JPH0549446B2 - - Google Patents

Info

Publication number
JPH0549446B2
JPH0549446B2 JP22390983A JP22390983A JPH0549446B2 JP H0549446 B2 JPH0549446 B2 JP H0549446B2 JP 22390983 A JP22390983 A JP 22390983A JP 22390983 A JP22390983 A JP 22390983A JP H0549446 B2 JPH0549446 B2 JP H0549446B2
Authority
JP
Japan
Prior art keywords
film
chlorinated
resin
paint
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22390983A
Other languages
Japanese (ja)
Other versions
JPS60115648A (en
Inventor
Hideki Yamamoto
Masao Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP22390983A priority Critical patent/JPS60115648A/en
Publication of JPS60115648A publication Critical patent/JPS60115648A/en
Publication of JPH0549446B2 publication Critical patent/JPH0549446B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 本発明は、酸、アルカリ等の各種の化学薬品に
耐性があり、柔軟性に富み、かつ導電性を持つフ
イルムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a film that is resistant to various chemicals such as acids and alkalis, has high flexibility, and has electrical conductivity.

このような耐薬品性の導電性フイルムを製造す
るには二つの方法が考えられ、その一つは、押出
機を用いた成膜法を利用する方法である。この方
法は更に二つに分類され、その一つは、フイルム
の素材となるべき樹脂のペレツトと炭素微粉末
を、押出機内部で樹脂を溶融すると共に混合し、
押出して成膜する方法であり、もう一つは、樹脂
を溶融して炭素微粉末と混合し、この混合物を一
度ペレツトとした後、このペレツトを押出機に供
給して成膜する方法である。
There are two possible methods for producing such a chemical-resistant conductive film, one of which is a film forming method using an extruder. This method is further classified into two types; one is to mix resin pellets and carbon fine powder, which are to be the material of the film, in an extruder while melting the resin;
One method is to extrude to form a film.The other method is to melt the resin and mix it with fine carbon powder, make this mixture into pellets, and then feed the pellets to an extruder to form a film. .

そして、もう一つの方法は、フイルムの素材と
なるべき樹脂を適当な有機溶剤により溶解し、均
一な樹脂溶液としてこれに炭素微粉末を加え、ボ
ール・ミル等により混練して塗料化し、この樹脂
に対して接着性のないベースフイルム上にこの塗
料を塗工し、乾燥して皮膜を形成し、次いでこの
皮膜をベースフイルムから剥離することによつて
フイルムを得る方法である。
Another method is to dissolve the resin that will become the material of the film in an appropriate organic solvent, add fine carbon powder to this to form a uniform resin solution, and knead it with a ball mill etc. to form a paint. This is a method of obtaining a film by applying this paint onto a base film that does not have adhesive properties, drying it to form a film, and then peeling this film from the base film.

前者の押出機を用いる方法では、材料供給から
溶融、混合、成膜までの時間が短かく、充分に混
練されないために、導電性フイラーである炭素微
粉末が樹脂中に均一に分散しにくく、良好な導電
性フイルムを得ることができなかつた。一方、後
者の樹脂溶液に炭素微粉末を混入する方法では、
樹脂が溶液状のために、炭素微粉末の混入が容易
で、なおかつ、混練時間が自由に設定でき、樹脂
中に炭素微粉末を均一になるまで充分に混練する
ことが可能で、良好な導電性を有するフイルムを
得ることができる。更に塗工方法により皮膜を形
成するために、一回の塗工で目的のフイルムの厚
さまで塗工する必要はなく、何回かの塗工で目的
の厚みまで塗工すれば、ピンホールや厚みの不均
一等の欠陥が解消し、より均一なフイルムを得る
ことができる。
In the former method using an extruder, the time from material supply to melting, mixing, and film formation is short, and sufficient kneading is not achieved, making it difficult for the carbon fine powder, which is a conductive filler, to be uniformly dispersed in the resin. A good conductive film could not be obtained. On the other hand, in the latter method of mixing fine carbon powder into the resin solution,
Since the resin is in the form of a solution, it is easy to mix the carbon fine powder, and the kneading time can be set freely, making it possible to sufficiently knead the carbon fine powder into the resin until it becomes uniform, resulting in good conductivity. It is possible to obtain a film having the following characteristics. Furthermore, since the film is formed by the coating method, it is not necessary to coat the film to the desired thickness in one coat; if the film is coated to the desired thickness in several coats, pinholes and Defects such as uneven thickness are eliminated, and a more uniform film can be obtained.

ところで、耐薬品性導電性フイルムの素材とな
る耐薬品性の優れた樹脂としては、ポリエチレ
ン、ポリプロピレン、フツ素樹脂、塩化ビニル、
塩化ビニリデン、ポリスルフオン等の樹脂が考え
られるが、一般有機溶剤に解けにくかつたり、塩
化ビニルのように、大量の可塑剤を用いなければ
柔軟なフイルムが得られなかつたりして、良好な
物性を持つたものがなかつた。
By the way, resins with excellent chemical resistance that can be used as materials for chemical-resistant conductive films include polyethylene, polypropylene, fluororesin, vinyl chloride,
Resins such as vinylidene chloride and polysulfone are considered, but they do not have good physical properties because they are difficult to dissolve in general organic solvents, and unlike vinyl chloride, a flexible film cannot be obtained unless a large amount of plasticizer is used. There was no one who could hold one.

本発明者等は、一般の有機溶剤に可溶性で、耐
薬品性を示し、なおかつ得られたフイルムが柔軟
性を有する導電性フイルムの条件にかなう樹脂を
種々検討した結果、ポリオレフインを塩素化した
樹脂、すなわち塩素化ポリプロピレン、塩素化ポ
リエチレン、塩素化エチレン−酢酸ビニルエステ
ル共重合体(以下「塩素化EVA」と呼ぶ。)等が
酸、アルカリのような各種の化学薬品に対して安
定で、有機溶剤に溶けることが分つた。
The present inventors investigated various resins that meet the requirements for conductive films that are soluble in general organic solvents, exhibit chemical resistance, and have flexibility in the resulting film, and found that a resin made by chlorinating polyolefin In other words, chlorinated polypropylene, chlorinated polyethylene, chlorinated ethylene-vinyl acetate copolymer (hereinafter referred to as "chlorinated EVA"), etc. are stable against various chemicals such as acids and alkalis, and are organic. It was found to be soluble in solvents.

しかるに、塩素化ポリエチレン又は塩素化ポリ
プロピレンに導電性炭素微粉末を混入して製作し
たフイルムは柔軟性が低く、特に塩素化度が高く
なるに従い、硬くしかも脆くなる傾向がある。一
方塩素化EVAを用いたフイルムは柔軟で伸びが
あり、ゴム状の弾性も持つていたが、このフイル
ムの表面は粘着性があり、フイルム同士ブロツキ
ングする恐れがあつた。
However, films produced by mixing conductive carbon fine powder into chlorinated polyethylene or chlorinated polypropylene have low flexibility, and tend to become harder and more brittle, especially as the degree of chlorination increases. On the other hand, a film made from chlorinated EVA was flexible, stretchy, and had rubber-like elasticity, but the surface of this film was sticky, and there was a risk that the films would block each other.

本発明者等は、この両者の長所を生かし、欠点
を補うために塩素化ポリエチレン又は塩素化ポリ
プロピレンに対し、適量の塩素化EVAを配合し
た混合樹脂を樹脂分として用いることにより、柔
軟で伸びがあり、かつフイルム同士がブロツキン
グすることのないフイルムが得られることを発見
し、本発明を完成した。
In order to take advantage of the advantages of both, and to compensate for the disadvantages, the present inventors have created a resin mixture that is made of chlorinated polyethylene or chlorinated polypropylene and contains an appropriate amount of chlorinated EVA, thereby achieving flexibility and elongation. The inventors have discovered that it is possible to obtain a film in which there is no blocking between the films, and the present invention has been completed.

すなわち本発明は、樹脂分と炭素微粉末と有機
溶媒からなる溶剤分散液をベースフイルムに塗工
することによつて得られる導電性フイルムにおい
て、前記樹脂分が塩素化エチレン−酢酸ビニルエ
ステル共重合体10〜80重量%、塩素化ポリエチレ
ン又は塩素化ポリプロピレン90〜20重量%から成
る混合樹脂であることを特徴とする耐薬品性導電
性フイルムである。
That is, the present invention provides a conductive film obtained by coating a base film with a solvent dispersion consisting of a resin component, fine carbon powder, and an organic solvent, in which the resin component is a chlorinated ethylene-vinyl acetate copolymer. This is a chemical-resistant conductive film characterized by being a mixed resin consisting of 10 to 80% by weight of a combination and 90 to 20% by weight of chlorinated polyethylene or chlorinated polypropylene.

本発明に係る塩素化ポリエチレン、塩素化ポリ
プロピレン、塩素化エチレン−酢酸ビニルエステ
ル共重合体(塩素化EVA)は、それぞれ対応す
るポリオレフイン系樹脂を塩素化したもので、い
ずれもフイルムの柔軟性の点から、塩素化度が45
%以下であることが好ましい。また塩素化EVA
は、酢酸ビニルエステル含有量があまり高くない
方が耐薬品性が向上する傾向がある。
The chlorinated polyethylene, chlorinated polypropylene, and chlorinated ethylene-vinyl acetate copolymer (chlorinated EVA) according to the present invention are chlorinated versions of the corresponding polyolefin resins, and all of them have the advantage of film flexibility. From, the degree of chlorination is 45
% or less. Also chlorinated EVA
Chemical resistance tends to improve when the vinyl acetate content is not too high.

また、有機溶剤としては、トルエン等の芳香族
炭化水素、ケトン類、エステル類、及び塩素化炭
化水素等が使用できる。
Further, as the organic solvent, aromatic hydrocarbons such as toluene, ketones, esters, chlorinated hydrocarbons, etc. can be used.

本発明で述べる導電性フイラーとしての炭素微
粉末はカーボン・ブラツクでも黒鉛の粉末でもか
まわず、樹脂に対する割合は導電性及び物性を考
慮し選択すれば良い。
The carbon fine powder used as the conductive filler described in the present invention may be carbon black or graphite powder, and the proportion to the resin may be selected in consideration of conductivity and physical properties.

本発明の耐薬品導電性フイルムの製造方法の一
例を以下に述べる。
An example of the method for manufacturing the chemical-resistant conductive film of the present invention will be described below.

まず、塩素化ポリプロピレン、塩素化ポリエチ
レンを有機溶剤に溶かし、これに塩素化EVAを
配合する。これに、黒鉛やカーボンブラツクの炭
素微粉末を導電性フイラーとして適量混入し、ボ
ール・ミル、アトライター等により混練し、塗工
液とする。この塗工液を、塩素化ポリエチレン、
塩素化ポリプロピレン、塩素化EVA等の塩素化
ポリオレフインが接着しにくい性質を持つベース
フイルム上にリバース・ロール・コート、ナイ
フ・コートなどの方法により塗工し、乾燥して皮
膜を形成された後、、ベースフイルムより剥離し
て、本発明の耐薬品性導電性フイルムを得ること
ができる。
First, chlorinated polypropylene and chlorinated polyethylene are dissolved in an organic solvent, and chlorinated EVA is added to this. An appropriate amount of carbon fine powder such as graphite or carbon black is mixed into this as a conductive filler, and the mixture is kneaded using a ball mill, attritor, etc. to form a coating liquid. This coating liquid is applied to chlorinated polyethylene,
Chlorinated polyolefins such as chlorinated polypropylene and chlorinated EVA are coated on a base film that has a property of being difficult to adhere to, by reverse roll coating, knife coating, etc., and dried to form a film. The chemical-resistant conductive film of the present invention can be obtained by peeling it off from the base film.

こうして得られる本発明の耐薬品性導電性フイ
ルムの特徴としては、次のようなものがある。
The chemical-resistant conductive film of the present invention thus obtained has the following characteristics.

(1) このフイルムは、このフイルムの樹脂分の塩
素化ポリオレフイン系樹脂と同様に耐薬品性が
良好で、酸、アルカリに対して長時間安定で、
劣化することはない。
(1) This film, like the chlorinated polyolefin resin that is the resin component of this film, has good chemical resistance and is stable against acids and alkalis for long periods of time.
It will not deteriorate.

(2) 樹脂分として塩素化ペリエチレン又は塩素化
ポリプロピレンの単一の樹脂を用いた場合に
は、得られるフイルムは柔軟性が劣るが、これ
に適量の塩素化EVAをブレンドした混合樹脂
を樹脂分として用いるので、得られたフイルム
は柔軟性が向上し、ゴム弾性が現われ、フイル
ムとしての強度も向上する。また柔軟性の程度
は、塩素化EVAの混合割合により自由にコン
トロールすることが可能である。
(2) When a single resin of chlorinated periethylene or chlorinated polypropylene is used as the resin component, the resulting film has poor flexibility, but if a mixed resin blended with this and an appropriate amount of chlorinated EVA is used as the resin component. Since the film is used as an adhesive, the resulting film has improved flexibility, exhibits rubber elasticity, and has improved strength as a film. Furthermore, the degree of flexibility can be freely controlled by adjusting the mixing ratio of chlorinated EVA.

(3) 本発明では、樹脂分として有機溶剤に可溶な
塩素化ポリオレフインを用いるため、フイルム
を製造する場合、上述の塗工法を適用でき、多
数回塗工することによつてピンホールや厚みの
不均一等の事故が解消できる。また、多数回塗
工する際、まず塩素化ポリエチレンや塩素化ポ
リプロピレンの割合の多い塗料を塗工し、次い
で塩素化EVAの割合の多い塗料を塗工する等、
組成の異なる塗料を塗工することにより、フイ
ルムの一方の面を耐薬品性の強い面とすると共
に、その柔軟性を保持したフイルムを得ること
ができる。
(3) Since the present invention uses chlorinated polyolefin that is soluble in organic solvents as the resin component, the above-mentioned coating method can be applied when producing a film, and by applying multiple coats, pinholes and thickness can be reduced. Accidents such as unevenness can be eliminated. Also, when applying multiple coats, first apply a paint with a high proportion of chlorinated polyethylene or chlorinated polypropylene, then apply a paint with a high proportion of chlorinated EVA, etc.
By applying paints having different compositions, it is possible to make one side of the film highly resistant to chemicals and to obtain a film that retains its flexibility.

(4) 本発明では、有機溶剤に可溶な塩素化ポリオ
レフインを樹脂分として用いるために、導電性
炭素微粉末をこの樹脂溶液に混入でき、高い割
合で導電性炭素微粉末を混合しても、適当な混
練時間を設定すれば均一に炭素微粉末の分散し
たフイルムが得られ、こうして得られたフイル
ムは優れた導電性を有する。また、この混練時
間の設定が容易である。
(4) In the present invention, since chlorinated polyolefin soluble in organic solvents is used as the resin component, conductive carbon fine powder can be mixed into this resin solution, and even if a high proportion of conductive carbon fine powder is mixed. By setting an appropriate kneading time, a film in which fine carbon powder is uniformly dispersed can be obtained, and the film thus obtained has excellent conductivity. Further, the kneading time can be easily set.

(5) 本発明で用いる塩素化ポリオレフイン、すな
わち、塩素化ポリエチレン、塩素化ポリプロピ
レン、及び塩素化EVAはいずれも熱可塑性で、
本発明のフイルムも熱可塑性を持ち、従つて、
本発明のフイルム同士又は金属電極等の他の素
材に対して熱融着もしくはヒートシールするこ
とができる。
(5) The chlorinated polyolefins used in the present invention, that is, chlorinated polyethylene, chlorinated polypropylene, and chlorinated EVA, are all thermoplastic,
The film of the present invention also has thermoplastic properties and therefore:
The films of the present invention can be thermally fused or heat-sealed to each other or to other materials such as metal electrodes.

本発明の耐薬品性導電性フイルムは、各種化
学薬品の容器や包装材料、化学薬品に浸漬した
り腐食性ガスに接する環境下に置かれる金属板
等の保護フイルム、電子部品とその基板との間
の導電性を確保するためのフイルム、メツキ、
精練等の電解槽に使用する資材の保護フイル
ム、電解液に接する電池の材料、静電気の影響
を受けやすい電子部品の除電保護フイルムなど
に使用できる。
The chemical-resistant conductive film of the present invention can be used as a protective film for containers and packaging materials for various chemicals, metal plates etc. that are immersed in chemicals or exposed to corrosive gases, and for electronic components and their substrates. Film, plating, to ensure conductivity between
It can be used as a protective film for materials used in electrolytic baths for scouring, etc., as materials for batteries that come into contact with electrolyte, and as a static-eliminating protective film for electronic components that are susceptible to static electricity.

以下、実施例により、本発明を説明する。な
お、実施例中「部」とあるのは全て重量部であ
る。
The present invention will be explained below with reference to Examples. In addition, all "parts" in the examples are parts by weight.

実施例 1 塗料処方 スーパークロン803MW(山陽国策パルプ(株)製塩素
化ポリプロピレン)(塩素含有量29.5±1%、固
型分20±1%) 70部 スーパークロンB(山陽国策パルプ(株)製塩素化
EVA)(塩素含有量27±1%、固型分20±1%)
30部 デンカ・ブラツク(電気化学工業(株)アセチレン・
ブラツク)(粒度50〜950μ) 7部 トルエン 15部 これらの材料をボール・ミルにて3時間混練し
て得られたものを塗料とした。なお、この塗料に
含まれる全固型分中約26%がデンカ・ブラツクで
あり、全樹脂中約30%がスーパークロンBであ
る。
Example 1 Paint formulation Super Chron 803 MW (chlorinated polypropylene manufactured by Sanyo Kokusaku Pulp Co., Ltd.) (chlorine content 29.5 ± 1%, solid content 20 ± 1%) 70 parts Super Chron B (manufactured by Sanyo Kokusaku Pulp Co., Ltd.) Chlorination
EVA) (chlorine content 27±1%, solid content 20±1%)
30 parts Denka Black (Denki Kagaku Kogyo Co., Ltd.) Acetylene
Black) (particle size 50 to 950μ) 7 parts Toluene 15 parts These materials were kneaded in a ball mill for 3 hours to obtain a paint. Approximately 26% of the total solid content contained in this paint is Denka Black, and approximately 30% of the total resin is Superchrome B.

この塗料を厚さ25μのポリエステルフイルムに
ナイフコーターで計三回繰り返して塗工及び乾燥
した。一回の塗工と乾燥で30〜35μの厚さの乾燥
した皮膜が得られ、三回これを繰り返して約
100μの乾燥した皮膜が得られた。
This paint was applied to a 25 μm thick polyester film using a knife coater three times in total and dried. A dry film with a thickness of 30 to 35 μm is obtained with one application and drying, and this process is repeated three times to obtain approximately
A 100μ dry film was obtained.

この皮膜をポリエステルフイルムから剥離し
て、導電性フイルムを得た。
This film was peeled off from the polyester film to obtain a conductive film.

この導電性フイルムの表、裏面を銅板ではさ
み、荷重100gの圧力を加え、表・裏面間の抵抗
を測定したところ、1平方cm当たり10-1〜100Ω
の良好な導電性を示した。また、この導電性フイ
ルムを、20%NaOHの水溶液に60℃で12ケ月間
保存しても、膨潤、溶解した形跡もなく、物性の
変化もなかつた。
The front and back sides of this conductive film were sandwiched between copper plates, a pressure of 100 g was applied, and the resistance between the front and back sides was measured, and it was 10 -1 to 10 0 Ω per square cm.
It showed good conductivity. Furthermore, even when this conductive film was stored in a 20% NaOH aqueous solution at 60°C for 12 months, there was no evidence of swelling or dissolution, and there was no change in physical properties.

また、上記塗料処方のうち、スーパークロンB
(塩素化EVA)を除いて、樹脂分としてスーパー
クロン803MW(塩素化ポリプロピレン)のみを用
いて、同様に100μの導電性フイルムを作製し、
比較例とした。この比較用のフイルムに比べて、
上記本発明のフイルムは約3倍の伸び率を有し、
優れた柔軟性とゴム弾性を有していた。
Also, among the above paint formulations, Super Chron B
A 100μ conductive film was similarly prepared using only Superchron 803MW (chlorinated polypropylene) as the resin component, except for (chlorinated EVA).
This was used as a comparative example. Compared to this comparative film,
The film of the present invention has an elongation rate of about 3 times,
It had excellent flexibility and rubber elasticity.

実施例 2 塗料処方 スーパークロン803MW 50部 スーパークロンB 50部 CSPE(日本黒鉛工業(株)製鱗状黒鉛)(粒度範囲1
〜15μ) 11部 トルエン 15部 これらの材料をボール・ミルにて2時間混練し
たものを塗料とした。なお、この塗料に含まれる
全固型分中約35%がCSPEであり、全樹脂中約50
%がスーパークロンBである。
Example 2 Paint formulation Super Chron 803MW 50 parts Super Chron B 50 parts CSPE (scaly graphite manufactured by Nippon Graphite Industries Co., Ltd.) (particle size range 1
~15μ) 11 parts toluene 15 parts These materials were kneaded in a ball mill for 2 hours to prepare a paint. Approximately 35% of the total solid content contained in this paint is CSPE, and approximately 50% of the total resin content is CSPE.
% is Super Chron B.

この塗料を用いて、実施例1と同様の方法で、
厚さ100μの導電性フイルムを製造した。
Using this paint, in the same manner as in Example 1,
A conductive film with a thickness of 100μ was manufactured.

このフイルムは、導電性フイラーとして鱗状黒
鉛を用い、しかも実施例1より導電性フイラーの
配合量を増したので、表・裏面間の1平行cm当た
りの抵抗が10-2〜10-1Ωと小さくなり、導電性も
向上した。
This film uses scaly graphite as a conductive filler, and the amount of conductive filler is increased compared to Example 1, so the resistance per parallel cm between the front and back surfaces is 10 -2 to 10 -1 Ω. It has become smaller and has improved conductivity.

また、実施例1より塩素化EVAの割合を多く
したので、柔軟性も増し、実施例1で比較例とし
て用いた導電性フイルムに比べて約5倍の伸び率
を有し、フイルム表面の粘着性は低くてブロツキ
ングを起こすこともなく、耐薬品性も良好であつ
た。
In addition, since the proportion of chlorinated EVA was increased compared to Example 1, the flexibility was increased, and the elongation rate was about 5 times that of the conductive film used as a comparative example in Example 1. The chemical resistance was low and no blocking occurred, and the chemical resistance was also good.

このフイルムを、ステンレス板に重ね、160℃、
0.5〜2Kg/cm2の条件でニツプロールで熱融着す
ることにより、導電性を損うことなく金属表面を
酸、アルカリ等の薬品から保護することができ
た。
Layer this film on a stainless steel plate and heat it at 160℃.
By heat-sealing with Nipprol under conditions of 0.5 to 2 Kg/cm 2 , the metal surface could be protected from chemicals such as acids and alkalis without impairing conductivity.

Claims (1)

【特許請求の範囲】[Claims] 1 樹脂分と炭素微粉末と有機溶媒からなる溶剤
分散液をベースフイルムに塗工することによつて
得られる導電性フイルムにおいて、前記樹脂分が
塩素化エチレン−酢酸ビニルエステル共重合体10
〜80重量%、塩素化ポリエチレン又は塩素化ポリ
プロピレン90〜20重量%から成る混合樹脂である
ことを特徴とする耐薬品性導電性フイルム。
1. A conductive film obtained by coating a base film with a solvent dispersion consisting of a resin component, fine carbon powder, and an organic solvent, wherein the resin component is a chlorinated ethylene-vinyl acetate copolymer 10
A chemical-resistant conductive film characterized in that it is a mixed resin comprising ~80% by weight of chlorinated polyethylene or 90-20% by weight of chlorinated polypropylene.
JP22390983A 1983-11-28 1983-11-28 Chemical-resistant conductive film Granted JPS60115648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22390983A JPS60115648A (en) 1983-11-28 1983-11-28 Chemical-resistant conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22390983A JPS60115648A (en) 1983-11-28 1983-11-28 Chemical-resistant conductive film

Publications (2)

Publication Number Publication Date
JPS60115648A JPS60115648A (en) 1985-06-22
JPH0549446B2 true JPH0549446B2 (en) 1993-07-26

Family

ID=16805608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22390983A Granted JPS60115648A (en) 1983-11-28 1983-11-28 Chemical-resistant conductive film

Country Status (1)

Country Link
JP (1) JPS60115648A (en)

Also Published As

Publication number Publication date
JPS60115648A (en) 1985-06-22

Similar Documents

Publication Publication Date Title
TW561496B (en) Thick film compositions for making medical electrodes
EP1103582B1 (en) Water-based primer composition for fluororesin coating
US4124747A (en) Conductive polyolefin sheet element
US4154876A (en) Coating with fluoroethylene resins
JPS6239678A (en) Polymer thick film ink and its use
JPH04168170A (en) Fluororesin coating composition
JP3628263B2 (en) Release agent composition having antistatic ability
JPH02158055A (en) Manufacture of positive mix for lithium secondary battery
JPS5853935A (en) Electrically conductive and heat-weldable resin composition for plastic and metal
JPH01101373A (en) Electrically conductive composition
JPH0549446B2 (en)
JPH08120182A (en) Ptc composition and panel heating material
US3919122A (en) Manufacture of resinous compositions having high electroconductivity
JP3309264B2 (en) Antistatic paint and antistatic film and sheet formed with the coating film
JPS6223979B2 (en)
US3692702A (en) Semiconductive contact adhesive
JP3195450B2 (en) Conductive composition and self-temperature controlling surface heating element
JPS58194962A (en) Water-resistant, electrically conductive paint
JPS62114686A (en) Method for forming transparent conductive film
DE102004011683B4 (en) Homogeneous polymer blend of fluorine-containing polymers and a polyisobutylene granule mixture, use of the homogeneous polymer blend and method for producing an electrode material
JPS6242813A (en) Electroconductive casting film
JPH01304164A (en) Adhesion primer composition for polyethylene
JPH071481A (en) Manufacture of conductive resin plate
JPS6229085A (en) Surface heat generating body
JPS5834514B2 (en) Adhesion method