界磁コイル6E,6
Fはセンサーコイル5と同方向に巻かれている。 Y軸まわりの回転角θ測定用の界磁コイルは、
第6図に示すように、X軸変位測定用の界磁コイ
ル6A,6Bを1組の界磁コイルとして使用し、
センサーコイル5の上下に配設された界磁コイル
6G,6Hを1組の界磁コイルとして使用する。 界磁コイル6は、センサーコイル5が挿入され
る1面が開いた箱型のケース14内に固定され、
ケース14が上顎運動部材1の端に固定される。 各界磁コイル6は、位相差90度の交流出力を出
す発振器で励磁される。 発振器の一例を第9図に示す。この発振器は、
同一周波数で位相が90度異なる、Esinωtと
Ecosωtの2出力を出す発振回路8と、発振回路
8の出力を切り換えて、各界磁コイル6A,6
B,6C,6D,6E,6F,6G,6Hを励磁
する切換回路9と、切換回路9を一定の周期で制
御するタイマー10とからなる。 タイマー10で制御される切換回路9は、一定
時間毎に、発振回路8の出力を各界磁コイル6
A,6B……6Hに切り換える。切り換えのタイ
ミングチヤートを第10図に示す。この図に於
て、一定時間、センサーコイル5のX軸方向の変
位を測定する時間、即ち、第3図に於て、前後の
界磁コイル6A,6Bのみを励磁して、X軸方向
の変位を測定し、その後、Y軸方向の変位を測定
する時間、即ち、第4図に於てセンサーコイル5
左右の界磁コイル6C,6Dを励磁してY軸方向
の変位を測定する。その後、一定の周期で、Z軸
方向の変位と回転角θとを測定した後、再びX,
Y,Z軸の変位と回転角θとを測定する。 X,Y,Z軸並びに回転角θのそれぞれの測定
時間Tは、顎の動きに対して充分に早く、例えば
10μ秒〜100m秒の範囲に調整される。従つて、こ
の時間に、センサーコイル5に誘導される交流の
位相が検出できるように、界磁コイル6を励磁す
る交流の周波数は、100Hz〜数十KHzに調整され
る。 ところで、第9図および第10図に示すよう
に、順番にX,Y,Z軸とθ角の変位を測定する
場合、位相検出回路7も、これに同期して制御さ
れる。従つて、位相検出回路のカウンター13の
出力は、タイマー10で制御される。 即ち、X,Y,Z軸の変位を測定する状態で界
磁コイルが励磁されるとき、位相検出回路7は
X,Y,Z軸の変位に対応した位相差を検出す
る。従つて、位相検出回路は、第9図に示すよう
に、X,Y,Z軸並びにθ角の順番で、これと同
期してその変位に相当する位相差を検出する。 ただ図示しないが、上顎運動部材と下顎運動部
材とに、X,Y,Z軸並びにθ角測定用のセンサ
ーコイルと界磁コイルとを設け、各センサーコイ
ルの位相差を連続的に検出して、下顎運動部材の
上顎運動部材に対するX,Y,Z軸並びにθ角の
連続測定は可能である。 但し、この場合、X,Y,Z軸とθ角測定用の
界磁コイルは、互いに磁力線が干渉しないように
上顎運動部材と下顎運動部材とに固定する必要が
ある。 位相検出回路7は、交流の位相が検出できる全
ての回路が使用できる。第7図の位相検出回路7
は、ふたつの入力サイン波を矩形波に整形する波
形整形回路11と、この波形整形回路11の出力
を比較するエクスクルーシブオア回路12と、こ
のエクスクルーシブオア回路12の出力パルスの
時間幅を測定するカウンター13とからなる。 一方の波形整形回路11には、界磁コイル6を
励磁するEsinωt又はEcosωtのいずれかの交流を
加え、別の波形整形回路11には、センサーコイ
ル5に誘導された交流を加える(第8図1,2の
入力波形)。 波形整形回路11は、両入力信号を、第8図の
3,4で示す矩形波に整形する。 エクスクルーシブオア回路12は、両入力信号
の位相差成分を取り、第8図5に示すように、位
相差に相当するパルス幅tの信号を出力する。出
力信号のパルス幅tがカウンター13で測定さ
れ、カウンター13の出力が位相差を表示する。 今仮に、波形整形回路11の一方に、Esinωt
の交流を入力し、この状態で、センサーコイル5
がEsinωtの交流で励磁される片方の界磁コイル
に接近すると、センサーコイル5に誘導される交
流の位相は、第8図2の矢印で示す方向に位相が
ずれてEsinωtに近付き、波形整形回路11の出
力信号の位相差が少なくなる。従つて、エクスク
ルーシブオア回路12の出力信号のパルス幅tは
短く、カウンター13の計測値は低くなる。反対
に、センサーコイル5がEsinωtの交流で励磁さ
れる界磁コイルから離れ、Ecosωtの交流で励磁
される界磁コイルに近付くと、センサーコイル5
に誘導される交流は、Esinωtの交流から位相の
ずれが大きくなり、エクスクルーシブオア回路1
2の出力パルス幅が広く、カウンター13の計測
値が高くなる。 前にも述べたようにカウンターの計測値は、第
11図に示すように、X,Y,Z軸並びにθ角の
変位量に対して、直線的に変化しない。従つて、
第11図に示す特性曲線をコンピユータに記憶さ
せ、これに基づいて、検出位相差から正確に移動
位置を演算することも可能である。 以上の実施例は、界磁コイル6を位相差90度の
交流で励磁したが、位相差は必ずしも90度にする
必要はなく、両界磁コイル6に流す交流に位相差
が有る限り使用できる。但し、界磁コイルの位相
差が少ないと、測定精度が低下する。 第1図に示す顎運動の測定装置は上顎運動部材
1と下顎運動部材2の両端にセンサー3を固定し
ているが、本発明はセンサーの固定位置を特定す
るものでない。例えば、図示しないが、上顎運動
部材1と下顎運動部材2の両端と中間の3点に、
X,Y,Z軸の変位を測定するセンサーを固定す
ることも、又、取付部材4の前方3点のX,Y,
Z軸の変位を測定することも可能である。センサ
ーは、立体的に相対運動する上顎運動部材1と下
顎運動部材2の位置が特定できる全ての取付状態
が採用できる。
Embodiments of the present invention will be described below based on the drawings. The measurement principle of the jaw movement mechanism shown in Figure 1 is to set a coordinate system on the upper jaw or cranium, set two rigidly connected gauge points on the lower jaw, and measure the movement of these gauge points and the rotation of the axis connecting the gauge points. By measuring , the jaw movement at any point on the upper and lower jaws is measured. The jaw movement measuring device shown in FIG. 1 includes a maxillary movement member 1 and a mandibular movement member 2 that are separately attached to the upper and lower jaws, and a device provided at both ends of the maxillary movement member 1 and the mandibular movement member 2. and a sensor 3 for measuring displacement. The upper jaw movement member 1 and the lower jaw movement member 2 are bent into a U-shape or a U-shape, and both ends thereof are located on both sides of the face at the mandibular movement axis, that is, at the base of the jaw. If the mounting position of the sensor 3 is located at the base of the lower jaw at both ends of the lower jaw movement member 2 and the upper jaw movement member 1, the amount of sensor displacement will be small even if the lower jaw is moved wide open, and therefore the The outer diameter of the contact sensor, especially the outer shape of the field coil, can be made compact, making the whole body lighter. Since the upper jaw movement member 1 and the lower jaw movement member 2 are usually fixed to the upper jaw and the lower jaw via attachment members 4 that are fitted onto the teeth, it is preferable to make them as light as possible.
Therefore, the upper jaw movement member 1 and the lower jaw movement member 2 are as follows:
It is made of light metal such as aluminum, synthetic resin, wood, etc. The sensor 3 includes a sensor coil 5, a field coil 6, and a phase detection circuit 7. The sensor coil 5 and the field coil 6 move relative to each other, and their displacement can be measured. The sensor coil 5 is fixed to one of the upper jaw motion member 1 and the lower jaw motion member 2, and the field coil 6 is fixed to the other one to measure the displacement of the upper jaw motion member 1 and the lower jaw motion member 2. FIG. 1 shows sensor coils 5 at both ends of the mandibular movement member 2 and field coils 6 at both ends of the maxillary movement member 1.
is fixed. The sensor coil 5 is wound around the tip of the mandibular movement member 2 coaxially with the axis of the mandibular movement member 2. The larger the number of windings in the sensor coil 5, the larger the induced voltage will be. However, if the number of windings is too large, it will be heavy and the response will be slow, so it is usually determined to be around several tens to several thousand times. The field coil 6 is connected to the sensor coil 5,
It consists of one for detecting displacement in the Y and Z axis directions and one for detecting rotation angle θ. The field coil 6 is the sensor coil 5
The sensor coil 5 is spaced apart from the sensor coil 5 so that it does not come into contact with the sensor coil 5 even if the sensor coil 5 moves. The field coils 6A and 6B that measure the displacement of the sensor coil 5 in the X-axis direction are as shown in FIG.
Two sets are provided separated from the sensor coil 5 in the X-axis direction, that is, separated from each other in the front and back in the figure. The two sets of field coils 6A and 6B are wound in the same direction as the sensor coil 5. The field coils 6C and 6D that measure the displacement of the sensor coil 5 in the Y-axis direction are as shown in FIG.
Two sets are provided spaced apart from the sensor coil 5 in the Y-axis direction, that is, spaced apart left and right in the figure. The two sets of field coils 6C and 6D are wound in the same direction as the sensor coil 5. As shown in FIG. 5, the field coils 6E and 6F for Z-axis displacement measurement are spaced apart from the sensor coil 5 in the Z-axis direction, that is, spaced apart vertically in the figure.
It is set up. Two sets of field coils 6E, 6
F is wound in the same direction as the sensor coil 5. The field coil for measuring rotation angle θ around the Y axis is
As shown in FIG. 6, field coils 6A and 6B for X-axis displacement measurement are used as a pair of field coils,
Field coils 6G and 6H disposed above and below the sensor coil 5 are used as a set of field coils. The field coil 6 is fixed in a box-shaped case 14 with one side open into which the sensor coil 5 is inserted.
A case 14 is fixed to the end of the maxillary movement member 1. Each field coil 6 is excited by an oscillator that outputs an alternating current output with a phase difference of 90 degrees. An example of an oscillator is shown in FIG. This oscillator is
Esinωt and Esinωt, which have the same frequency but a 90 degree difference in phase
The oscillation circuit 8 that outputs two outputs of Ecosωt and the output of the oscillation circuit 8 are switched, and each field coil 6A, 6
It consists of a switching circuit 9 that excites B, 6C, 6D, 6E, 6F, 6G, and 6H, and a timer 10 that controls the switching circuit 9 at a constant cycle. A switching circuit 9 controlled by a timer 10 switches the output of the oscillation circuit 8 to each field coil 6 at regular intervals.
Switch to A, 6B...6H. A timing chart for switching is shown in FIG. In this figure, the displacement of the sensor coil 5 in the X-axis direction is measured for a certain period of time, that is, in FIG. The time to measure the displacement and then the displacement in the Y-axis direction, that is, the sensor coil 5 in FIG.
The left and right field coils 6C and 6D are excited and displacement in the Y-axis direction is measured. After that, after measuring the displacement in the Z-axis direction and the rotation angle θ at regular intervals,
Measure the displacement in the Y and Z axes and the rotation angle θ. The measurement time T for each of the X, Y, Z axes and the rotation angle θ is sufficiently fast relative to the movement of the jaw, for example.
Adjusted to a range of 10μs to 100ms. Therefore, the frequency of the alternating current that excites the field coil 6 is adjusted to 100 Hz to several tens of KHz so that the phase of the alternating current induced in the sensor coil 5 can be detected during this time. By the way, as shown in FIGS. 9 and 10, when the displacement of the X, Y, and Z axes and the θ angle are measured in order, the phase detection circuit 7 is also controlled in synchronization with this. Therefore, the output of the counter 13 of the phase detection circuit is controlled by the timer 10. That is, when the field coil is excited while measuring displacements on the X, Y, and Z axes, the phase detection circuit 7 detects a phase difference corresponding to the displacements on the X, Y, and Z axes. Therefore, as shown in FIG. 9, the phase detection circuit detects the phase difference corresponding to the displacement in the order of the X, Y, Z axes and the θ angle in synchronization with these. Although not shown, sensor coils and field coils for measuring the X, Y, and Z axes as well as the θ angle are provided on the upper jaw movement member and the lower jaw movement member, and the phase difference between each sensor coil is continuously detected. , continuous measurement of the X, Y, Z axes and the θ angle of the mandibular motion member with respect to the maxillary motion member is possible. However, in this case, the field coils for measuring the X, Y, and Z axes and the θ angle need to be fixed to the upper jaw movement member and the lower jaw movement member so that the lines of magnetic force do not interfere with each other. As the phase detection circuit 7, any circuit that can detect the phase of alternating current can be used. Phase detection circuit 7 in Fig. 7
A waveform shaping circuit 11 that shapes two input sine waves into a rectangular wave, an exclusive OR circuit 12 that compares the output of this waveform shaping circuit 11, and a counter that measures the time width of the output pulse of this exclusive OR circuit 12. It consists of 13. To one waveform shaping circuit 11, an alternating current of either Esinωt or Ecosωt that excites the field coil 6 is applied, and to another waveform shaping circuit 11, an alternating current induced in the sensor coil 5 is applied (Fig. 1 and 2 input waveforms). The waveform shaping circuit 11 shapes both input signals into rectangular waves shown at 3 and 4 in FIG. The exclusive OR circuit 12 takes the phase difference component of both input signals and outputs a signal with a pulse width t corresponding to the phase difference, as shown in FIG. 8. The pulse width t of the output signal is measured by a counter 13, and the output of the counter 13 indicates the phase difference. Now, suppose that Esinωt is applied to one side of the waveform shaping circuit 11.
AC is input, and in this state, the sensor coil 5
When approaches one of the field coils excited by the alternating current of Esinωt, the phase of the alternating current induced in the sensor coil 5 shifts in phase in the direction shown by the arrow 2 in Fig. 8 and approaches Esinωt, and the waveform shaping circuit The phase difference between the output signals of No. 11 is reduced. Therefore, the pulse width t of the output signal of the exclusive OR circuit 12 is short, and the measured value of the counter 13 is low. On the other hand, when the sensor coil 5 moves away from the field coil excited by the alternating current of Esinωt and approaches the field coil excited by the alternating current of Ecosωt, the sensor coil 5
The alternating current induced by Esinωt has a large phase shift from the alternating current of Esinωt, and the exclusive OR circuit 1
The output pulse width of No. 2 is wide, and the measured value of the counter 13 becomes high. As mentioned before, the measured value of the counter does not change linearly with respect to the displacement amount in the X, Y, Z axes and the θ angle, as shown in FIG. Therefore,
It is also possible to store the characteristic curve shown in FIG. 11 in a computer and, based on this, accurately calculate the moving position from the detected phase difference. In the above embodiment, the field coil 6 was excited with alternating current with a phase difference of 90 degrees, but the phase difference does not necessarily have to be 90 degrees, and it can be used as long as there is a phase difference between the alternating current flowing through both field coils 6. . However, if the phase difference between the field coils is small, the measurement accuracy will decrease. Although the jaw movement measuring device shown in FIG. 1 has sensors 3 fixed at both ends of the upper jaw movement member 1 and the lower jaw movement member 2, the present invention does not specify the fixed position of the sensor. For example, although not shown, at both ends and at three points in the middle of the upper jaw movement member 1 and the lower jaw movement member 2,
It is also possible to fix the sensors that measure the displacements of the X, Y, and Z axes, or to
It is also possible to measure displacements in the Z axis. The sensor can be mounted in any mounting state that allows the position of the upper jaw movement member 1 and the lower jaw movement member 2 to be moved relative to each other in three dimensions to be specified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す顎運動の測定
装置の概略斜視図、第2図は頭に対するX,Y,
Z軸を示す斜視図、第3図ないし第6図はセンサ
ーコイルと界磁コイルの配列を示す概略斜視図、
第7図は位相検出回路の一例を示すブロツク線
図、第8図は波形成形回路の入出力並びにエクス
クルーシブオア回路の出力波形を示すグラフ、第
9図は発振器の一例を示すブロツク線図、第10
図はX,Y,Z軸とθ角を測定するタイミングチ
ヤート図、第11図は変位と位相差とを示すグラ
フである。 1……上顎運動部材、2……下顎運動部材、3
……センサー、4……取付部材、5……センサー
コイル、6……界磁コイル、7……位相検出回
路、8……発振回路、9……切換回路、10……
タイマー、11……波形整形回路、12……エク
スクルーシブオア回路、13……カウンター、1
4……ケース。
Fig. 1 is a schematic perspective view of a jaw movement measuring device showing an embodiment of the present invention, and Fig. 2 shows X, Y, and
A perspective view showing the Z axis; FIGS. 3 to 6 are schematic perspective views showing the arrangement of the sensor coil and the field coil;
FIG. 7 is a block diagram showing an example of a phase detection circuit, FIG. 8 is a graph showing the input/output of a waveform shaping circuit and the output waveform of an exclusive OR circuit, FIG. 9 is a block diagram showing an example of an oscillator, and FIG. 10
The figure is a timing chart for measuring the X, Y, and Z axes and the θ angle, and FIG. 11 is a graph showing displacement and phase difference. 1... Maxillary movement member, 2... Mandibular movement member, 3
... Sensor, 4 ... Mounting member, 5 ... Sensor coil, 6 ... Field coil, 7 ... Phase detection circuit, 8 ... Oscillation circuit, 9 ... Switching circuit, 10 ...
Timer, 11...Waveform shaping circuit, 12...Exclusive OR circuit, 13...Counter, 1
4...Case.

Claims (1)

【特許請求の範囲】 1 上顎と下顎に別々に装着される上顎運動部材
1と、下顎運動部材2と、 これ等の上顎運動部材1、下顎運動部材2の相
対的な変位を検出するセンサー3とからなる顎運
動測定装置に於て、 上顎運動部材1と下顎運動部材2とは、人体に
装着した状態で両端が後方に折曲されており、後
方の折曲端に、上顎運動部材1と下顎運動部材2
の相対位置を電気的に検出するセンサー3が配設
されていることを特徴とする顎運動測定装置。
[Scope of Claims] 1. An upper jaw movement member 1 and a lower jaw movement member 2 that are separately attached to the upper and lower jaws, and a sensor 3 that detects the relative displacement of these upper jaw movement members 1 and mandibular movement members 2. In the jaw movement measurement device, the upper jaw movement member 1 and the lower jaw movement member 2 are bent backward at both ends when worn on the human body, and the upper jaw movement member 1 is attached to the rear bent end. and mandibular movement member 2
A jaw movement measuring device characterized in that a sensor 3 for electrically detecting the relative position of the jaw movement measuring device is provided.
JP63278974A 1988-11-02 1988-11-02 Apparatus for measuring jaw motion Granted JPH021241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63278974A JPH021241A (en) 1988-11-02 1988-11-02 Apparatus for measuring jaw motion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63278974A JPH021241A (en) 1988-11-02 1988-11-02 Apparatus for measuring jaw motion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63239486A Division JPH01104248A (en) 1988-09-24 1988-09-24 Apparatus for measuring jaw motion

Publications (2)

Publication Number Publication Date
JPH021241A JPH021241A (en) 1990-01-05
JPH0551293B2 true JPH0551293B2 (en) 1993-08-02

Family

ID=17604663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63278974A Granted JPH021241A (en) 1988-11-02 1988-11-02 Apparatus for measuring jaw motion

Country Status (1)

Country Link
JP (1) JPH021241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727495U (en) * 1993-11-04 1995-05-23 モリ工業株式会社 Multi-function clothes dryer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8382686B2 (en) 2007-04-17 2013-02-26 Gnath Tech Dental Systems, Llc Apparatus and method for recording mandibular movement
JP5004646B2 (en) * 2007-04-26 2012-08-22 旭化成エレクトロニクス株式会社 Position / orientation detection system, detection method thereof, and position / orientation detection apparatus
US10660735B2 (en) 2017-10-19 2020-05-26 Dentigrafix Llc Systems and methods for recording mandibular movement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179432A (en) * 1986-01-31 1987-08-06 坂東 永一 Apparatus for measuring jaw motion
JPS63239486A (en) * 1986-11-13 1988-10-05 株式会社 エス・エム・シ− Display panel packaged circuit board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179432A (en) * 1986-01-31 1987-08-06 坂東 永一 Apparatus for measuring jaw motion
JPS63239486A (en) * 1986-11-13 1988-10-05 株式会社 エス・エム・シ− Display panel packaged circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727495U (en) * 1993-11-04 1995-05-23 モリ工業株式会社 Multi-function clothes dryer

Also Published As

Publication number Publication date
JPH021241A (en) 1990-01-05

Similar Documents

Publication Publication Date Title
JP4612915B2 (en) Teeth meshing measuring device
US5195532A (en) Apparatus for producing a stimulation by vibration of a tappet which is put on a human's skin
JP2004286598A (en) Displacement gauge and displacement measuring method
JPS6450905A (en) Scanning head for coordinates measuring apparatus
JPH03123811A (en) Sheet thickness measuring instrument
DE3879569D1 (en) PROBE HEAD FOR COORDINATE MEASURING DEVICES.
JPH0551293B2 (en)
JP4324386B2 (en) Jaw movement measuring device
JP2835603B2 (en) Displacement sensor for human body
JPS62179432A (en) Apparatus for measuring jaw motion
JPH0246210B2 (en)
JP2613177B2 (en) Three-dimensional displacement sensor for human body
JP4612914B2 (en) Jaw movement measuring device
GB2186092A (en) Rheometer
JPH09103430A (en) Ultrasonic bone analyzing device and method to detect part of body
JPH0311688Y2 (en)
JP2989600B1 (en) Position detection device
JPWO2009087780A1 (en) Jaw movement measuring device and sensor coil manufacturing method used therefor
JP3319013B2 (en) Occlusion disorder detection device
JP2639582B2 (en) 3D coordinate input device
JPH0326974B2 (en)
RU2008850C1 (en) Device for measurement of tooth parameters
SU1394033A1 (en) Linear displacement transducer
JPH04221722A (en) Method and apparatus for measuring displacement of vibrating object
JPH02131617U (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees