JPH05500651A - Manufacturing method of MBa↓2Cu↓4O↓8 superconductor - Google Patents

Manufacturing method of MBa↓2Cu↓4O↓8 superconductor

Info

Publication number
JPH05500651A
JPH05500651A JP2513795A JP51379590A JPH05500651A JP H05500651 A JPH05500651 A JP H05500651A JP 2513795 A JP2513795 A JP 2513795A JP 51379590 A JP51379590 A JP 51379590A JP H05500651 A JPH05500651 A JP H05500651A
Authority
JP
Japan
Prior art keywords
oxygen
powder
precursor powder
solution
containing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2513795A
Other languages
Japanese (ja)
Inventor
ホロウイツツ,ハロルド・ソール
マツクレイン,ステフアン・ジエイムズ
Original Assignee
イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー filed Critical イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー
Publication of JPH05500651A publication Critical patent/JPH05500651A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 MB a 2CLl 408超電導体の製造法本発明は、MBa2Cu40gの 式を有する超電導斜方品系相の製造法に関する。[Detailed description of the invention] MBa 2CLl 408 Superconductor manufacturing method The present invention is based on the production of 40g of MBa2Cu. The present invention relates to a method for producing a superconducting rhombic phase having the following formula.

参照文献 Bendnorz及びMuller、Z、Phys、B64,189(1986 )は、La−Ba−Cu−0系において超電導転移温度が約35にの超電導相を 開示している。その後多くの研究者によりこの相の存在が確認された[例えばR ao及びGanguly、Currentphys、Lett、、3,379  (1987)参照]。超電導相の組成はLa、x (Ba、Sr、Ca)wo4 −yであり、正方晶系に2Ni F。References Bendnorz and Muller, Z. Phys. B64, 189 (1986 ) is a superconducting phase with a superconducting transition temperature of about 35 in the La-Ba-Cu-0 system. Disclosed. Subsequently, the existence of this phase was confirmed by many researchers [for example, R ao and Ganguly, Currentphys, Lett, 3,379 (1987)]. The composition of the superconducting phase is La, x (Ba, Sr, Ca) wo4 -y, and 2NiF in the tetragonal system.

型構造を持ち、典型的な場合Xは約1.5であり、yは酸素空位を示すことが同 定された。type structure, typically X is about 1.5 and y represents an oxygen vacancy. established.

’Wu等、Phys、Rev、Lett、、58,908 (1987)は、Y −Ba−Cu−0系において超電導転移温度が約90にの超電導相を開示してい る。研究された化合物は、Chu等、Phys、Rev。'Wu et al., Phys. Rev. Lett., 58, 908 (1987), Y. -Discloses a superconducting phase with a superconducting transition temperature of about 90 in the Ba-Cu-0 system. Ru. The compounds studied are those of Chu et al., Phys, Rev.

量のY2O3,BaCO3及びCuOとの固相反応により製造され、(Y+−w B a t) 2Cu 04−7であり、x=0.4の公称組成を持つ。この反 応方法は900℃における2xl(15バール(2Pa)の減圧酸素雰囲気下で の酸化物の6時間の加熱を含む。反応混合物を微粉砕し、加熱段階を繰り返した 。その後完全に反応した混合物を、直径が3xl6インチ(0,5cm)の円筒 内に圧縮し、925℃における同一の減圧酸素雰囲気下で最終的に24時間焼結 した。続いて超電導相をYBa2Cu307−Δと同定した。produced by solid phase reaction with amounts of Y2O3, BaCO3 and CuO, (Y+-w Bat) 2Cu 04-7 and has a nominal composition of x=0.4. This anti The reaction method is under a reduced pressure oxygen atmosphere of 2xl (15 bar (2 Pa)) at 900°C. oxide for 6 hours. The reaction mixture was finely ground and the heating step was repeated. . The fully reacted mixture was then poured into a cylinder with a diameter of 3x16 inches (0,5 cm). and finally sintered for 24 hours under the same reduced pressure oxygen atmosphere at 925 °C. did. Subsequently, the superconducting phase was identified as YBa2Cu307-Δ.

それから何百もの他の文献がYBa、Cu307−Δの製造のための類似の固相 反応法を開示した。他の文献は、800−850℃及びそれ以上の温度で加熱す る反応物の製造のための種々の溶液及び沈澱法を開示した。Then hundreds of other publications describe similar solid phases for the production of YBa, Cu307-Δ. A reaction method was disclosed. Other literature describes heating at temperatures of 800-850°C and higher. Disclosed are various solution and precipitation methods for the preparation of reactants.

Hirano等、Chemistry Letters、665. (1988 )は、2−メトキシ又は2−エトキシエタノール中のBa金属、Y(0−iPr )3及びCu−アセチルアセトネート又はCuアルコキシドの溶液の部分的加水 分解によるY−Ba−Cu−0超電導体の製造法を開示している。溶液を乾燥窒 素中で撹拌し、60℃に12時間加熱した。その後溶媒で希釈した水をゆっくり 添加することにより溶液を加水分解した。撹拌及び加熱を数時間続けた。撹拌を 続けながら溶液を約60℃の真空下で蒸発させ、非晶質の原料粉末を得た。粉末 を800°C゛から950℃の温度にて酸素流中で最高24時間焼成した。焼成 粉末を酸素流中最高920℃の温度で圧縮焼結し、その後450°Cから550 ℃の温度でアニールした。Hirano et al., Chemistry Letters, 665. (1988 ) is Ba metal in 2-methoxy or 2-ethoxyethanol, Y(0-iPr ) Partial hydration of solutions of 3 and Cu-acetylacetonate or Cu alkoxide A method for manufacturing Y-Ba-Cu-0 superconductor by decomposition is disclosed. Dry the solution with nitrogen The mixture was stirred in water and heated to 60° C. for 12 hours. Then slowly add water diluted with solvent. The solution was hydrolyzed by adding Stirring and heating were continued for several hours. stir The solution was continuously evaporated under vacuum at about 60° C. to obtain an amorphous raw powder. powder The samples were calcined at temperatures between 800°C and 950°C in a stream of oxygen for up to 24 hours. firing The powder is compacted and sintered in a flow of oxygen at temperatures up to 920°C, followed by sintering from 450°C to 550°C. Annealed at a temperature of °C.

1988年6月28日出願のS、N、214,702の一部継続出願であり、1 989年6月28日出願の共通の譲渡された出願である“Process fo r Making 5uperconductors and Their P recursors″、S、 N、372゜726は、yが約6から約65であ る正方晶系MBa2Cu30y、Xが約6.5から約7である斜方晶系MBa、 、Cu5O,又はこれらの混合物を、基本的に炭素を含まないM、Ba及びCu の原料粉末をM:Ba:Cuの原子比が1:2:3にて形成し、該原料粉末を窒 素又はアルゴンなどの不活性ガス中、約650℃から約800℃の温度で加熱し 、適当に冷却し、所望の生成物を得ることにより製造する方法を開示した。This is a partial continuation of S, N, 214,702 filed on June 28, 1988, and 1 “Process fo”, a commonly assigned application filed June 28, 1989 r Making 5upperconductors andTheir P recursors'', S, N, 372°726, where y is about 6 to about 65. tetragonal MBa2Cu30y, orthorhombic MBa where X is about 6.5 to about 7, , Cu5O, or mixtures thereof with essentially carbon-free M, Ba, and Cu The raw material powder was formed with an atomic ratio of M:Ba:Cu of 1:2:3, and the raw material powder was Heating at a temperature of about 650°C to about 800°C in an inert gas such as hydrogen or argon. , disclosed a method of preparation by appropriate cooling to obtain the desired product.

Karpinski等、Nature 336.660 (1988)は、40 0バール(40MPa)の0□下及び1040℃にてYBa2Cu408を大量 に製造する方法を開示した。転移温度は81にである。Karpinski et al., Nature 336.660 (1988), 40 Mass production of YBa2Cu408 at 0□ below 0 bar (40MPa) and at 1040℃ disclosed a manufacturing method. The transition temperature is 81°C.

Karpinski等、J、Less−Common Met、150.129  (1989)はさらに、50バール(5MPa)以上の02圧下、約1000 °Cの温度にて大量のYBa2Cu、O,の合成が可能であることを開示してい る。彼らは又、約1000−3000バール(100−300MPa)の高酸素 圧下、及び約1ooo−i2oo℃にてTcが約40にのYB a 2Cu3. 507+、又は別の書き表し方でYBa2Cu30□5−7を大量に製造するこ とができることを開示している。200バール(20MPa)の圧力下、約10 50℃にて焼結した試料はY’2Ba4CIJ70+s−rとY B a 2  Cu 307−Δの混合物であった。Karpinski et al., J. Less-Common Met, 150.129 (1989) further states that under 02 pressure of 50 bar (5 MPa) or more, about 1000 discloses that it is possible to synthesize large quantities of YBa2Cu,O, at a temperature of °C. Ru. They also have high oxygen levels of about 1000-3000 bar (100-300 MPa). YBa2Cu3. under reduced pressure and with Tc of about 40 at about 1ooo-i2oo°C. 507+ or another way of writing YBa2Cu30□5-7 to be produced in large quantities Discloses what can be done. Under a pressure of 200 bar (20 MPa), approximately 10 The samples sintered at 50℃ are Y'2Ba4CIJ70+s-r and YBa2. It was a mixture of Cu307-Δ.

Morris等、Phys、Rev、B 39.7347 (1989)は、R =Nd、Sm、Eu、Gd、Dy、Ho、Er及びTmであるYBa2Cu40 g及びRB a 2CLl 408の製造を開示している。YBa2Cu408 は、高酸素圧下[圧力(02) =約120気圧(12MPa)]、930°C にて8時間焼結した。希土類化合物の製造の場合は異なる合成温度及び圧力が必 要であった。彼らは又、Tcが約40−50にのEu、BaCuO2m及びGd 2Ba4Cu70.の付加相の発見も報告しており、この相は合成条件を変える ことによりY、Dy、Ho及びEr系にて製造することができることを記載して いる。Morris et al., Phys. Rev. B 39.7347 (1989), R = YBa2Cu40 where Nd, Sm, Eu, Gd, Dy, Ho, Er and Tm g and RB a 2CLl 408 are disclosed. YBa2Cu408 is under high oxygen pressure [pressure (02) = approximately 120 atm (12 MPa)], 930 °C It was sintered for 8 hours. Different synthesis temperatures and pressures are required for the production of rare earth compounds. It was important. They also have Eu, BaCuO2m and Gd with Tc around 40-50. 2Ba4Cu70. also reported the discovery of an additional phase, which can change the synthesis conditions. It also states that it can be produced in Y, Dy, Ho and Er systems. There is.

Morris等、Physica C159,287(1989)は、R=Nd 、SM、Eu、Gcf、Dy、Ho、Er及びTmであるYBa2Cu、O,、 RBa2Cu40.、Y2BaCuO5,、−、及びR2Ba4Cu70.、、 、の製造を開示している。Y2O3又はR2O3とBaO及びCUOの固相反応 により試料を製造した。微粉末成分を共に粉砕し、3500kg/cm2(35 0MPa)にで圧縮し、6mmの錠剤とした。Morris et al., Physica C159, 287 (1989), R=Nd , SM, Eu, Gcf, Dy, Ho, Er and Tm, YBa2Cu, O, . RBa2Cu40. , Y2BaCuO5,, -, and R2Ba4Cu70. ,, , discloses the manufacture of. Solid phase reaction of Y2O3 or R2O3 with BaO and CUO A sample was manufactured by The fine powder components are ground together to produce a mass of 3500 kg/cm2 (35 0 MPa) to form 6 mm tablets.

試料をそれぞれ金箔に包み、外部加熱高圧酸素炉で8時間焼成した。焼成の後、 ゆっくり室温に冷却した(50分で700℃、50分で6000C1100分て 500°C1100分で400℃、炉冷却)。最高の均一性を得るために、同一 条件下で各試料をもう1度再粉砕し、圧縮し、加熱し、冷却した。彼らは930 0C及び約35気圧(3,5MPa)の酸素圧にて上記の通りYBa2Cu、0 8を製造することができることを見い出した。彼らは又、930℃及び約15気 圧(1,5MPa)の酸素圧下で上記の通りY2BaCuO5 見いだした。Each sample was wrapped in gold foil and fired in an externally heated high pressure oxygen furnace for 8 hours. After firing, Slowly cooled to room temperature (700℃ for 50 minutes, 6000℃ for 50 minutes, 1100 minutes 500°C for 1100 minutes and 400°C, furnace cooling). Identical for maximum uniformity Each sample was reground one more time under conditions, compressed, heated, and cooled. They are 930 YBa2Cu, 0 as above at 0 C and an oxygen pressure of about 35 atm It has been found that 8 can be produced. They also operate at 930°C and about 15 atm. Y2BaCuO5 as above under oxygen pressure (1,5 MPa) I found it.

Cava等、Nature 338.328 (1989)は、2段階法による Y B a 2CIJ 40.の合成を開示している。第1段階でY、Ba及び Cuの硝酸塩を正しい化学I論的割合で混合し、アルミするつぼ中で非常にゆっ くり750℃に加熱し、この温度を]、 6−24時間保持して反応させる。加 熱、ソーキング及び冷却のすべてを酸素流中で行う。Cava et al., Nature 338.328 (1989), uses a two-step method. Y B a 2CIJ 40. discloses the synthesis of In the first stage, Y, Ba and Mix the Cu nitrates in the correct stoichiometric proportions and mix very slowly in an aluminum crucible. Heat to 750° C. and maintain this temperature for 6-24 hours to react. Canada All heating, soaking and cooling is done in a stream of oxygen.

750℃における反応の最初の数時間後に中間混合及び粉砕段階を行った時に最 高の結果が得られる。この予備−反応粉末を粉砕し、大体同量のNa2CO3又 はに2CO3などのアルカリ炭酸塩と混合する。この混合物を粉砕し、銀箔中に 置き、02流中で3日間800℃に加熱する。YBa2Cu307は、7000 C−825°Cの加熱温度で得られる主相である。生成物を洗浄して過剰のアル カリ炭酸塩を除去し、空気中で穏やかに加熱して乾燥する。When an intermediate mixing and grinding step was performed after the first few hours of reaction at 750°C, the final High results are obtained. This pre-reacted powder was ground and approximately the same amount of Na2CO3 or Mix with an alkali carbonate such as Hani2CO3. Grind this mixture and place it in silver foil. Place and heat to 800° C. in 02 stream for 3 days. YBa2Cu307 is 7000 It is the main phase obtained at a heating temperature of -825°C. Wash the product to remove excess alcohol. Remove the potash carbonate and dry by gentle heating in air.

Pooke等、プレプリントはY2O3、BaCuO2及びCuOを共に粉砕し 、ダイで圧縮してペレットとし、最初に9008Cで反応させる方法によるYB a2Cu40gの製造を開示している。この段階でYBa2Cu307−Δ相が 形成され、Cu O、B a Cu O2及びY2BaCuO5が不純物として 存在する。粉砕及び再−圧縮の後、ベレットを酸素流中で790°C−830℃ の温度にて焼結する。815°Cで焼結した場合に良い結果が得られる。X−線 回折パターンにより、1日焼結した後に実質的割合のYBa2Cu40.相が示 された。相の純度は、粉砕及び焼結を繰り返すと共に増す。彼らは、反応/焼結 温度が845℃及び870°Cであることを主な差とする類似方法におけるYB a2Cu30+s−+の製造も開示している。化学量論量のY2O3、B a  (NO3) 2及びCuOを混合し、予備−反応により硝酸塩を分解し、そのi &860’c−870°Cにて酸素流中て数日以上反応/焼結を行い、好ましく は中間で粉砕を行う。Pooke等は、Y B a 2CLJ 408及びY2 Ba4CLL70+s−y両方の反応速度が非常に少量のアルカリ硝酸塩を原料 に加えることにより向上することも開示している。彼らは、化学量論的割合のY 2O3、Ba(NO3)2及びCuOを最高02モルのNaNO3又はKNO3 と混合し、粗い粉末として30分間予備−反応させ、粉砕し、ダイ−圧縮してペ レ、ットとし、酸素流中で8008Cにて少なくとも12時間反応させることに よりほとんど単−相のYBa2Cu408を製造することができることを開示し ている。粉砕及び焼結を繰り返すと共に相の純度が増す。原料としてBa (N O3)2をBaCuO2に置換すると結晶性の向上が観察された。Yを希土類の いずれかに完全に置換するとMBa、、cLJ408及びYBa2Cu30+5 −yの形成速度が増すことも報告されている。8150Cにてアルカリを用いず に単−相のErBa2Cu40aを製造することも開示されている。Pooke et al., preprint milled Y2O3, BaCuO2 and CuO together. , YB is compressed into pellets with a die and first reacted with 9008C. Discloses the production of 40 g of a2Cu. At this stage, the YBa2Cu307-Δ phase formed, with CuO, BaCuO2 and Y2BaCuO5 as impurities. exist. After crushing and re-compression, the pellets were heated at 790°C-830°C in a stream of oxygen. Sinter at a temperature of Good results are obtained when sintering at 815°C. X-ray The diffraction pattern shows that after one day of sintering, a substantial proportion of YBa2Cu40. The phase shows It was done. The purity of the phase increases with repeated milling and sintering. They react/sinter YB in a similar method with the main difference being that the temperature is 845°C and 870°C The production of a2Cu30+s-+ is also disclosed. Stoichiometric amount of Y2O3, Ba (NO3) 2 and CuO are mixed, nitrate is decomposed by a pre-reaction, and the i Reaction/sintering is carried out at &860'c-870°C in oxygen flow for several days or more, preferably Grinding is carried out in the middle. Pooke et al. Y B a 2 CLJ 408 and Y2 The reaction rate of both Ba4CLL70+s-y is very small amount of alkali nitrate as raw material. It is also disclosed that the improvement can be achieved by adding . They are the stoichiometric proportions of Y 2O3, Ba(NO3)2 and CuO up to 0.2 mol NaNO3 or KNO3 pre-reacted for 30 minutes as a coarse powder, ground and die-pressed to form a pellet. and react for at least 12 hours at 8008C in a flow of oxygen. Discloses that more nearly single-phase YBa2Cu408 can be produced ing. The purity of the phase increases with repeated crushing and sintering. Ba (N An improvement in crystallinity was observed when O3)2 was replaced with BaCuO2. Y for rare earth When completely replaced with either MBa, cLJ408 and YBa2Cu30+5 It has also been reported that the rate of -y formation increases. At 8150C without using alkali The production of single-phase ErBa2Cu40a has also been disclosed.

M i y a、 t a k、 e等、Nature 341.41 (19 89)は、Y 203、Ba (NO3) 2、CuO及びCaCO3の混合物 を酸素流中で900℃に12時間加熱することによるY、、Ca、Ba2Cu4 08の製造を開示している。得られる粉末を100MP aで圧縮し、酸素雰囲 気中800℃で軽く焼結する。20%の酸素を含むアルゴン雰囲気中における等 圧熱圧プレス(100MPa)を2回繰り返した。最初のプレスは950°Cに て6時間行った。第2のプレスは1050℃にて3時間行った。生成物は2次相 を含まない高品質多結晶性物質であることが報告されている。M i y a, tak, e, etc., Nature 341.41 (19 89) is a mixture of Y203, Ba(NO3)2, CuO and CaCO3 Y, , Ca, Ba2Cu4 by heating to 900 °C for 12 hours in a stream of oxygen The manufacture of 08 is disclosed. The obtained powder was compressed at 100 MPa and placed in an oxygen atmosphere. Lightly sinter at 800℃ in air. etc. in an argon atmosphere containing 20% oxygen. The hot pressure press (100 MPa) was repeated twice. First press at 950°C I went there for 6 hours. The second press was carried out at 1050°C for 3 hours. The product is a secondary phase It is reported that it is a high quality polycrystalline material containing no .

粒径の小さい、すなわち一般にサブミクロンサイズで、プレスにより所望の形状 にすることができ、焼結し、超電導MBa2Cu408に変換することができる 粉末の製造に使用することができる材料の形成、及び粉砕ならびに再加熱、高酸 素圧、触媒又は本来反応速度が遅い従来の固相反応法を使用しないそのような粉 末の製造が非常に望ましい。Small particle size, typically submicron size, which can be pressed into the desired shape can be sintered and converted into superconducting MBa2Cu408 Formation of materials that can be used for the production of powders, and grinding and reheating, high acid Such powders do not use atmospheric pressure, catalysts, or conventional solid phase reaction methods that inherently have slow reaction rates. Manufacturing of the final product is highly desirable.

発明の要約 本発明は、YBa2Cu408の化学式を有し、ここでMはY、 Nd。Summary of the invention The present invention has the chemical formula YBa2Cu408, where M is Y, Nd.

Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びT−uから成る群より選 ぶ超電導斜方晶系相の粉末の製造法において、(a)本質的に炭素を含まず、M 、Ba及びCu化合物の均質混合物を含み、M:Ba:Cuの原子比が1+2: 4である先駆体粉末を調製し。Selected from the group consisting of Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Tu. A method for producing a superconducting orthorhombic phase powder comprising: (a) essentially free of carbon; , containing a homogeneous mixture of Ba and Cu compounds, with an atomic ratio of M:Ba:Cu of 1+2: A precursor powder of No. 4 was prepared.

(b)酸素含有雰囲気、好ましくは全圧が1気圧(1x 105P a)の実質 的に純粋な酸素雰囲気下で、約700°C−約825℃、好ましくは約750℃ −約825℃の温度てM B a 2 Cu 40 p、の粉末の形成に十分な 時間、典型的には約12時間該先駆体粉末を加熱し:(c)該MBa2Cu40 gBaCuO2有雰囲気下、例えば空気中で、しかし好ましくは実質的に純粋な 酸素中で冷却することから本質的に成る方法を提供する。(b) an oxygen-containing atmosphere, preferably with a total pressure of 1 atm (1 x 105 P a); from about 700°C to about 825°C, preferably about 750°C, under an atmosphere of pure oxygen. - Sufficient to form a powder of M B a 2 Cu 40 p at a temperature of about 825 °C. heating the precursor powder for an hour, typically about 12 hours; (c) the MBa2Cu40 gBaCuO2 under an atmosphere, e.g. air, but preferably substantially pure A method is provided consisting essentially of cooling in oxygen.

M:Ba:Cuの1:2:4の原子比は絶対のものではないことに注意しなけれ ばならない。不純物の存在又は秤量の誤りにより少しの変化があっても超電導物 質を得ることはできるが、単−相でないかも知れない。It should be noted that the 1:2:4 atomic ratio of M:Ba:Cu is not absolute. Must be. Even if there is a slight change due to the presence of impurities or an error in weighing, it is still a superconductor. You can get quality, but it may not be single-phase.

該先駆体粉末は溶液経路により、例えばM、Ba及びCuの炭素を含才ない塩、 例えば次亜硝酸塩の溶液、懸濁液又は沈澱の乾燥により製造するのが好ましい。The precursor powder can be prepared by a solution route, such as carbon-free salts of M, Ba and Cu; For example, it is preferably produced by drying a solution, suspension or precipitate of hyponitrite.

該先駆体粉末を有機溶媒に溶解したM、Ba及びCu化合物の加水分解により形 成した酸化物を乾燥することにより製造するのが特に好ましい。The precursor powder is formed by hydrolysis of M, Ba and Cu compounds dissolved in an organic solvent. It is particularly preferred to produce the oxide by drying the resulting oxide.

又、酸素−含有雰囲気はCO2を含まないのが好ましい。It is also preferred that the oxygen-containing atmosphere is free of CO2.

本発明の方法はMBa2Cu40gの特に微細な粉末を与える。The process according to the invention gives a particularly fine powder of 40 g of MBa2Cu.

発明の詳細な説明 本発明は、MBa2Cu40sの化学式を有し、ここでMはY、 Nd。Detailed description of the invention The present invention has a chemical formula of MBa2Cu40s, where M is Y, Nd.

Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuから成る群より選ぶ 粉末の製造のための比較的低温で行う方法を提供する。この新規方法により、約 840℃の最高加工温度及び1段階の加熱を用いて超電導MBa2Cu40gの 粉末を製造することが可能となる。Selected from the group consisting of Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu A relatively low temperature method for the production of powder is provided. This new method allows approximately 40g of superconducting MBa2Cu using a maximum processing temperature of 840°C and one-step heating. It becomes possible to produce powder.

この方法により、−次位径がミクロン又はサブミクロンの範囲であるMBa2C u408の粉末を製造することができる。従ってこれらの粉末は焼結成型超電導 製品の製造に非常に有用であり、このような小さい粒子は従来の高温固相反応又 は高温−高圧法により製造した粉末の場合に典型的である寸法の大きな粒子より 良く焼結するので、製造する製品は密度が高い。By this method, MBa2C with -order diameter in the micron or submicron range A powder of u408 can be produced. Therefore, these powders are sintered superconductors. Very useful in product manufacturing, such small particles can be easily processed using traditional high-temperature solid-state reactions or is larger than the large particles typical of powders produced by high temperature-pressure processes. Because it sinteres well, the products produced are dense.

本発明の方法で使用する反応物は、この方法により8408C以下の温度で反応 してMBa2Cu40gを形成する種類及び形態でなければならない。BaCO 3が存在すると実質的に確実に反応を完結する、すなわち実質的に完全にBaC O3を分解するために少な(とも約900℃の反応温度が必要なので、方法の間 に反応物としてBaCO3の使用は避けなければならず、方法の間にBaCO3 の形成も避ける必要がある。The reactants used in the method of the present invention can be reacted by this method at temperatures below 8408C. The type and form must be such that 40g of MBa2Cu is formed. BaCO The presence of 3 substantially ensures completion of the reaction, i.e., substantially completely BaC During the process, a low (approximately 900°C) reaction temperature is required to decompose O3. The use of BaCO3 as a reactant must be avoided and BaCO3 must be avoided during the process. It is also necessary to avoid the formation of

本発明の方法において酸素−含有雰囲気として空気を使用することができるが、 方法の間のBaC0aの形成を避けるためにCO2を含まない酸素−含有雰囲気 の使用が好ましい。Although air can be used as oxygen-containing atmosphere in the method of the invention, CO2-free oxygen-containing atmosphere to avoid BaC0a formation during the process It is preferable to use

本発明の方法は、本質的に炭素を含まず、M: Ba・Cuの原子比が1・2: 4であるM、Ba及びCu化合物の均質混合物を含む先駆体粉末を使用する。本 文で使用する本質的に炭素を含まないということは、先駆体粉末中の炭素が1重 量%以下であることを意味する。方法の間に進行する低温固相反応を容易にする ために、先駆体粉末は均質に混合した微粒子粉末でなければならない。先駆体粉 末の製造のための溶液経路は、均質混合微粒子粉末を与え、溶液−誘導先駆体粉 末が好ましい。The method of the present invention essentially does not contain carbon, and the atomic ratio of M:Ba/Cu is 1.2: A precursor powder containing a homogeneous mixture of M, Ba and Cu compounds of 4 is used. Book Essentially carbon-free, as used in the text, means that the carbon in the precursor powder is monovalent. % or less. Facilitates low temperature solid-state reactions that proceed during the process For this purpose, the precursor powder must be a homogeneously mixed, finely divided powder. precursor powder The solution route for the production of powders provides a homogeneous mixture of finely divided powders and solution-derived precursor powders. The end is preferable.

本発明で使用する先駆体粉末は、M、Ba及びCu化合物を含み、M:Ba:C uの原子比が12:4である溶液又は懸濁液を乾燥することにより製造すること ができる。The precursor powder used in the present invention contains M, Ba and Cu compounds, M:Ba:C Produced by drying a solution or suspension in which the atomic ratio of u is 12:4 Can be done.

先駆体粉末製造のひとつの方法は、M:Ba:Cuの原子比を1.2:4として M、Ba及びCuの硝酸塩水溶液を形成し、該溶液を過剰の次亜硝酸塩溶液、例 えば次亜硝酸ナトリウム又はナトリウムペルオキシドと反応させ、最初の硝酸塩 溶液に含まれたM、Ba及びCuの本質的にすべてを含む沈澱を形成し、沈澱を 集め、乾燥する方法である。One method for producing precursor powder is to use an atomic ratio of M:Ba:Cu of 1.2:4. Form an aqueous nitrate solution of M, Ba and Cu and add the solution to an excess of hyponitrite solution, e.g. For example, by reacting with sodium hyponitrite or sodium peroxide, the initial nitrate A precipitate containing essentially all of the M, Ba and Cu contained in the solution is formed, and the precipitate is This is a method of collecting and drying.

先駆体粉末製造の好ましい方法は、M:Ba:Cuの原子比が1=2:4である M、Ba及びCu化合物を有機溶媒中に溶解した溶液を形成する方法である。制 御された加水分解を行うことにより酸化物又は含水酸化物が形成され、それを濾 過し、洗浄し、乾燥すると先駆体粉末を与える。溶液の形成に適した化合物は、 2つの基準を満たしていなければならない。それは有機溶媒に溶解性でなければ ならず、水と容易に反応して金属酸化物又は金属水酸化物を形成しなければなら ない。以下のリストは発明を制限するものではないが、これらの基準を満たす化 合物の種類のい(つかであり、代表的な例は金属アルキル、例えばCu(CH2 SiMe3)及びY(CH2S IM e 3) 3、金属ンクロペンタジエニ ド、例えばY (C5H5) 3、Ba (C5H5)2及びBa (C5Me 5)2、金属アセチリド、例えばCu [c=cc (CH3)20Me] 、 金属アリール、例えばCu(メシチル)、金属アルコキシド、例えばCu (O CMe3)、Cu [OCH(CMes)z] 、Cu (OCH2CH20B Ll)2、Cu(OCH2CH2NEt2)2、Y2O(OCHMez)+s、 Y (OCH2CH20Bu)、、Y (OCH2CH2NEt2) 3、Ba  (OCHMe2)2、Ba (OCH2CH20Bu)2及びBa (OCH 2CH2NEtz)2、金属アリールオキシド、例えばY EO−2,4,6− C6H2CCMes)sコ3、ならびに金属アミド、例えばCu (NEt2)  、Cu (NBu2)、Cu [N (S iMe3) 2]及びY [N  (SiMe3)2] 3である。A preferred method of precursor powder production is that the atomic ratio of M:Ba:Cu is 1=2:4. This is a method of forming a solution in which M, Ba, and Cu compounds are dissolved in an organic solvent. system Oxides or hydrous oxides are formed by controlled hydrolysis and are filtered out. Filtration, washing and drying give the precursor powder. Compounds suitable for forming solutions are: Two criteria must be met. it must be soluble in organic solvents must react easily with water to form metal oxides or metal hydroxides. do not have. The following list is not intended to limit inventions, but may include inventions that meet these criteria. There are several types of compounds, and typical examples include metal alkyls, such as Cu(CH2 SiMe3) and Y(CH2S IM e 3) 3, metal cyclopentadiene For example, Y (C5H5) 3, Ba (C5H5) 2 and Ba (C5Me 5) 2. Metal acetylide, for example Cu [c=cc (CH3)20Me], Metal aryl, such as Cu (mesityl), metal alkoxide, such as Cu (O CMe3), Cu [OCH(CMes)z], Cu (OCH2CH20B Ll)2, Cu(OCH2CH2NEt2)2, Y2O(OCHMez)+s, Y (OCH2CH20Bu), Y (OCH2CH2NEt2) 3, Ba (OCHMe2)2, Ba (OCH2CH20Bu)2 and Ba (OCH 2CH2NEtz)2, metal aryl oxides, e.g. YEO-2,4,6- C6H2CCMes)sco3, as well as metal amides such as Cu (NEt2) , Cu (NBu2), Cu [N (S iMe3) 2] and Y [N (SiMe3)2] 3.

先駆体粉末を不活性容器又は不活性トレー、例えばアルミナトレー中に入れ、酸 素−含有雰囲気、好ましくは実質的に純粋な酸素中で約700℃−約840℃、 好ましくは約750°C−約825℃の温度にてMBa2Cu40.の粉末の形 成に十分な時間加熱する。MBa2Cu40.の形成には12時間が十分な時間 であることがわかったが、より長時間を使用することもできる。The precursor powder is placed in an inert container or inert tray, e.g. an alumina tray, and the acid from about 700°C to about 840°C in an element-containing atmosphere, preferably substantially pure oxygen; MBa2Cu40.C, preferably at a temperature of about 750°C to about 825°C. powder form of Heat for sufficient time to form. MBa2Cu40. 12 hours is sufficient time for the formation of , but longer times can also be used.

その後MB82Cu40g粉末を酸素−含有雰囲気、好ましくは実質的に純粋な 酸素中で冷却する。MBa2Cu30t−Δ(ここで0≦Δ≦1)と異なりMB a2Cu40gはその温度安定性範囲内で酸素の非−化学量論性を示さない、従 って冷却速度は重要でなく、低速冷却(実用的な最も低速の冷却)で行うことも 、高速冷却(実用的な最も高速の冷却)で行うことも、又はこれらの極端な速度 の間のいずれの冷却速度で行うこともできる。最終生成物の性質は冷却プログラ ムに依存しない。40 g of MB82Cu powder is then added to an oxygen-containing atmosphere, preferably in a substantially pure Cool in oxygen. Unlike MBa2Cu30t-Δ (where 0≦Δ≦1), MB 40g of a2Cu exhibits no oxygen non-stoichiometry within its temperature stability range. Therefore, the cooling rate is not important, and low-speed cooling (the slowest practical cooling) may be used. , can be done with fast cooling (the fastest practical cooling), or these extreme speeds Any cooling rate between can be used. The nature of the final product depends on the cooling program. system independent.

生成MB a 2CLl 408粉末は典型的に、走査型電子顕微鏡の測定によ りその大部分がミクロン又はサブミクロンの大きさである一次粒子を含む。The produced MB 2CLl 408 powder is typically determined by scanning electron microscopy. contains primary particles, most of which are micron or submicron in size.

生成粉末は、後の使用のために保存することができる。しかしこれはCO2及び H2Oに対してMBa2Cu30□−Δ相に関して報告されたと同様の反応性を 示す。従って適した予防手段を講じなければならない。The resulting powder can be saved for later use. But this is CO2 and similar reactivity towards H2O as reported for the MBa2Cu30□-Δ phase. show. Appropriate preventive measures must therefore be taken.

超電導性の存在はマイスナー効果、すなわち超電導状態にある場合の試料による 磁束の排除により決定することができる。この効果はphyslcal Rev iew B、36.5586 (1987)のE、 Po1turak及びB、 Fisherによる文献に記載の方法により測定することができる。透過深さと 同等かそれ以下の寸法の粒子は磁束の排除を示さないことは周知である。本発明 の粉末の粒子は典型的にサブミクロンである。これらの材料の透過深さは同等の 大きさと見積もられ、すなわち77にで11−10μmである。従ってこれらの 粒子の場合マイスナー効果がない、又は弱いことが予想される。透過深さは温度 依存性であるため、Teの値が下がることも予想することができる。The existence of superconductivity is due to the Meissner effect, i.e. when the sample is in a superconducting state. It can be determined by excluding magnetic flux. This effect is physlcal Rev iew B, 36.5586 (1987), Poulturak and B. It can be measured by the method described in the literature by Fisher. penetration depth and It is well known that particles of comparable or smaller size do not exhibit magnetic flux rejection. present invention The powder particles are typically submicron. The penetration depth of these materials is comparable The size is estimated to be 77 to 11-10 μm. Therefore these In the case of particles, the Meissner effect is expected to be absent or weak. Penetration depth is temperature Because of the dependence, it can be expected that the value of Te will decrease.

本発明の超電導組成物は、非常に有効に電流を伝導するため、又は医学的目的の 磁気映像法のための磁場を与えるために使用することができる。従って同業者に 周知の方法で材料を液体窒素又は液体ヘリウムにさらすことにより針金又は棒の 形態の組成物を超電導転移温度以下の温度に冷却し、電流を通じることにより、 電気抵抗による損失なしで電流を得ることができる。最低の電力損失で非常な高 磁場を与えるために、前記の針金を巻いてコイルを形成し、コイルに電流を通じ る前にそれを液体ヘリウム又は窒素にさらすことができる。そのようなコイルに より与えられる磁場は、貨車のように大きな物体を浮かばせるのに使用すること ができる。このような超電導組成物は、5QUIDS (超電導量子インターフ ェース装置)などのジョセフソン装置、及び高速サンプリング回路及び電圧標準 などのジョセフソン効果に基づく道具にも有用である。The superconducting composition of the present invention is useful for conducting current very effectively or for medical purposes. It can be used to provide a magnetic field for magnetic imaging. Therefore, to peers of wire or rod by exposing the material to liquid nitrogen or liquid helium in a well known manner. By cooling the composition of the form to a temperature below the superconducting transition temperature and passing an electric current through it, Current can be obtained without loss due to electrical resistance. Extremely high power consumption with lowest power loss To provide a magnetic field, the wire described above is wound to form a coil, and a current is passed through the coil. It can be exposed to liquid helium or nitrogen before washing. In such a coil The magnetic field provided by the magnetic field can be used to levitate large objects such as freight cars. Can be done. Such superconducting compositions are known as 5QUIDS (superconducting quantum interfaces). Josephson devices, such as It is also useful for tools based on the Josephson effect, such as

YsO(OCHMe 2) +3 (0,641g) 、B a (OCHMe z) 2(1,332g)及びCu (NB1.+2) (2,000g)を4 0mLのテトラヒドロフラン(THF)に溶解し、均一な溶液を得ることにより YBa2Cu、O,先駆体粉末を調製した。40mLのTHF中の脱泡水(2, 58g)の溶液にこの溶液を滴下することにより加水分解を行った。混合物をア ルゴン雰囲気下で16時間還流し、濾過してオレンジ色の固体を得た。このオレ ンジ色の固体を最初にTHF、その後ペンタンで洗浄し、高真空下100’Cに て乾燥し、1.96gのオレンジ色の先駆体粉末を得た。YsO (OCHMe 2) +3 (0,641g), Ba (OCHMe z) 2 (1,332g) and Cu (NB1.+2) (2,000g) 4 By dissolving in 0 mL of tetrahydrofuran (THF) to obtain a homogeneous solution. YBa2Cu,O, precursor powder was prepared. Defoamed water in 40 mL THF (2, Hydrolysis was carried out by dropping this solution into a solution of 58 g). Add the mixture It was refluxed under Rougon atmosphere for 16 hours and filtered to give an orange solid. This me The orange solid was washed first with THF and then with pentane and heated to 100'C under high vacuum. After drying, 1.96 g of an orange precursor powder was obtained.

この先駆体粉末の一部(0,77g)をアルミナのトレー中で広げて薄層トレ、 1気圧(1x105Pa)(D酸素中で20’C/分にて825℃に加熱した。A portion (0.77 g) of this precursor powder was spread in an alumina tray to form a thin layer. Heated to 825° C. at 20° C/min in 1 atm (1×10 5 Pa) (D oxygen).

試料を1気圧(1xlO5Pa)の酸素中で825℃に60時間保持した。その 後炉を止め、酸素中で試料を室温、約20℃に冷却した。得られた粉末は黒色で 収量は1.05gであった。粉末X−線回折パターンにより、粉末はYBa2C u408及び微量のCuOであることが示された。粉末X−線回折パターンは以 前に定義され公開された粉末パターンと全(一致しており、斜方晶系単位格子を 示し、空間群はAmmmであり、単位格子のディメンジョンはa=3.871A  (03781nm) 、b=3.840A (0,3840nm)及びc−2 725A (2,725nm)である。The samples were held at 825° C. for 60 hours in 1 atmosphere (1×1O5Pa) of oxygen. the The post-furnace was shut off and the sample was cooled to room temperature, approximately 20° C., in oxygen. The resulting powder is black in color Yield was 1.05g. The powder X-ray diffraction pattern shows that the powder is YBa2C It was shown to be u408 and a trace amount of CuO. The powder X-ray diffraction pattern is as follows. The total (consistent with the previously defined and published powder pattern) has an orthorhombic unit cell. , the space group is Ammm, and the dimension of the unit cell is a=3.871A (03781nm), b=3.840A (0.3840nm) and c-2 725A (2,725 nm).

磁束排除測定により超電導が確認され、試料の超電導性開始温度Teが約83に であることが示された。走査型電子顕微鏡により一次粒子の大きさが約15−1 .0μmの範囲であることが示された。Superconductivity was confirmed by magnetic flux exclusion measurement, and the superconductivity onset temperature Te of the sample was approximately 83. It was shown that Scanning electron microscopy revealed that the primary particle size was approximately 15-1. .. It was shown that it was in the range of 0 μm.

実施例2 基本的に実施例1に記載の通りに調製した加水分解有機金属先駆体の一部(鉤  32g)をアルミナのトレー中で広げて薄層とし、1気圧(IX 105P a )の酸素中で20℃/分にて750’Cに加熱した。試料を1気圧(1x105 Pa)の酸素中で750 ℃に6C時間保持した。その後炉を止め、酸素中で試 料を室温、約20kに冷却した。得られた粉末は黒色で収量は0.30gであっ た。材料の粉末X−線回折パターンにより、YBa、Cu+Os及び微量のCu Oならびに約3.08AにおiJる非常に弱い未確認ピークが示された。X−線 回折により判定したこの実験におけるYBa2Cu408の相純度は実施例1で 調製したものと同等である。Example 2 A portion of the hydrolyzed organometallic precursor prepared essentially as described in Example 1 32g) was spread into a thin layer in an alumina tray and heated to 1 atm (IX 105P a). ) in oxygen at 20°C/min to 750'C. sample at 1 atm (1x105 It was held at 750° C. for 6 C hours in oxygen of Pa). Then shut down the furnace and test in oxygen. The material was cooled to room temperature, approximately 20K. The obtained powder was black in color and the yield was 0.30 g. Ta. The powder X-ray diffraction pattern of the material reveals YBa, Cu+Os and a trace amount of Cu. A very weak unidentified peak at 0 and iJ at about 3.08 A was shown. X-ray The phase purity of YBa2Cu408 in this experiment determined by diffraction is as in Example 1. It is equivalent to the prepared one.

磁束排除測定によりT、開始が約90にの非常に弱い超電導性が確認された。非 常に弱い信号はサブミクロンという粒子の大きさと一致しており、90にの開始 温度はX−線回折で検出できない程少量のYBa2CusO□−Δの存在を示唆 している。Very weak superconductivity with a T starting at about 90 was confirmed by magnetic flux exclusion measurements. Non The consistently weak signal is consistent with the submicron particle size, starting at 90 p.m. The temperature suggests the presence of a small amount of YBa2CusO□-Δ that cannot be detected by X-ray diffraction. are doing.

」へ Y2O3(0,757g) 、Ba (NOs’)z (3,504g) 及び CuO(2,1,33g)を、50gのZrO2ボールを入れた2オンスのプラ スチック容器中、強力振盪ミル上で30分間共に粉砕した。使用したCuOはC u (NO3)2 ・XH2Oを酸素中で300℃にて1時間分解して得た。こ の粉砕混合物をアルミナトレーに入れ、1気圧(1x 1.0’P a)の酸素 中で再粉砕のために1度中断して149時間、825°Cに燃焼した。試料を酸 素中でゆっくり室温に冷却した。粉末のX−線回折により、それが生にYBa2 Cu、O,であるがCuO及びYBa2Cu05の第2相を含むことが示された 。約3.08Aの未確認ピークも存在する。磁束排除測定により超電導性が確認 され、試料の超電導性開始温度T、が約85にであり、約75にで磁束排除曲線 の別の弱い変曲点があることが示された。磁束排除曲線の多相性は、YBa2C u40゜及び微量のYBa2Cu307−Δの両方からの寄与を示唆している。"fart Y2O3 (0,757g), Ba (NOs’)z (3,504g) and CuO (2, 1, 33g) was placed in a 2oz plastic bag containing 50g ZrO2 balls. Milled together for 30 minutes on a high-intensity shaking mill in a stick container. The CuO used was C Obtained by decomposing u(NO3)2.XH2O in oxygen at 300°C for 1 hour. child Place the milled mixture in an alumina tray and add 1 atm (1x 1.0'Pa) of oxygen. The mixture was burned at 825°C for 149 hours with one interruption for re-grinding. acid sample It was slowly cooled down to room temperature in a vacuum. X-ray diffraction of the powder reveals that it is raw YBa2 Cu, O, was shown to contain a second phase of CuO and YBa2Cu05. . There is also an unidentified peak of about 3.08A. Superconductivity confirmed by magnetic flux exclusion measurement The superconductivity onset temperature T of the sample is about 85, and the flux rejection curve is about 75. It was shown that there is another weak inflection point of . The polyphasic nature of the magnetic flux rejection curve is YBa2C It suggests contributions from both u40° and trace amounts of YBa2Cu307-Δ.

磁束排除測定及び粉末X−線回折パターンの両方の結果は、従来の固相反応法に よって得たYBa2Cu40gの相純度が、長時間燃焼し中断して再粉砕した場 合でさえ実施例1に記載の有機金属−誘導原料の1段階燃焼分解によって得たも のより劣ることを示している。従来法で製造した試料のX−線回折の結果により 判定した相純度は、実施例2に記載の有機金属−誘導原料の1段階低温分解によ って得たものにも劣る。Both magnetic flux exclusion measurements and powder X-ray diffraction patterns result in Therefore, the phase purity of 40g of YBa2Cu obtained after long combustion, interruption and re-pulverization Even if the material obtained by one-stage combustion decomposition of the organometallic-derived feedstock described in Example 1 indicates that it is inferior to that of Based on the results of X-ray diffraction of samples produced using conventional methods, The determined phase purity was determined by the one-step low-temperature decomposition of the organometallic-derived feedstock described in Example 2. It's inferior to what I got.

比較例B Y20s (0,757g)、Ba (NO3)2 (3,381g) 、Na N03(0,058g)及びCuO(2,167g)を、50gのZrO2ボー ルを入れた2オンスのプラスチック容器中、強力振盪ミル上で30分間共に粉砕 した。使用したCuOはCu (NO3) 2・xH2Oを酸素中で300℃に て1時間分解して得た。この粉砕混合物をアルミナトレーに入れ、1気圧(1x 105Pa)の酸素中で再粉砕のために1度中断して60時間、825℃に燃焼 した。試料を酸素中でゆっくり室温に冷却した。粉末のX−線回折により、それ が主にYBa2Cu408であるがCuO及びY2Ba 2CuO5の第2相を 含むことが示された。約3゜08Aの未確認ピークも存在する。この実験の場合 のY B a 2Cu 40aの相純度は比較例Aで製造したものより向上した が、実施例1及び2で製造したものよりまだ劣っている。磁束排除測定により超 電導性が確認され、試料のT。が約87にであり、磁束排除曲線の別の弱い変曲 点がYBa2Cu、06及び微量のYBa2Cu307−Δの両方からの寄与を 示唆していることが示された。Comparative example B Y20s (0,757g), Ba (NO3)2 (3,381g), Na N03 (0,058g) and CuO (2,167g) were added to 50g of ZrO2 board. Grind together for 30 minutes on a high-intensity shaking mill in a 2 oz plastic container with did. The CuO used was Cu(NO3)2.xH2O heated to 300℃ in oxygen. It was obtained by decomposition for 1 hour. This ground mixture was placed in an alumina tray at 1 atm (1x Burn at 825℃ for 60 hours with one interruption for re-grinding in oxygen at 105Pa) did. The sample was slowly cooled to room temperature in oxygen. X-ray diffraction of the powder reveals that is mainly YBa2Cu408, but the second phase of CuO and Y2Ba2CuO5 is It was shown that it contains There is also an unidentified peak at about 3°08A. For this experiment The phase purity of YBa2Cu40a was improved compared to that produced in Comparative Example A. However, it is still inferior to those produced in Examples 1 and 2. Magnetic flux exclusion measurement Conductivity was confirmed and T of the sample was confirmed. is about 87, another weak inflection in the flux rejection curve. The points indicate contributions from both YBa2Cu,06 and a trace amount of YBa2Cu307-Δ. It has been shown to be suggestive.

結果は、従来の固相反応法によって得たYBa2Cu、08の相純度が、アルカ リ硝酸塩触媒の存在により補助された場合でさえ(D、 M、P。The results show that the phase purity of YBa2Cu,08 obtained by the conventional solid phase reaction method is Even when assisted by the presence of a phosphonitrate catalyst (D, M, P.

oke等、Dept、、of 5cientific and Industr ial Re5earch、Lower Hutt、New Zcalandに よるプレプリントに記載の方法で行った)実施例1に記載の有機金属−誘導原料 の1段階燃焼分解によって得たものより劣ることを示している。アルカリ硝酸塩 の存在によって補助した従来法で製造した試料のX−線回折の結果により判定し た相純度は、実施例2に記載の有機金属−誘導原料の1段階低温分解によって得 たものにも劣る。oke et al., Dept., of 5 scientific and Industry ial Re5earch, Lower Hutt, New Zcaland The organometallic-derived material described in Example 1) This shows that the results are inferior to those obtained by one-stage combustion decomposition. alkali nitrate Determined by the results of X-ray diffraction of samples produced by conventional methods assisted by the presence of The phase purity obtained by the one-step low-temperature decomposition of the organometallic-derived feedstock described in Example 2 It's even worse than what it was.

国際調査報告 PCT/US 90105350+++、、+n+1mn1 A m1c++In07. ρCT/US 90105350国際調査報告International search report PCT/US 90105350+++,,+n+1mn1 A m1c++In07. ρCT/US 90105350 International Search Report

Claims (18)

【特許請求の範囲】[Claims] 1. (a)本質的に炭素を含まず、M,Ba及びCu化合物の均質混合物を含み、M :Ba:Cuの原子比が1:2:4である先駆体粉末を調製し; (b)酸素含有雰囲気下、約700℃−約840℃の温度でMBa2Cu4O8 の粉末の形成に十分な時間、該先駆体粉末を加熱し;(c)該MBa2Cu4O 8粉末を、酸素含有雰囲気下で冷却することから本質的に成る、MBa2Cu4 O8の化学式を有し、ここでMはY,Nd,Sm.Eu.Gd.Dy,Ho,E r,Tm,Yb及びLuから成る群より選ぶ超電導斜方晶系相の粉末の製造法。1. (a) essentially free of carbon and containing a homogeneous mixture of M, Ba and Cu compounds; :Preparing a precursor powder with a Ba:Cu atomic ratio of 1:2:4; (b) MBa2Cu4O8 at a temperature of about 700°C to about 840°C under an oxygen-containing atmosphere. (c) heating the precursor powder for a time sufficient to form a powder of MBa2Cu4O; MBa2Cu4 consisting essentially of cooling 8 powder under an oxygen-containing atmosphere. O8, where M is Y, Nd, Sm. Eu. Gd. Dy, Ho, E A method for producing a superconducting orthorhombic phase powder selected from the group consisting of r, Tm, Yb and Lu. 2.該酸素−含有雰囲気が実質的にCO2を含まない、請求項1に記載の方法。2. 2. The method of claim 1, wherein the oxygen-containing atmosphere is substantially free of CO2. 3.該酸素−含有雰囲気が実質的に純粋な酸素である、請求項2に記載の方法。3. 3. The method of claim 2, wherein the oxygen-containing atmosphere is substantially pure oxygen. 4.該先駆体粉末を約750℃−約825℃の温度で加熱する、請求項3に記載 の方法。4. 4. The precursor powder of claim 3, wherein the precursor powder is heated at a temperature of about 750<0>C to about 825<0>C. the method of. 5.該酸素の全圧が1気圧(1x105Pa)である、請求項4に記載の方法。5. 5. The method of claim 4, wherein the total pressure of the oxygen is 1 atmosphere (1 x 105 Pa). 6.MがYである、請求項5に記載の方法。6. 6. The method of claim 5, wherein M is Y. 7.M:Ba:Cuの原子比が1:2:4であるM,Ba及びCu硝酸塩の水溶 液を形成し、該溶液中の実質的にすべてのM,Ba及びCuを沈澱させるのに有 効な量の次亜硝酸ナトリウム又はナトリウムペルオキシドと該溶液を混合し:得 られた沈澱を単離することにより該先駆体粉末を調製する、請求項1に記載の方 法。7. Aqueous solution of M, Ba and Cu nitrates with an atomic ratio of M:Ba:Cu of 1:2:4 to form a solution and precipitate substantially all the M, Ba and Cu in the solution. Mixing the solution with an effective amount of sodium hyponitrite or sodium peroxide: The method according to claim 1, wherein the precursor powder is prepared by isolating the precipitate obtained. Law. 8.該酸素−含有雰囲気が実質的にCO2を含まない、請求項7に記載の方法。8. 8. The method of claim 7, wherein the oxygen-containing atmosphere is substantially free of CO2. 9.該酸素−含有雰囲気が実質的に純粋な酸素である、請求項8に記載の方法。9. 9. The method of claim 8, wherein the oxygen-containing atmosphere is substantially pure oxygen. 10.該先駆体粉末を約750℃−約825℃の温度で加熱する、請求項9に記 載の方法。10. 10. The precursor powder of claim 9, wherein the precursor powder is heated at a temperature of about 750<0>C to about 825<0>C. How to put it on. 11.該酸素の全圧が1気圧(1x105Pa)である、請求項10に記載の方 法。11. The method according to claim 10, wherein the total pressure of the oxygen is 1 atmosphere (1 x 10 Pa). Law. 12.MがYである、請求項11に記載の方法。12. 12. The method of claim 11, wherein M is Y. 13.M:Ba:Cuの原子比が1:2:4であるM,Ba及びCu化合物の有 機溶媒中の溶液を形成し、M,Ba及びCuの該化合物は該溶媒に溶解性であり 、水と反応して金属酸化物又は金属ヒドロキシドを形成することができ;得られ た溶液を水と接触させて該酸化物又はヒドロキシドを形成し:該酸化物又はヒド ロキシドを濾過し、洗浄し、乾燥することにより該先駆体粉末を製造する、請求 項1に記載の方法。13. Contains M, Ba and Cu compounds with an atomic ratio of M:Ba:Cu of 1:2:4 forming a solution in a solvent, the compounds of M, Ba and Cu being soluble in the solvent; , can react with water to form metal oxides or metal hydroxides; contacting the solution with water to form the oxide or hydroxide; The precursor powder is produced by filtering, washing and drying the oxid. The method described in Section 1. 14.該酸素−含有雰囲気が実質的にCO2を含まない、請求項13に記載の方 法。14. 14. The method of claim 13, wherein the oxygen-containing atmosphere is substantially free of CO2. Law. 15.該酸素−含有雰囲気が実質的に純粋な酸素である、請求項14に記載の方 法。15. 15. The method of claim 14, wherein the oxygen-containing atmosphere is substantially pure oxygen. Law. 16.該先駆体粉末を約750℃−約825℃の温度で加熱する、請求項15に 記載の方法。16. 16. The precursor powder according to claim 15, wherein the precursor powder is heated at a temperature of about 750<0>C to about 825<0>C. Method described. 17.該酸素の全圧が1気圧(1x105Pa)である、請求項16に記載の方 法。17. 17. The method according to claim 16, wherein the total pressure of the oxygen is 1 atmosphere (1 x 10 Pa). Law. 18.MがYである、請求項17に記載の方法。18. 18. The method of claim 17, wherein M is Y.
JP2513795A 1989-10-06 1990-09-25 Manufacturing method of MBa↓2Cu↓4O↓8 superconductor Pending JPH05500651A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41837089A 1989-10-06 1989-10-06
US418,370 1989-10-06

Publications (1)

Publication Number Publication Date
JPH05500651A true JPH05500651A (en) 1993-02-12

Family

ID=23657840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2513795A Pending JPH05500651A (en) 1989-10-06 1990-09-25 Manufacturing method of MBa↓2Cu↓4O↓8 superconductor

Country Status (6)

Country Link
EP (1) EP0494927A1 (en)
JP (1) JPH05500651A (en)
KR (1) KR920703453A (en)
AU (1) AU6509890A (en)
CA (1) CA2027019A1 (en)
WO (1) WO1991004946A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270295A (en) * 1991-01-18 1993-12-14 Industrial Technology Research Institute Process for preparing superconductors and compositions useful therein
EP2601153A4 (en) * 2010-08-06 2014-08-13 Brookhaven Sciences Ass Llc Solid-state catalysis of superconducting cuprates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021395A (en) * 1988-07-01 1991-06-04 E. I. Du Pont De Nemours And Company Process for making superconductors and their precursors

Also Published As

Publication number Publication date
KR920703453A (en) 1992-12-17
AU6509890A (en) 1991-04-28
CA2027019A1 (en) 1991-04-07
EP0494927A1 (en) 1992-07-22
WO1991004946A1 (en) 1991-04-18

Similar Documents

Publication Publication Date Title
Kutty et al. Direct precipitation of lead zirconate titanate by the hydrothermal method
Palchik et al. Microwave assisted preparation of binary oxide nanoparticles
Chen et al. Chemical stability study of BaCe 0.9 Nd 0.1 O 3-α high-temperature proton-conducting ceramic
Zhang et al. BaZrO 3 and BaHfO 3: preparation, properties and compatibility with YBa 2 Cu 3 O 7-x
Azegami et al. Formation and sintering of LaCrO3 prepared by the hydrazine method
Yamaguchi et al. Formation and Transformation of Cubic ZrO2 Solid Solutions in the System ZrO2—Al2O3
Khani et al. New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics
AU599827B2 (en) Process for making 90k superconductors from acetate solutions
JPH02503787A (en) Improved method for manufacturing superconductors
Jasira et al. Barium cerate and its composite perovskites–synthesis techniques: a comprehensive review
HUT52645A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
EP0423241B1 (en) Process for making superconductors and their precursors
van Rij et al. Analysis of the preparation of In-doped CaZrO3 using a peroxo-oxalate complexation method
De Guire et al. Coprecipitation synthesis of doped lanthanum chromite
Liu et al. Low‐Temperature Synthesis of Nanocrystalline Yttrium Aluminum Garnet Powder Using Triethanolamine
Nguyen et al. Structure, morphology, and electrical properties of proton conducting La0. 99Sr0. 01NbO4-δ synthesized by a modified solid state reaction method
JPH05500651A (en) Manufacturing method of MBa↓2Cu↓4O↓8 superconductor
Zhong et al. Combustion syntheses for BaTi4O9 and PbxBa1–x Ti4O9
JPH01122964A (en) Zirconia stabilized by yttrium and its production
Guo et al. Synthesis of zirconium-rich PZT ceramics by hydroxide coprecipitation under hot-press
EP0452423B1 (en) Preparation of a uniform mixed metal oxide
US5304666A (en) Process for making superconductors and their precursors
Kamat et al. Preparation of high grade YBCO powders and pellets through the glycerol route
Vijayakumar et al. Synthesis, characterization and dielectric properties of nanocrystalline Ba2DySbO6 perovskite
Vijayakumar et al. Synthesis, characterization, sintering and dielectric properties of nanostructured perovskite-type oxide, Ba 2 GdSbO 6