JPH0549890B2 - - Google Patents

Info

Publication number
JPH0549890B2
JPH0549890B2 JP28676785A JP28676785A JPH0549890B2 JP H0549890 B2 JPH0549890 B2 JP H0549890B2 JP 28676785 A JP28676785 A JP 28676785A JP 28676785 A JP28676785 A JP 28676785A JP H0549890 B2 JPH0549890 B2 JP H0549890B2
Authority
JP
Japan
Prior art keywords
heat
combustion
gas
solvent
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28676785A
Other languages
Japanese (ja)
Other versions
JPS62147208A (en
Inventor
Satoshi Ihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP28676785A priority Critical patent/JPS62147208A/en
Publication of JPS62147208A publication Critical patent/JPS62147208A/en
Publication of JPH0549890B2 publication Critical patent/JPH0549890B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば廃棄メタノールのごとき高潜熱
溶媒を効率よく燃焼処理する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for efficiently burning a high latent heat solvent such as waste methanol.

(従来の技術) 従来より液体燃料を燃焼する方法として、実用
的にはポツト式、芯式および噴霧式に大別され、
工業的には噴霧式が多く採用されている。
(Prior Art) Traditionally, methods for burning liquid fuel are broadly classified into pot type, wick type, and spray type.
The spray method is often used industrially.

この噴霧式燃焼方法は、通常液体燃料の噴霧液
滴の蒸発潜熱が火炎より直接供給されるため、高
温部での熱量はその分だけ低下したこととなりエ
クセルギ的にみて不利は免れない。また液体燃料
の燃焼は、単に全量を蒸発し燃焼しようとすれば
不純物の影響を受け易く、回分操作を行つても液
中の成分の揮発性の差によつて発生燃料ガスの性
状が異なつてくるので、安定な燃焼は維持し難い
という問題があつた。
In this spray combustion method, the latent heat of vaporization of the spray droplets of liquid fuel is normally supplied directly from the flame, so the amount of heat in the high temperature section is reduced by that amount, which is unavoidable in terms of exergy. In addition, when burning liquid fuel, if you try to simply evaporate and burn the entire amount, it will be easily affected by impurities, and even if you perform batch operation, the properties of the generated fuel gas will differ depending on the volatility of the components in the liquid. Therefore, there was a problem that it was difficult to maintain stable combustion.

(発明が解決しようとする問題点) この蒸発潜熱を従来方法である火炎よりとるの
を止めて、別途外部においてエクセルギ的にみて
低位の温度の低い熱源から吸収させることによつ
て蒸発の入熱とし、ガスはすでに蒸発潜熱分を附
加した状態とするとともに、不純物を十分に分離
したガスとなし、燃料の大部分をこのように気化
して燃焼炉に供給すれば、気化のための火炎から
の吸熱は不要となり、気化してから蒸気と空気が
混合して反応燃焼する時間おくれもなくなつて、
燃焼効率は一層向上できる。
(Problem to be solved by the invention) Instead of taking this latent heat of vaporization from a flame, which is the conventional method, the heat input for vaporization is absorbed from a separate external heat source with a lower temperature in terms of exergy. If the gas is in a state where the latent heat of vaporization has already been added and impurities have been sufficiently separated, and most of the fuel is vaporized in this way and supplied to the combustion furnace, it will be possible to remove the vaporization flame from the gas. There is no longer a need for heat absorption, and there is no longer a delay between vaporization, mixing of steam and air, and reaction and combustion.
Combustion efficiency can be further improved.

一方液滴噴霧による燃焼の場合には、余程高圧
の噴霧ポンプを用いるか、または多量の水蒸気、
圧縮空気等を使用しなければ液体燃料は気化し難
く、気化のため吸熱は燃焼に到達するまでの時間
を遅延させるという難点があり、また液体燃料全
部を蒸発気化しようとすれば液中の不純物等が気
化器附近で析出し、燃料の蒸発気化を妨げるなど
トラブルを生じ易い。
On the other hand, in the case of combustion by droplet spray, it is necessary to use a spray pump with extremely high pressure, or to use a large amount of water vapor.
Liquid fuel is difficult to vaporize without using compressed air, etc., and heat absorption due to vaporization delays the time required to reach combustion.Also, if you try to evaporate all of the liquid fuel, impurities in the liquid etc., which tend to precipitate near the carburetor and cause problems such as interfering with the evaporation of the fuel.

特に廃溶媒、例えば廃メタノールなどは蒸留に
よつて再生は可能であるが、煩雑な工程を要する
ためコスト的に不利となり、焼却廃棄するか燃料
とした方が経済的に有利の場合がある。しかしな
がらこの焼却には、前述のように液体燃料の燃焼
同様各種の問題があつて簡単に焼却できず、これ
らの問題を解決するためになされたのが本発明で
ある。
In particular, waste solvents such as waste methanol can be regenerated by distillation, but this requires a complicated process and is therefore disadvantageous in terms of cost, so it may be economically advantageous to dispose of it by incineration or use it as fuel. However, as mentioned above, this incineration has various problems similar to the combustion of liquid fuel, and cannot be easily incinerated.The present invention was made to solve these problems.

(問題を解決するための手段) 上記に鑑み本発明は、高潜熱溶媒の燃焼に際し
て該溶媒は先ず蒸発分離塔に導いて気化するが、
全体として、熱量の回収にはあまり影響のない範
囲で、不純物が液として取扱い得る程度の未蒸発
分を残し、気化ガスと別途に燃焼室に供給して同
時に燃焼させるものであり、高潜熱溶媒を蒸発分
離塔に導き、外部熱源によつてその大部分を気化
して発生ガスを燃焼室に導き燃焼するとともに、
蒸発分離塔残留液は噴霧して前記燃焼室に導き、
火炎より吸熱してガス化燃焼させることを特徴と
する高潜熱溶媒の燃焼方法、及び外部熱源として
高温廃ガスを利用し、ヒートパイプ式熱交換器を
用いてその受熱部を高温廃ガス通路に配置し、放
熱部を蒸発分離塔に配置して、該蒸発分離塔に導
いた高潜熱溶媒をヒートパイプ式熱交換器によつ
てその大部分を気化させる高潜熱溶媒の燃焼方法
を要旨とするものである。
(Means for Solving the Problem) In view of the above, the present invention provides that when a high latent heat solvent is combusted, the solvent is first led to an evaporation separation tower and vaporized;
Overall, it leaves enough unevaporated impurities that can be treated as a liquid without having much effect on the recovery of heat, and is supplied to the combustion chamber separately from the vaporized gas and burned at the same time, using a high latent heat solvent. is introduced into an evaporation separation column, most of it is vaporized by an external heat source, and the generated gas is introduced into a combustion chamber where it is combusted.
The residual liquid of the evaporation separation tower is atomized and introduced into the combustion chamber,
A method of burning a high latent heat solvent, which is characterized by absorbing heat from a flame and causing gasification and combustion, and which uses high-temperature waste gas as an external heat source and uses a heat pipe type heat exchanger to connect the heat receiving part to a high-temperature waste gas passage. A method of combustion of a high latent heat solvent is provided, in which a heat dissipation part is placed in an evaporation separation tower, and most of the high latent heat solvent guided to the evaporation separation tower is vaporized by a heat pipe type heat exchanger. It is something.

(実施例) 以下本発明を添付の図面を参照して説明する。(Example) The present invention will now be described with reference to the accompanying drawings.

第1図において、蒸発分離塔1は上部に熱交換
器2が設けられていて、その下端の噴出口3が中
央部の例えばポールリングなどの充填物4上部に
開口しており、下部には空気またはガス噴出装置
5及び低圧蒸気または排熱を熱媒とする熱交換器
6が、液面下に浸漬設置されている。
In FIG. 1, an evaporative separation column 1 is provided with a heat exchanger 2 at the top, a jet port 3 at the lower end thereof is opened at the top of a packing 4 such as a Pall ring in the center, and a bottom part is provided with a heat exchanger 2. An air or gas blowout device 5 and a heat exchanger 6 using low-pressure steam or waste heat as a heat medium are installed submerged below the liquid surface.

燃焼室7は例えばボイラーであつて、空気フア
ン8に連絡する主となるガスバーナー9と、従と
なる液体バーナー10を有し、ガスバーナー9は
管11によつて蒸発分離塔1の頂部に連絡し、液
体バーナー10は管12ポンプ13を経て該分離
器底部14に連絡している。
The combustion chamber 7 is, for example, a boiler and has a main gas burner 9 connected to an air fan 8 and a secondary liquid burner 10, the gas burner 9 being connected by a pipe 11 to the top of the evaporative separation column 1. The liquid burner 10 is connected to the separator bottom 14 via a pipe 12 and a pump 13.

上記のように構成した燃焼装置において、例え
ば高潜熱溶媒としての廃メタノール1t/hが、管
15ポンプ16によつて導入され、熱交換器2で
加熱されたのち噴出口3から塔内に散布され、充
填物4中を落下し塔底14に溜まる。この塔底1
4に溜まつた廃メタノールは約90℃の排蒸気また
は温水が導入される熱交換器6によつて加熱され
沸騰蒸発して、1t/hの給液のうち970Kg/hが
気化する。塔下部の温度は約70〜75℃が適当であ
る。発生ガスには可燃混合気とならない範囲で、
噴出装置5から空気を供給しまたは不活性ガスを
供給することによつて、分圧の低下に伴う沸点の
降下により更に低温の操作も可能である。充填物
4中では上昇するガスに対して流下する廃メタノ
ールは直接接触して熱および物質交換をし、熱交
換器2の管外面に凝縮した高純度メタノールがリ
フラツクスとして充填物4に落下し、廃メタノー
ルの分離効率を良好とし、更にスケールの析出を
防ぐ作用を行う。発生ガスは管11よりガスバー
ナー9に到る。このガスは潜熱を保有した状態で
あるから、燃焼に際しては火炎17より蒸発潜熱
をとる必要はなく、ガス混合のみで良いので速や
かに燃焼域に達し、燃焼温度は高く保たれ十分な
燃焼反応が行われる。
In the combustion apparatus configured as above, for example, 1 t/h of waste methanol as a high latent heat solvent is introduced through a pipe 15 and a pump 16, heated in a heat exchanger 2, and then sprayed into the tower from a spout 3. It falls through the packing 4 and accumulates at the bottom 14 of the tower. This tower bottom 1
The waste methanol accumulated in 4 is heated by the heat exchanger 6 into which exhaust steam or hot water at about 90° C. is introduced, and is boiled and evaporated, so that 970 kg/h of the 1 t/h of liquid supplied is vaporized. The temperature at the bottom of the column is suitably about 70-75°C. As long as the generated gas does not become a flammable mixture,
By supplying air or inert gas from the ejection device 5, lower temperature operation is also possible due to the lowering of the boiling point as the partial pressure decreases. In the packing 4, the waste methanol flowing down comes into direct contact with the rising gas to exchange heat and mass, and the high-purity methanol condensed on the outer surface of the tubes of the heat exchanger 2 falls into the packing 4 as reflux. It improves the separation efficiency of waste methanol and also works to prevent scale precipitation. The generated gas reaches the gas burner 9 through the pipe 11. Since this gas retains latent heat, there is no need to take the latent heat of vaporization from the flame 17 during combustion, and it is sufficient to just mix the gases, so the combustion range is quickly reached, the combustion temperature is kept high, and a sufficient combustion reaction occurs. It will be done.

蒸発分離塔1の下部で不純物を可及的高濃度に
濃縮された約30Kg/hの残留液は、塔底14より
ポンプ13管12を経て取出され、液噴霧用とし
て送風機18からの空気または蒸気の供給を受け
て、液体バーナー10で霧化燃焼する。この燃焼
では気化潜熱は火炎19から得ることとなるが少
量であるから火炎の温度に殆ど影響はない。
Approximately 30 kg/h of residual liquid with impurities concentrated to the highest possible concentration at the bottom of the evaporative separation column 1 is taken out from the bottom 14 of the column via a pump 13 and a pipe 12, and is supplied with air or air from a blower 18 for liquid spraying. The vapor is supplied and atomized and burned in the liquid burner 10. In this combustion, the latent heat of vaporization is obtained from the flame 19, but since it is a small amount, it has almost no effect on the temperature of the flame.

図示ではガスバーナー9と液体バーナー10を
別個に記載したが一体化しても差支えなく、また
管11よりガスを分岐して液体バーナー10に導
入してもよい。また廃メタノールの不純物が少な
い時は、蒸発分離塔1において熱交換器2、充填
物4を省略し、また液体バーナー10を省略し、
僅少の不純物は微小液滴として霧状に流動させ、
管11からガスバーナー9へ供給してもよい。
In the illustration, the gas burner 9 and the liquid burner 10 are shown separately, but they may be integrated, or the gas may be branched from the pipe 11 and introduced into the liquid burner 10. In addition, when there are few impurities in waste methanol, the heat exchanger 2 and the packing 4 are omitted in the evaporation separation column 1, and the liquid burner 10 is omitted.
Small impurities are made to flow in the form of fine droplets,
It may also be supplied to the gas burner 9 from the pipe 11.

高潜熱溶媒の蒸発分離後の残留液は原液に比べ
て沸点上昇するから、この温度を検出制御するこ
とによつて気化ガス量および残留液量の分配比、
延いてはガス燃焼量と液滴燃焼量の分配比を決定
することもできる。
The boiling point of the residual liquid after evaporation separation of the high latent heat solvent is higher than that of the original liquid, so by detecting and controlling this temperature, the distribution ratio of the amount of vaporized gas and the amount of residual liquid can be adjusted.
Furthermore, it is also possible to determine the distribution ratio between the gas combustion amount and the droplet combustion amount.

また溶媒が炭素比の多い炭化水素系の燃料の場
合、本発明の方法を用いれば、気化熱回収による
ガス化燃焼のメリツトは炭素比の小さい揮発性溶
媒などに比べて少ないが、それでも単に液体の噴
霧燃焼の場合に比較すれば、前記のすでに気化し
て居る為の利点により熱効率の向上が期待でき
る。メタノールその他の低沸点の溶媒について
は、管11を流れる気化ガスの圧力を十分にとる
ことができるので、ガスバーナー9は吸引型の高
圧予混合バーナー等を使用すれば、空気フアン8
は通風用のみの低圧でよく小動力で間に合う。
Furthermore, when the solvent is a hydrocarbon fuel with a high carbon ratio, if the method of the present invention is used, the merits of gasification combustion through vaporization heat recovery are smaller than when using volatile solvents with a low carbon ratio. Compared to the case of spray combustion, an improvement in thermal efficiency can be expected due to the advantage of already being vaporized. For methanol and other low-boiling point solvents, the pressure of the vaporized gas flowing through the tube 11 can be maintained sufficiently, so if a suction type high-pressure premix burner or the like is used as the gas burner 9, the air fan 8 can be used.
It is a low pressure only for ventilation and can be done with a small amount of power.

第2図は他の実施例であつて、蒸発分離塔にお
ける蒸発手段は、その加熱源としてヒートパイプ
の放熱を利用した例である。即ち蒸発分離塔20
に隔壁21を介して廃熱回収塔22を隣接し、該
隔壁21を貫通してヒートパイプ式熱交換器23
が設置され、フアン付受熱部24は廃熱回収塔2
2に、放熱部25は蒸発分離塔20に配置し、廃
熱回収塔22には例えば高温煙道ガスを導入す
る。ヒートパイプ式熱交換器23には側方にバイ
パス通路26およびダンパー27を設け受熱量を
制御してもよい。
FIG. 2 shows another embodiment in which the evaporation means in the evaporation separation column utilizes heat radiation from a heat pipe as its heating source. That is, the evaporation separation column 20
A waste heat recovery tower 22 is adjacent to the partition wall 21 via a partition wall 21, and a heat pipe type heat exchanger 23 is inserted through the partition wall 21.
is installed, and the heat receiving section 24 with fan is connected to the waste heat recovery tower 2.
2, the heat dissipation section 25 is disposed in the evaporation separation column 20, and high temperature flue gas, for example, is introduced into the waste heat recovery column 22. The heat pipe type heat exchanger 23 may be provided with a bypass passage 26 and a damper 27 on the side to control the amount of heat received.

管15ポンプ16を経て導入され噴出口28よ
り落下する廃メタノールは、ヒートパイプの作動
によつて放熱部25において加熱気化し、発生ガ
スは塔頂より管11を経てガスバーナー9に送ら
れ燃焼し、蒸留残留液は底部14よりポンプ13
を経て液体バーナー10に送られ、第1図の場合
と同様霧化燃焼する。蒸発分離塔20の下部に設
けた空気またはガス噴出装置5は、場合によつて
は省略してもよいが、蒸発比の制御および廃熱回
収塔22に導入される熱源の温度低下に伴う蒸発
温度の低下に備えて設置したほうが操作は容易と
なる。
The waste methanol introduced through the pipe 15 pump 16 and falling from the spout 28 is heated and vaporized in the heat radiation section 25 by the operation of the heat pipe, and the generated gas is sent from the top of the tower through the pipe 11 to the gas burner 9 where it is combusted. The distillation residual liquid is pumped from the bottom 14 to the pump 13.
The liquid is then sent to the liquid burner 10, where it is atomized and burned as in the case of FIG. The air or gas blowout device 5 provided at the bottom of the evaporation separation tower 20 may be omitted depending on the case, but it can be used to control the evaporation ratio and to control evaporation as the temperature of the heat source introduced into the waste heat recovery tower 22 decreases. It will be easier to operate if installed in preparation for a drop in temperature.

上記の実施例は高潜熱溶媒として廃メタノール
で説明したが、本発明はこれに限定されるもので
はなく、低級炭化水素の外、低空のアルコール、
ケトン、エーテル、有機酸、エステルその他
CN、SH等の官能機を有する低沸点の溶媒類又
はその混合物等も利用可能であり、また廃熱回収
塔の導入熱源は煙道ガス以外でも広く適用でき、
例えば前記燃焼室7の排ガスを露点以下迄も利用
すれば熱効率は更に向上できる。
Although the above embodiments have been explained using waste methanol as a high latent heat solvent, the present invention is not limited to this, and in addition to low hydrocarbons, low-temperature alcohols,
Ketones, ethers, organic acids, esters, etc.
Low-boiling point solvents with functional groups such as CN and SH, or mixtures thereof, can also be used, and the heat source introduced into the waste heat recovery tower can be applied to a wide range of sources other than flue gas.
For example, if the exhaust gas from the combustion chamber 7 is utilized even below the dew point, the thermal efficiency can be further improved.

(作用効果) 本発明は高潜熱溶媒を蒸発分離塔に導き、エク
セルギ的にみて他に利用価値のない程度の低位熱
源を外部より導入してその大部分を気化し、発生
ガスを燃焼室に導いてガス燃焼するとともに、蒸
発分離塔残留液は噴霧して前記燃焼室に導き、火
炎より吸熱してガス化燃焼させる高潜熱溶媒の燃
焼方法であるから、燃焼室に導入されるガスは殆
んど不純物を介在しない気体となり低空気比で燃
焼でき、このように熱効率の高いガス燃料と、可
及的高濃度に濃縮された液体燃料とにいつたん分
離してから燃焼室へ供給するので、該ガス燃料は
潜熱分のカロリーが附加された状態、換言すれば
排熱源の温度からシステムヒートポンプともいう
べき本発明の手法により、通常300〜400℃である
高温吸熱域、また火炎温度と云う立場から見れば
千数百℃のレベルに蒸発潜熱相当熱量がポンプア
ツプされた状態の燃焼が得られる。
(Function and Effect) The present invention guides the high latent heat solvent to the evaporation separation column, introduces a low-level heat source that has no other utility value from the outside in terms of exergy, vaporizes most of it, and sends the generated gas to the combustion chamber. Since this is a high latent heat solvent combustion method, the residual liquid from the evaporation separation tower is atomized and introduced into the combustion chamber, where it absorbs heat from the flame and is gasified and combusted, so most of the gas introduced into the combustion chamber is The fuel becomes a gas without any impurities and can be combusted at a low air ratio.In this way, the gas fuel with high thermal efficiency and the liquid fuel concentrated to the highest possible concentration are separated before being supplied to the combustion chamber. , the gas fuel is heated to a high temperature endothermic region, which is usually 300 to 400°C, by the method of the present invention, which can be called a system heat pump, from the temperature of the exhaust heat source, which has added calories from latent heat, or the temperature of the exhaust heat source. From a viewpoint, combustion is achieved in which the amount of heat equivalent to the latent heat of vaporization is pumped up to a level of 1,000-odd degrees Celsius.

また濃縮された液体燃料は量が極端に少なくな
つているので、如何なる燃焼法も簡単に採用で
き、万一故障が生じても全体の運転制御に与える
影響は実質的には皆無に近く、液体バーナーの目
詰りの修理、取替、一時停止などが容易にでき、
系全般をみるときにシステムに高温度差のヒート
ポンプを附加した場合のような燃焼法となり熱的
に有利となる。
In addition, since the amount of concentrated liquid fuel has become extremely small, any combustion method can be easily adopted, and even if a failure should occur, the effect on the overall operation control is virtually nil. It is easy to repair, replace, or temporarily stop burners if they are clogged.
When looking at the system as a whole, the combustion method becomes thermally advantageous, similar to when a heat pump with a high temperature difference is added to the system.

現在300〜400℃で使用される高圧ボイラー、熱
媒ボイラー等の熱効率の向上は十分にその研究開
発が進み、更にあと数%の熱効率向上を行うとす
れば殆んど実用的には不可能に近い状況にある
が、本発明によれば、例えば低位発熱量4600〜
4800kcal/Kg蒸発潜熱263〜270kcal/Kg程度の不
純メタノールを燃料とした場合には、仮に空気比
が同じで排気煙道ガス温度が同じと仮定しても、
大略5%程度の熱効率の向上が潜熱分の高温域へ
の汲み上げのみでも得られるが、更に低空気比、
主体がガス燃焼であることによる汚れの減少等に
よつて、更に可成りの効率向上が見込まれるもの
であり、このために要する熱源はエクセルギ的に
低位の低温熱源のみである。仮に熱源に低圧蒸気
を用いたとしても100℃レベルの熱量が他にエネ
ルギーを消費することなく300〜400℃に汲み上げ
られたことになり十分の効果を有する。
Research and development has progressed enough to improve the thermal efficiency of high-pressure boilers, heat medium boilers, etc. that are currently used at temperatures of 300 to 400°C, and it is almost impossible to improve thermal efficiency by a few more percentage points in practice. However, according to the present invention, for example, the lower calorific value is 4600~
When impure methanol with a latent heat of vaporization of 263 to 270 kcal/Kg is used as fuel, even if the air ratio is the same and the exhaust flue gas temperature is the same,
An improvement in thermal efficiency of approximately 5% can be obtained by simply pumping latent heat to the high temperature region, but even lower air ratios,
A considerable improvement in efficiency is expected due to the reduction in contamination due to the fact that gas combustion is the main component, and the only heat source required for this is a low-temperature heat source that is low in terms of exergy. Even if low-pressure steam were used as the heat source, the amount of heat at the 100°C level would be pumped up to 300 to 400°C without consuming any other energy, which would have a sufficient effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図第2図は本発明のそれぞれ異なる実施例
を示すフローシートである。 1……蒸発分離塔、2……熱交換器、3……噴
出口、4……充填物、5……噴出装置、6……熱
交換器、7……燃焼室、9……ガスバーナー、1
0……液体バーナー、20……蒸発分離塔、21
……隔壁、22……廃熱回収塔、23……ヒート
パイプ式熱交換器、24……フイン付受熱部、2
5……放熱部、26……バイパス通路、27……
ダンパー、28……噴出口。
FIG. 1 and FIG. 2 are flow sheets showing different embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Evaporation separation column, 2... Heat exchanger, 3... Ejection port, 4... Filler, 5... Ejection device, 6... Heat exchanger, 7... Combustion chamber, 9... Gas burner ,1
0... Liquid burner, 20... Evaporation separation column, 21
... Partition wall, 22 ... Waste heat recovery tower, 23 ... Heat pipe type heat exchanger, 24 ... Heat receiving section with fins, 2
5... Heat dissipation section, 26... Bypass passage, 27...
Damper, 28... spout.

Claims (1)

【特許請求の範囲】 1 高潜熱溶媒を蒸発分離塔に導き、外部熱源に
よつてその大部分を気化して発生ガスを燃焼室に
導き燃焼するとともに、蒸発分離塔残留液は噴霧
して前記燃焼室に導き、火炎より吸熱してガス化
燃焼させることを特徴とする高潜熱溶媒の燃焼方
法。 2 外部熱源として高温廃ガスを利用し、ヒート
パイプ式熱交換器を用いてその受熱部を高温廃ガ
ス通路に配置し、放熱部を蒸発分離塔に配置し
て、該蒸発分離塔に導いた高潜熱溶媒をヒートパ
イプ式熱交換器によつてその大部分を気化させる
特許請求の範囲第1項記載の高潜熱溶媒の燃焼方
法。
[Claims] 1. The high latent heat solvent is introduced into the evaporation separation column, most of it is vaporized by an external heat source, and the generated gas is introduced into the combustion chamber and burned, and the residual liquid of the evaporation separation column is atomized to A method of burning a high latent heat solvent, which is characterized by introducing it into a combustion chamber, absorbing heat from the flame, and causing gasification and combustion. 2 High-temperature waste gas was used as an external heat source, and a heat pipe heat exchanger was used, the heat receiving part of which was placed in the high-temperature waste gas passage, the heat radiation part was placed in the evaporative separation tower, and the heat was guided to the evaporative separation tower. 2. The method of burning a high latent heat solvent according to claim 1, wherein most of the high latent heat solvent is vaporized using a heat pipe type heat exchanger.
JP28676785A 1985-12-19 1985-12-19 Method for igniting high latent heat solvent medium Granted JPS62147208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28676785A JPS62147208A (en) 1985-12-19 1985-12-19 Method for igniting high latent heat solvent medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28676785A JPS62147208A (en) 1985-12-19 1985-12-19 Method for igniting high latent heat solvent medium

Publications (2)

Publication Number Publication Date
JPS62147208A JPS62147208A (en) 1987-07-01
JPH0549890B2 true JPH0549890B2 (en) 1993-07-27

Family

ID=17708782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28676785A Granted JPS62147208A (en) 1985-12-19 1985-12-19 Method for igniting high latent heat solvent medium

Country Status (1)

Country Link
JP (1) JPS62147208A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418930A (en) * 2011-11-17 2012-04-18 苏州新区星火环境净化有限公司 A system for combined treatment of high-concentration organic wastewater by molecule stripping and plasma combustion furnace

Also Published As

Publication number Publication date
JPS62147208A (en) 1987-07-01

Similar Documents

Publication Publication Date Title
KR101285041B1 (en) Method of treating an exhaust gas stream
US5224851A (en) Low NOx burner
US4478158A (en) Condensing furnaces
US4784599A (en) Liquid fuel combustion with porous fiber burner
KR100250365B1 (en) Heavy oil emulsion fuel combustion apparatus
JPH0549890B2 (en)
KR100272073B1 (en) Combustion apparatus of heavy oil emulsion fuel
RU2295095C1 (en) Method of heating fluid media and device for realization of this method
JPS59205521A (en) Method of operating combustion facility and combustion facility for executing said operation method
SU1726898A1 (en) Method and heat-using plant for fuel combustion
US4865543A (en) Liquid fuel combustion with porous fiber burner
JPH07158875A (en) Gas hot-water supplier
JPS6396410A (en) Method and device for obtaining combustible gas mixture consisting of liquefied fuel, steam and combustion air
CN104832230B (en) A kind of liquid organic-fuel Multi-purpose energy-saving combustion system and method
US4140472A (en) Method and apparatus to replace natural gas with vaporized fuel oil in a natural gas burner
US6210150B1 (en) Method and an apparatus of operating a boiler fired with liquid or gaseous hydrocarbons
RU2028465C1 (en) Heat-generating unit
KR200177774Y1 (en) An industrial burner using a water and oil as a fuel
SU1550289A1 (en) Method of combustion of solid ground fuel
JP2005533158A (en) Liquid hydrocarbon combustion method
KR920008038Y1 (en) Vaporization type oil burner for oil fan heater
RU2088856C1 (en) Heat generator ryazan-2
KR200177775Y1 (en) Domestic heating apparatus using a water and oil as a fuel
RU2269060C2 (en) Plant for burning low-concentration combustible gas at pressure above atmospheric
JP3702060B2 (en) Heavy oil emulsion fuel combustion equipment