JPH0551081B2 - - Google Patents

Info

Publication number
JPH0551081B2
JPH0551081B2 JP61014297A JP1429786A JPH0551081B2 JP H0551081 B2 JPH0551081 B2 JP H0551081B2 JP 61014297 A JP61014297 A JP 61014297A JP 1429786 A JP1429786 A JP 1429786A JP H0551081 B2 JPH0551081 B2 JP H0551081B2
Authority
JP
Japan
Prior art keywords
flat plate
light beam
flatness
light
optical image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61014297A
Other languages
Japanese (ja)
Other versions
JPS62172210A (en
Inventor
Kenichi Matsui
Hidefumi Tachibana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61014297A priority Critical patent/JPS62172210A/en
Publication of JPS62172210A publication Critical patent/JPS62172210A/en
Publication of JPH0551081B2 publication Critical patent/JPH0551081B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は平板の平坦度を光学的に測定する装置
に関し、更に詳述すると平板、特に移送速度が速
い熱延鋼板の平坦度を走間測定する場合、熱延鋼
板に波打ち等が生じても平坦度を精度よく測定で
きる平坦度測定装置を提供するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an apparatus for optically measuring the flatness of a flat plate, and more specifically, a device for optically measuring the flatness of a flat plate, particularly a hot rolled steel plate whose transfer speed is fast. The present invention provides a flatness measuring device that can accurately measure flatness even when a hot rolled steel sheet has undulations or the like.

〔従来技術〕[Prior art]

熱間圧延においては、鋼板を可及的に平坦にす
ることが重要な課題となつており、このために
種々の圧延形状制御が試みられてきた。この圧延
形状制御のためには制御の入力情報として鋼板の
平坦度又は平坦形状を測定する必要がある。
In hot rolling, it is an important issue to make the steel plate as flat as possible, and various methods of rolling shape control have been attempted for this purpose. In order to control this rolling shape, it is necessary to measure the flatness or flat shape of the steel plate as input information for the control.

鋼板等の平板の平坦度測定方法として例えば特
開昭56−124006号が公知である。この方法は、第
8図に示す如くレーザ光発振器24から発生した
レーザ光を八角柱状の回転ミラー25へ照射し、
搬送ロール2,2…からなる搬送ライン上を搬送
される平板1に、その板幅方向に延び、板長方向
に不等間隔離隔して8本の細長い輝線,…
を非垂直方向より投射形成し、該輝線を2次元撮
像装置23にて一度に撮影してその撮影画像26
上にて光像1′,2′…8′として捉え、その信号
を演算装置27へ与え、演算装置27はこれに予
め記憶させておいた基準輝線(平坦な平板上に投
射形成した輝線)に関する光像と入力信号との偏
差を求め、平坦でない場合には輝線の位置が搬送
方向及び鉛直方向にずれる現象を利用して平板1
の表面における輝線形成部分の平板厚み方向の位
置を求める一方、前記撮影画像26上の光像に対
応する信号のピーク値及び/又は時間幅に基づき
前記輝線形成部分の平板1の傾きを求めることに
より平板1の平坦度を認識する方法である。
A method for measuring the flatness of a flat plate such as a steel plate is known, for example, in JP-A-56-124006. In this method, as shown in FIG. 8, a laser beam generated from a laser beam oscillator 24 is irradiated onto an octagonal prism-shaped rotating mirror 25.
A flat plate 1 being conveyed on a conveying line consisting of conveying rolls 2, 2, .
is projected from a non-vertical direction, and the bright lines are photographed at once by a two-dimensional imaging device 23 to obtain the photographed image 26.
The light images 1', 2'...8' are captured at the top, and the signals are sent to the arithmetic unit 27, which uses the reference bright line (bright line formed by projection on a flat plate) stored in advance. The deviation between the optical image and the input signal is calculated, and if the flat plate is not flat, the position of the bright line shifts in the transport direction and the vertical direction.
While determining the position of the bright line forming portion on the surface of the flat plate 1 in the thickness direction, the inclination of the bright line forming portion of the flat plate 1 is determined based on the peak value and/or time width of the signal corresponding to the optical image on the photographed image 26. This is a method of recognizing the flatness of the flat plate 1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

斯かる方法により、平板として例えば厚鋼板の
平坦度を測定する場合はその測定が可能である
が、薄鋼板のそれを測定しようとする場合は精度
よく測定できなかつた。即ち、薄鋼板はその厚み
故、移送中上方に凸状に曲がることがあり、つま
り波打つことがあり、このため上記方法により測
定する場合は、例え薄鋼板が平坦であつても光像
の位置と基準輝線に関する基準光像の位置との間
に偏差が生じるので測定誤差が生じて平坦度を精
度よく測定できなかつた。
Although it is possible to measure the flatness of a thick steel plate using this method, it is not possible to measure the flatness of a thin steel plate with high accuracy. In other words, due to its thickness, thin steel plates may bend upward in a convex shape during transportation, or in other words, may become wavy. Therefore, when measuring using the above method, even if the thin steel plate is flat, the position of the optical image may vary. Since a deviation occurs between the position of the reference light image with respect to the reference bright line and the position of the reference light image with respect to the reference bright line, a measurement error occurs and the flatness cannot be measured accurately.

また、前記回転ミラー25は、各面の傾きを変
えて8本の不連続なレーザ光を発生させるように
構成されており、このため各レーザ光が平板状を
幅方向に走査されるタイミング時間が同一でな
く、例えば高速搬送される薄鋼板の平坦度を測定
する場合には8本の輝線の形成に時間を要し、こ
の間に平板が高速移動するから、輝線間距離と輝
線が形成された平板上の部分間距離とが大きく異
なり測定精度が低いという問題点があつた。
Further, the rotating mirror 25 is configured to generate eight discontinuous laser beams by changing the inclination of each surface, and therefore the timing time at which each laser beam scans the flat plate in the width direction is determined. For example, when measuring the flatness of a thin steel plate that is transported at high speed, it takes time to form eight bright lines, and the flat plate moves at high speed during this time, so the distance between the bright lines and the bright lines formed are different. There was a problem that the distance between the parts on the flat plate differed greatly and the measurement accuracy was low.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる事情に鑑みてなされたものであ
り、平板上に長手方向に相互に適長離隔して2乃
至3以上の光ビームを同時的に照射する構成とす
ることにより、波打ちの存否に拘わらず平板の平
坦度を精度よく測定できる平板の平坦度測定装置
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has a structure in which two to three or more light beams are simultaneously irradiated on a flat plate at an appropriate distance from each other in the longitudinal direction, thereby determining the presence or absence of undulation. An object of the present invention is to provide a flat plate flatness measuring device that can accurately measure the flatness of a flat plate regardless of the flatness of the flat plate.

この発明は平板に波打ちが生じても平板幅方向
各位置で前記光像と基準光像との間の偏差が同値
の場合には平坦であり、また幅方向のいずれかの
位置での偏差が他のそれと異なる場合には平坦で
ないということを利用している。
In this invention, even if a flat plate is undulated, if the deviation between the optical image and the reference optical image is the same at each position in the width direction of the flat plate, the plate is flat, and if the deviation at any position in the width direction is If it is different from others, it takes advantage of the fact that it is not flat.

本発明に係る平板の平坦度測定装置は、平板に
光ビームを照射して平板上に現れる輝線を撮影
し、撮影した光像に基づいて平板の平坦度を測定
する装置において、単一の光源から発生した光ビ
ームを受けてこれを複数の光ビームに分割し、分
割した各光ビームの平板に対する照射角度を夫々
一定にして斜め方向より平板の所定方向に向けて
各光ビームを照射走査する光学系と、平板上に現
れた輝線を光像として撮影する2次元撮影装置
と、該2次元撮像装置の撮影周期と、各光ビーム
の走査を同期させる装置と、撮影信号から光像成
分を抽出する2値化回路と、抽出した光像成分
と、平坦な平板について得られる基準輝線に関す
る光像成分との偏差を求める手段と、複数の光ビ
ームに対応する偏差に基づき伸び率を、光ビーム
の走査方向の複数位置について算出する手段と、
光ビームの走査方向の複数位置について算出した
伸び率を相互に比較して大小関係を判断する手段
とを具備することを特徴とする。
The flat plate flatness measuring device according to the present invention is an apparatus that irradiates a flat plate with a light beam, photographs bright lines appearing on the flat plate, and measures the flatness of the flat plate based on the photographed optical image. receives a light beam generated from the light beam, divides it into a plurality of light beams, keeps the irradiation angle of each divided light beam on the flat plate constant, and irradiates and scans each light beam in a predetermined direction of the flat plate from an oblique direction. an optical system, a two-dimensional imaging device that photographs bright lines appearing on a flat plate as a light image, a device that synchronizes the imaging cycle of the two-dimensional imaging device and the scanning of each light beam, and a device that extracts optical image components from imaging signals. a binarization circuit for extracting; a means for determining the deviation between the extracted optical image component and the optical image component with respect to a reference bright line obtained for a flat plate; means for calculating multiple positions in the scanning direction of the beam;
The present invention is characterized by comprising means for comparing elongation rates calculated for a plurality of positions in the scanning direction of the light beam with each other to determine a magnitude relationship.

〔作用〕[Effect]

本発明においては、光学系にて複数の光ビーム
を、平板に対する照射角度を夫々一定にして同時
的に平板に斜め方向から照射走査し、2次元撮像
装置にて撮影した光像位置と基準輝線に関する光
像位置との偏差を求め、その偏差に基づき伸び率
を光ビームの走査方向の複数位置について求める
から、平坦な平板を測定する場合は波打ちの存否
に拘わらず伸び率はすべて同値となり、また平坦
でない平板を測定する場合は同値の伸び率とはな
らないものがあることになる。
In the present invention, a plurality of light beams are simultaneously irradiated and scanned onto a flat plate from an oblique direction using an optical system with each beam at a constant irradiation angle, and a light image position and a reference bright line are photographed using a two-dimensional imaging device. The deviation from the optical image position is calculated based on the deviation, and the elongation rate is calculated for multiple positions in the scanning direction of the light beam. Therefore, when measuring a flat plate, the elongation rate will all be the same regardless of the presence or absence of waving. Furthermore, when measuring a flat plate that is not flat, the elongation rate may not be the same for some plates.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。
第1図は本発明の実施例を示す模式的側面図、第
2図は平坦度測定位置近傍を示す模式的平面図で
あり、図中1は熱延鋼板を示す。熱延鋼板(以下
単に鋼板という)1は圧延機3にて圧延されて搬
送ロール2群からなる搬送ライン上を長手方向
(白抜矢符方向)に搬送されている。
The present invention will be specifically explained below based on the drawings.
FIG. 1 is a schematic side view showing an embodiment of the present invention, and FIG. 2 is a schematic plan view showing the vicinity of a flatness measurement position, where 1 indicates a hot rolled steel plate. A hot rolled steel plate (hereinafter simply referred to as a steel plate) 1 is rolled in a rolling mill 3 and conveyed in the longitudinal direction (in the direction of the open arrow) on a conveyance line consisting of two groups of conveyance rolls.

搬送ラインの圧延機3よりも少し搬送方向側で
あつて、搬送ラインの側方へ適長離隔した位置に
はアルゴンレーザ発振器(以下単にレーザ発振器
という)16が固設されており、レーザ発振器1
6はレーザ光照射方向を搬送ラインに向けてあ
る。レーザ発振器16にはその光照射方向に管軸
長方向を一致させて支持管17が取付けられてお
り、支持管17の先端には光学系収縮箱4が設け
られている。このようにレーザ発振器16を搬送
ライン外に設けたのは、搬送ラインの振動がレー
ザ発振器16へ伝わらないようにする為であり、
これにより振動を原因とする測定誤差の発生及び
故障の発生を防止する。
An argon laser oscillator (hereinafter simply referred to as a laser oscillator) 16 is fixedly installed at a position a little closer to the conveyor direction than the rolling mill 3 of the conveyance line and a suitable distance away from the side of the conveyance line.
6, the laser beam irradiation direction is directed toward the conveyance line. A support tube 17 is attached to the laser oscillator 16 with its tube axis length aligned with the direction of light irradiation, and an optical system contraction box 4 is provided at the tip of the support tube 17. The reason why the laser oscillator 16 is provided outside the conveyance line in this way is to prevent the vibration of the conveyance line from being transmitted to the laser oscillator 16.
This prevents measurement errors and failures caused by vibration.

レーザ発振器16にて発生したレーザ光は、支
持管17内を通つて光学系収納箱4へ導かれ、光
学系収納箱4からは鋼板1に対して照射角度を
夫々異ならせて3本のレーザ光a,b,cが鋼板
1上で夫々長手方向に適長離隔されるように照射
している。
The laser beam generated by the laser oscillator 16 is guided to the optical system storage box 4 through the support tube 17, and from the optical system storage box 4, three laser beams are emitted to the steel plate 1 at different irradiation angles. Lights a, b, and c are irradiated onto the steel plate 1 so as to be separated from each other by appropriate lengths in the longitudinal direction.

光学系収納箱4内には、第3図(平面図)に示
すようにレーザ光を3分割するための光学系が収
納されている。レーザ発振器16からのレーザ光
LBを1/3透過2/3反射ミラー44へ照射し、光強
度が1/3となつたレーザ光aを回動軸(1点鎖線
にて示す)回りに往復振動するミラー41へ照射
させる。この種の駆動装置はスキヤナーと称され
ることもある。1/3透過2/3反射ミラー44にて反
射されたレーザ光はハーフミラー45へ照射され
てこれにて半分透過、半分反射され、反射された
レーザ光bは回動軸(1点鎖線にて示す)回りに
往復振動するミラー42へ照射される。そして、
ハーフミラー45を透過したレーザ光はミラー4
6へ照射されてこれにて反射され、反射されたレ
ーザ光cは回動軸(1点鎖線にて示す)回りに往
復振動するミラー43へ照射される。つまり、レ
ーザ光LBは3つのレーザ光a,b,cに分割さ
れ、分割されたレーザ光a,b,cは夫々ミラー
41,42,43へ照射される。ミラー41,4
2,43は夫々スキヤナー駆動回路8,9,10
にて往復振動せられ、その回動軸が鉛直方向に対
して上端を鋼板搬送方向へ傾けた下傾状態になつ
ている。その傾斜角度はミラー43,42,41
の順に大きくなつており、従つて、レーザ光a,
b,cは鋼板1上面に、異なる傾斜角θa,θb,
θcで照射される。
The optical system storage box 4 houses an optical system for dividing the laser beam into three parts, as shown in FIG. 3 (plan view). Laser light from laser oscillator 16
The LB is irradiated onto the 1/3 transmitting 2/3 reflecting mirror 44, and the laser beam a with the light intensity reduced to 1/3 is irradiated onto the mirror 41 that vibrates back and forth around the rotation axis (indicated by the dashed line). . This type of drive is sometimes referred to as a scanner. The laser beam reflected by the 1/3 transmission 2/3 reflection mirror 44 is irradiated to the half mirror 45, where it is half transmitted and half reflected. The light is irradiated onto a mirror 42 that vibrates back and forth around the mirror (shown in Figure 1). and,
The laser beam transmitted through the half mirror 45 is transferred to the mirror 4.
The reflected laser beam c is irradiated onto the mirror 43 which vibrates back and forth around a rotation axis (indicated by a dashed line). That is, the laser beam LB is divided into three laser beams a, b, and c, and the divided laser beams a, b, and c are irradiated onto mirrors 41, 42, and 43, respectively. Mirror 41,4
2 and 43 are scanner drive circuits 8, 9, and 10, respectively.
The shaft is vibrated back and forth, and its rotation axis is tilted downward with its upper end tilted toward the steel plate conveying direction with respect to the vertical direction. The angle of inclination is mirror 43, 42, 41
Therefore, the laser beams a,
b, c have different inclination angles θa, θb,
Irradiated at θc.

これにより、鋼板1上にはレーザ光a,b,c
の輝線A,B,Cとなつて現れる(第2図に示
す)。上記傾斜角θa,θb,θcは、輝線A,B,C
の各離隔距離を、鋼板1に波打ちがない状態下で
略400mmとなるように定める。これは平坦不良が
発生した場合の山と谷との距離に対応させたもの
である。
As a result, the laser beams a, b, and c appear on the steel plate 1.
They appear as bright lines A, B, and C (shown in Figure 2). The above inclination angles θa, θb, θc are the emission lines A, B, C
Each separation distance is determined to be approximately 400 mm under the condition that the steel plate 1 has no undulations. This corresponds to the distance between peaks and valleys when flatness defects occur.

輝線A,B,Cが現れる鋼板1の上方には2次
元撮像装置としてTVカメラ5が設けられてお
り、TVカメラ5は画像水平方向を鋼板1の長手
方向に一致させてその視野が第4図に示すように
輝線A,B,Cに対応する光像A′,B′,C′を全
て撮影できるように位置決めする。TVカメラ5
は出力信号を垂直同期信号分離回路6及び2値化
回路11へ与える。
A TV camera 5 is provided as a two-dimensional imaging device above the steel plate 1 where the bright lines A, B, and C appear, and the TV camera 5 aligns the horizontal direction of the image with the longitudinal direction of the steel plate 1 so that its field of view As shown in the figure, the camera is positioned so that all optical images A', B', and C' corresponding to bright lines A, B, and C can be photographed. TV camera 5
provides the output signal to the vertical synchronization signal separation circuit 6 and the binarization circuit 11.

2値化回路11は第5図aに示すように白黒間
の適当なレベルにしきい値が設定されており、
TVカメラ5から入力した画像信号を白、黒の両
レベルに2値化し、2値化信号は画像信号記憶装
置12へ与えられる。
As shown in FIG. 5a, the binarization circuit 11 has a threshold set at an appropriate level between black and white.
The image signal input from the TV camera 5 is binarized into both white and black levels, and the binarized signal is given to the image signal storage device 12.

画像信号の2値化により光像A′,B′,C′相当
部分のみが白レベルとなる〔第5図b参照〕。
By binarizing the image signal, only the portions corresponding to the light images A', B', and C' have a white level [see Fig. 5b].

信号処理装置13は、画像信号記憶装置12に
2値化信号が入力されると、第4図に示すように
例えば5本の走査線L1,L2,L3,L4,L5上の2
値化信号を画像信号記憶装置12から読出し、後
に説明するように予めこれに記憶させた平坦な鋼
板1を用いて測定した基準輝線A0,B0,C0に関
する前同様の2値化信号と、分割した3本のレー
ザ光の照射角度と、読出した信号とに基づき下記
(1)式の演算を行つて各走査線L1…L5について平
坦度の指標たる伸び率εを求め、 ε=AB+BC−AC/AC×100(%) ……(1) 求めた5つの伸び率の大小関係に基づいて後に
説明するようにして平坦度を測定する。
When the binarized signal is input to the image signal storage device 12, the signal processing device 13 converts the signal onto, for example, five scanning lines L 1 , L 2 , L 3 , L 4 , L 5 as shown in FIG. 2
The digitized signals are read out from the image signal storage device 12, and the same binarized signals as before regarding the reference bright lines A 0 , B 0 , C 0 are measured using the flat steel plate 1 which is stored in advance in the image signal storage device 12 as will be explained later. The following is based on the irradiation angle of the three divided laser beams and the read signal.
Calculate the equation (1) to find the elongation rate ε, which is an index of flatness, for each scanning line L 1 ... L 5 , and calculate ε = AB + BC - AC / AC × 100 (%) ... (1) The flatness is measured as described later based on the magnitude relationship of the elongation rate.

また、信号処理装置13は測定結果を図示しな
い表示器に表示させ、また圧延機3の平坦度制御
装置(図示せず)へ与え、更に演算中レーザ発振
器16の出力を低下させてその寿命を延長せしめ
るべくレーザ発振器16へ信号を与える。
Further, the signal processing device 13 displays the measurement results on a display (not shown), provides them to the flatness control device (not shown) of the rolling mill 3, and further reduces the output of the laser oscillator 16 during calculation to extend its life. A signal is given to the laser oscillator 16 to cause the extension.

一方、前記垂直同期信号分離回路6はTVカメ
ラ5の出力信号たる複合影像信号から垂直同期信
号を分離し、その信号を三角波発生回路7へ与
え、三角波発生回路7は入力した信号に基づきそ
の1/2の周波数の三角波を発生させ、この三角波
を前記ミラー41,42,43を夫々振動駆動す
るスキヤナー駆動回路8,9,10へ出力する。
スキヤナー駆動回路8,9,10は入力信号に基
づきミラー41,42,43を同時的に振動駆動
させる。これにより、レーザ光a,b,cは鋼板
1幅方向への照射点移動速度を一定として、幅方
向位置を同じくして、また、画面と同期して走査
できる。
On the other hand, the vertical synchronization signal separation circuit 6 separates the vertical synchronization signal from the composite image signal that is the output signal of the TV camera 5, and supplies the signal to the triangular wave generation circuit 7, which generates one signal based on the input signal. A triangular wave having a frequency of /2 is generated, and this triangular wave is output to scanner drive circuits 8, 9, and 10 that vibrately drive the mirrors 41, 42, and 43, respectively.
Scanner drive circuits 8, 9, and 10 simultaneously vibrate mirrors 41, 42, and 43 based on input signals. Thereby, the laser beams a, b, and c can be scanned at a constant movement speed of the irradiation point in the width direction of the steel plate 1, at the same position in the width direction, and in synchronization with the screen.

つまり垂直同期信号分離回路6、三角波発生回
路7及びスキヤナー駆動回路8,9,10がTV
カメラ5の撮像周期とレーザ光の走査を同期させ
る手段となつている。
In other words, the vertical synchronization signal separation circuit 6, the triangular wave generation circuit 7, and the scanner drive circuits 8, 9, and 10 are
This is a means for synchronizing the imaging cycle of the camera 5 and the scanning of the laser beam.

このように構成された本発明装置による平坦度
の測定原理について説明する。
The principle of measuring flatness using the apparatus of the present invention configured as described above will be explained.

波打つている鋼板1にレーザ光a,b,cが照
射されると、第6図(側面図)に示すようにその
上面1aに輝線A,B,Cが現れる。このとき、 AC⌒> ……(2) であるので、 +> ……(3) となり、前記(1)式の伸び率を走査線5本について
求める。波打ちがない平坦な鋼板1にレーザ光
a,b,cが照射されると上面に輝線A0,B0
C0が現れ、このとき 0 00 00 0 ……(4) となつて前記(1)式より求まる伸び率εは0とな
る。
When the corrugated steel plate 1 is irradiated with laser beams a, b, and c, bright lines A, B, and C appear on its upper surface 1a, as shown in FIG. 6 (side view). At this time, since AC⌒> ...(2), +> ...(3), and the elongation rate of the above formula (1) is found for the five scanning lines. When a flat steel plate 1 with no corrugations is irradiated with laser beams a, b, and c, bright lines A 0 , B 0 ,
C 0 appears, and at this time, 0 0 + 0 0 = 0 0 (4), and the elongation rate ε determined from the above equation (1) becomes 0.

また、走査線5本のところでの伸び率εが0で
なくてもすべて同値であれば波打ちによる影響と
考えられるので平坦であるとわかり、そのすべて
が同値とならなければ平坦でないことがわかる。
Furthermore, even if the elongation rates ε at five scanning lines are not 0, if they all have the same value, this is considered to be due to the effect of waving, so it is known that the surface is flat, and if all of the elongation rates do not have the same value, it is known that the surface is not flat.

なお、(1)式の算出に際してTVカメラ5にて捉
える画像A′,B′,C′だけではA,B,Cの高さ
について把握できず、従つて,,が得
られない。このため、平坦な鋼板1を用いて測定
した基準輝線A0,B0,C0に対応する画像上の座
標A0′,B0′,C0′を予め信号処理装置13に記憶
させておき、A′−A0′,B′−B0′,C′−C0′を求め

この距離に夫々tanθa,tanθb,tanθcを乗ずるこ
とにより高さを求める。
It should be noted that when calculating equation (1), the heights of A, B, and C cannot be determined from only the images A', B', and C' captured by the TV camera 5, and therefore, cannot be obtained. Therefore, the coordinates A 0 ', B 0 ' , C 0 ' on the image corresponding to the reference bright lines A 0 , B 0 , C 0 measured using the flat steel plate 1 are stored in advance in the signal processing device 13. , find A′−A 0 ′, B′−B 0 ′, C′−C 0 ′,
The height is determined by multiplying this distance by tanθa, tanθb, and tanθc, respectively.

これにより、こと高さと画像上のA′,B′,
C′とから,〓BC,を算出でき、伸び率ε
の算出が可能となる。
As a result, the height and A′, B′, on the image,
From C′, 〓BC , can be calculated, and the elongation rate ε
It becomes possible to calculate

なお、上記実施例では3本のレーザ光を鋼板に
照射しているが、本発明はこれに限らずレーザ光
を2本鋼板に照射させるようにしても実施でき、
例えばスキヤナー駆動回路が1つ故障した場合で
あつても測定が可能である。
Although the steel plate is irradiated with three laser beams in the above embodiment, the present invention is not limited to this, and can also be implemented by irradiating the steel plate with two laser beams.
For example, even if one scanner drive circuit fails, measurement is possible.

このとき、2つのレーザ光がa,bであるとす
ると、その伸び率ε′としては下記(5)式を用いる。
At this time, assuming that the two laser beams are a and b, the following equation (5) is used as the elongation rate ε'.

ε′=|AB−A0B0|/A0B0×100(%) ……(5) この式を用いる理由は、第7図に示す如く波打
ちがあると鋼板1が上側に凸状となるので、
A0B0>となるからである。従つて、上記伸び
率ε′を用いる場合と前記伸び率εを用いる場合と
では平坦度判定の際の判定基準が異なる。
ε′=|AB−A 0 B 0 |/A 0 B 0 ×100(%) ……(5) The reason for using this formula is that as shown in Fig. 7, when there is undulation, the steel plate 1 becomes convex upward. Therefore,
This is because A 0 B 0 >. Therefore, the criteria for flatness determination are different between the case where the elongation rate ε' is used and the case where the elongation rate ε is used.

光ビームが4本以上の場合にも同様に平坦不良
鋼板に光ビームが照射される点を折れ線で結んだ
総長さと、平坦な鋼板に光ビームが照射される点
を直線で結んだ総長さとの比較で伸び率を式で表
わすことができる。
Similarly, when there are four or more light beams, the total length is calculated by connecting the points where the light beam is irradiated on the flat defective steel plate with a polygonal line, and the total length when the points where the light beam is irradiated on the flat steel plate are connected with a straight line. By comparison, the elongation rate can be expressed by a formula.

上記説明ではレーザ光を使用しているが、本発
明はこれに限らず細いビームであればよい。
Although a laser beam is used in the above description, the present invention is not limited to this, and any narrow beam may be used.

〔効果〕〔effect〕

以上詳述した如く本発明は、複数のレーザ光を
同期的に走査させて平板に照射し、平板上に表れ
た輝線とその基準輝線との偏位を、基準輝線の走
査方向の複数位置で求め、その偏位に基づいて伸
び率を算出し、複数位置での大小関係をみるの
で、平板に波打ちが生じる場合であつても平坦度
を精度よく測定できる優れた効果を奏する。
As detailed above, the present invention synchronously scans and irradiates a flat plate with a plurality of laser beams, and measures the deviation between the bright line appearing on the flat plate and its reference bright line at multiple positions in the scanning direction of the standard bright line. Since the elongation rate is calculated based on the deviation and the magnitude relationship at multiple positions is checked, the flatness can be accurately measured even when the flat plate is undulated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す模式的側面図、
第2図は平坦度測定位置近傍を示す模式的平面
図、第3図は光学系収納箱の構成を示す断面図、
第4図は輝線を光像として捉えた状態を示す撮影
画像、第5図は2値化処理の内容説明図、第6
図、第7図は本発明の測定原理説明図、第8図は
従来の平坦度測定装置の模式図である。 1……熱延鋼板、4……光学系収納箱、5……
TVカメラ、11……2値化回路、12……画像
信号記憶装置、13……信号処理装置、16……
レーザ発振器。
FIG. 1 is a schematic side view showing an embodiment of the present invention;
Fig. 2 is a schematic plan view showing the vicinity of the flatness measurement position, Fig. 3 is a sectional view showing the configuration of the optical system storage box,
Figure 4 is a photographed image showing how the bright line is captured as a light image, Figure 5 is an explanatory diagram of the content of the binarization process, and Figure 6 is
7 are explanatory diagrams of the measurement principle of the present invention, and FIG. 8 is a schematic diagram of a conventional flatness measuring device. 1...Hot-rolled steel plate, 4...Optical system storage box, 5...
TV camera, 11... Binarization circuit, 12... Image signal storage device, 13... Signal processing device, 16...
laser oscillator.

Claims (1)

【特許請求の範囲】 1 平板に光ビームを照射して平板上に現れる輝
線を撮影し、撮影した光像に基づいて平板の平坦
度を測定する装置において、 単一の光源から発生した光ビームを受けてこれ
を複数の光ビームに分割し、分割した各光ビーム
の平板に対する照射角度を夫々一定にして斜め方
向より平板の所定方向に向けて各光ビームを照射
走査する光学系と、 平板上に現れた輝線を光像として撮影する2次
元撮像装置と、 該2次元撮像装置の撮影周期と、各光ビームの
走査を同期させる装置と、 撮影信号から光像成分を抽出する2値化回路
と、 抽出した光像成分と、平坦な平板について得ら
れる基準輝線に関する光像成分との偏差を求める
手段と、 複数の光ビームに対応する偏差に基づき伸び率
を、光ビームの走査方向の複数位置について算出
する手段と、 光ビームの走査方向の複数位置について算出し
た伸び率を相互に比較して大小関係を判断する手
段と を具備することを特徴とする平板の平坦度測定装
置。
[Scope of Claims] 1. In an apparatus that irradiates a light beam onto a flat plate, photographs bright lines appearing on the flat plate, and measures the flatness of the flat plate based on the photographed optical image, the light beam generated from a single light source an optical system that divides the light beam into a plurality of light beams, and irradiates and scans each light beam in a predetermined direction of the flat plate from an oblique direction while keeping the irradiation angle of each divided light beam with respect to the flat plate constant; A two-dimensional imaging device that photographs the bright lines appearing above as a light image, a device that synchronizes the imaging cycle of the two-dimensional imaging device and the scanning of each light beam, and a binarization device that extracts optical image components from the imaging signal. a circuit; a means for determining the deviation between the extracted optical image component and the optical image component with respect to a reference bright line obtained for a flat plate; What is claimed is: 1. A flat plate flatness measuring device comprising: means for calculating at a plurality of positions; and means for comparing elongation rates calculated for a plurality of positions in a scanning direction of a light beam to determine a magnitude relationship.
JP61014297A 1986-01-24 1986-01-24 Apparatus for measuring degree of flatness of flat plate Granted JPS62172210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61014297A JPS62172210A (en) 1986-01-24 1986-01-24 Apparatus for measuring degree of flatness of flat plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61014297A JPS62172210A (en) 1986-01-24 1986-01-24 Apparatus for measuring degree of flatness of flat plate

Publications (2)

Publication Number Publication Date
JPS62172210A JPS62172210A (en) 1987-07-29
JPH0551081B2 true JPH0551081B2 (en) 1993-07-30

Family

ID=11857156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61014297A Granted JPS62172210A (en) 1986-01-24 1986-01-24 Apparatus for measuring degree of flatness of flat plate

Country Status (1)

Country Link
JP (1) JPS62172210A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433256B1 (en) * 1999-12-22 2004-05-27 주식회사 포스코 Apparatus for measuring the sectional shape of the rolled bar

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082804A (en) * 1983-10-12 1985-05-11 Nippon Steel Corp Shape detecting method of running belt shaped body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082804A (en) * 1983-10-12 1985-05-11 Nippon Steel Corp Shape detecting method of running belt shaped body

Also Published As

Publication number Publication date
JPS62172210A (en) 1987-07-29

Similar Documents

Publication Publication Date Title
USRE39978E1 (en) Scanning phase measuring method and system for an object at a vision station
JP3430780B2 (en) Object surface shape detection method
JP3597562B2 (en) Electrophotographic printer and method for lateral registration of multiple image exposure frames
IL138414A (en) Apparatus and method for optically measuring an object surface contour
JPH08334319A (en) Method for measuring bending rate of bent plate glass
JP6419101B2 (en) Corrugated molding inspection method
JPH1068607A (en) Three dimensional shape measuring method
JPH0551081B2 (en)
JP3007849B2 (en) Shape detection method and shape detection device for object surface
EP0809800B1 (en) Surface topography enhancement
JP3340879B2 (en) Surface defect detection method and apparatus
JPH03186706A (en) Three-dimensional shape dimension measuring instrument
JPH10185514A (en) Coil position detector
JP2992154B2 (en) Appearance inspection device
JPH01227910A (en) Optical inspection device
JP2006189390A (en) Optical displacement measuring method and device
JPH10185515A (en) Coil position detector
JPS6010563B2 (en) How to measure the flatness of a flat plate
JPH11344321A (en) Noncontact measuring method for three dimensional object shape and device
JPH052424B2 (en)
JPH0821711A (en) Waviness detector for surface of sheet board
JP2000337947A (en) Apparatus for detecting liquid level wave
JPH10185519A (en) Coil locator
JPH06294616A (en) Edge position correcting method
JP2000329520A (en) Coil position detector