JPH0549198B2 - - Google Patents

Info

Publication number
JPH0549198B2
JPH0549198B2 JP62249913A JP24991387A JPH0549198B2 JP H0549198 B2 JPH0549198 B2 JP H0549198B2 JP 62249913 A JP62249913 A JP 62249913A JP 24991387 A JP24991387 A JP 24991387A JP H0549198 B2 JPH0549198 B2 JP H0549198B2
Authority
JP
Japan
Prior art keywords
detector
fuel assembly
storage container
main body
radiation detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62249913A
Other languages
Japanese (ja)
Other versions
JPH0192692A (en
Inventor
Hironori Kumanomido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62249913A priority Critical patent/JPH0192692A/en
Publication of JPH0192692A publication Critical patent/JPH0192692A/en
Publication of JPH0549198B2 publication Critical patent/JPH0549198B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、原子炉で照射された燃料集合体の
側面の放射線を測定することにより、その燃料集
合体の燃焼度等の分布を測定する原子炉照射燃料
集合体の燃焼度等分布測定装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) This invention is an object of the present invention to measure the burnup level, etc. of a fuel assembly by measuring the radiation on the side of the fuel assembly irradiated in a nuclear reactor. The present invention relates to a burnup distribution measuring device for a nuclear reactor irradiated fuel assembly that measures the distribution of burnup.

(従来の技術) 原子炉に装荷された燃料は、照射に伴い内部に
核***生成物が蓄積される。この核***生成物の
中には放射性のものが多い。このような放射性核
***生成物のうちには、137Cs、134Cs、154Eu等のよ
うに半減期が数年以上の長さを持ち、かつ核***
収率が大きいために生成量が多いものがある。こ
のため、通常の照射を受けた使用済燃料からは多
量のガンマ線が放出されている。また、燃料中の
重核種(238U等)は、照射中に中性子捕獲を繰り
返して244Cm、242Cm、240Pu等の自発核***性核種
を生成する。これらの半減期も長い。さらに、燃
料内の自発核***物質が核***する際には、中性
子が放出され、この放出された中性子が残留核分
裂物質と作用して核***を引き起こし、中性子を
放出する現象も起きる。上述のようなガンマ線や
中性子を測定することにより、原子炉で照射され
た燃料集合体の燃焼度や核***物質の生成量ある
いはPu/U比等の有用な評価が可能となる。
(Prior Art) Fission products accumulate inside fuel loaded into a nuclear reactor as it is irradiated. Many of these fission products are radioactive. Some of these radioactive fission products, such as 137 Cs, 134 Cs, and 154 Eu, have long half-lives of several years or more and are produced in large quantities because of their high fission yields. be. For this reason, large amounts of gamma rays are emitted from spent fuel that has undergone normal irradiation. In addition, heavy nuclides in fuel (such as 238 U) repeatedly capture neutrons during irradiation, producing spontaneous fissile nuclides such as 244 Cm, 242 Cm, and 240 Pu. Their half-lives are also long. Furthermore, when the spontaneously fissile material in the fuel undergoes nuclear fission, neutrons are released, and the emitted neutrons interact with the remaining fissile material to cause nuclear fission and release of neutrons. By measuring gamma rays and neutrons as described above, it becomes possible to usefully evaluate the burnup of a fuel assembly irradiated in a nuclear reactor, the amount of fissile material produced, the Pu/U ratio, etc.

(発明が解決しようとする問題点) 原子炉で照射された燃料集合体の側面に放射線
検出器を配置して、燃料集合体における燃焼度等
の分布を測定するには、次の2つの測定方法が考
えられる。
(Problems to be Solved by the Invention) In order to measure the distribution of burnup, etc. in a fuel assembly by placing a radiation detector on the side of a fuel assembly irradiated in a nuclear reactor, the following two measurements are required. There are possible ways.

1つは、1個の放射線検出器を用い、この放射
線検出器を燃料集合体の側面において軸方向に移
動させ、各位置において測定を実施する方法であ
る。この方法によれば、検出器の感度は一定であ
るが測定を多数回行なう必要があり、多大な測定
時間を要するという欠点がある。
One method uses a single radiation detector, moves the radiation detector axially on the side of the fuel assembly, and performs measurements at each position. According to this method, although the sensitivity of the detector is constant, it is necessary to perform measurements many times, which has the disadvantage that it takes a long time to measure.

他の1つは、複数個の検出器を燃料集合体の側
面においてその軸方向に並べ、燃料集合体の複数
箇所を同時に測定する方法である。この方法は、
測定が一度で終わる長所があるが、各検出器の感
度に差があるため測定誤差が生じ易いという欠点
がある。
Another method is to arrange a plurality of detectors in the axial direction on the side of the fuel assembly and simultaneously measure a plurality of locations on the fuel assembly. This method is
Although it has the advantage that the measurement can be completed only once, it has the disadvantage that measurement errors are likely to occur because the sensitivity of each detector differs.

この発明は、上記事実を考慮してなされたもの
であり、原子炉で照射された燃料集合体の燃焼度
等の分布を短時間かつ正確に測定することができ
る原子炉照射燃料集合体の燃焼度等分布測定装置
を提供することを目的とする。
This invention has been made in consideration of the above facts, and is a method for combustion of nuclear reactor irradiated fuel assemblies that allows the distribution of burnup, etc. of fuel assemblies irradiated in a nuclear reactor to be measured quickly and accurately. The purpose of the present invention is to provide a degree uniformity distribution measuring device.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この発明は、燃料集合体の軸方向長さと略同一
長さの装置本体と、その装置本体にその軸方向に
スライド可能に配設され、複数の放射線検出器を
軸方向等間隔に収納した検出器収納容器と、上記
検出器収納容器を前記装置本体に対し、複数の上
記放射線検出器の収納間隔毎にスライドさせる収
納容器駆動部とを有したものである。
(Means for Solving the Problems) The present invention includes a device main body having approximately the same length as the axial length of the fuel assembly, and a plurality of radiation detection devices arranged in the device main body so as to be slidable in the axial direction. A detector storage container that stores the radiation detectors at equal intervals in the axial direction, and a storage container drive unit that slides the detector storage container with respect to the apparatus main body at each storage interval of the plurality of radiation detectors. be.

(作用) したがつて、この発明に係る原子炉照射燃料集
合体の燃焼度等分布測定装置は、原子炉照射燃料
集合体の側面における軸方向のある位置と、検出
器収納容器をそこから放射線検出器の収納間隔だ
けスライドさせた位置とで測定を行うことによ
り、原子炉で照射された燃料集合体の燃焼度等の
分布を短時間かつ正確に測定することができる。
(Function) Therefore, the burnup distribution measuring device for a reactor irradiated fuel assembly according to the present invention is capable of measuring a position in the axial direction on the side surface of the reactor irradiated fuel assembly and directing the detector storage container to the radiation source from there. By performing measurements at a position slid by the distance between the detectors, it is possible to accurately measure the distribution of burnup, etc. of a fuel assembly irradiated in a nuclear reactor in a short time.

(実施例) 以下、この発明の実施例を図面に基づいて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図はこの発明に係る原子炉照射燃料集合体
の燃焼度等分布測定装置の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing an embodiment of the burnup uniformity distribution measuring device for a nuclear reactor irradiated fuel assembly according to the present invention.

原子炉照射燃料集合体の燃焼度等分布測定装置
1は、放射線検出器としての中性子検出器3およ
びガンマ線検出器5を収納した検出器収納容器7
と、この検出器収納容器7を内部に配設した装置
本体9と、検出器収納容器7を装置本体9に対し
てスライドさせる検出器駆動部11とを有して構
成される。
The burnup uniformity distribution measuring device 1 of a reactor irradiated fuel assembly includes a detector storage container 7 that houses a neutron detector 3 and a gamma ray detector 5 as radiation detectors.
The device includes a device main body 9 in which the detector storage container 7 is disposed, and a detector drive unit 11 that slides the detector storage container 7 relative to the device main body 9.

装置本体9は、原子炉で照射された原子炉照射
燃料集合体13とほぼ同一の軸方向長さを有して
設けられる。また、検出器収納容器7は、装置本
体9内をスライド可能に配設されるとともに、中
性子検出器3およびガンマ線検出器5を1組の検
出器として多数組の検出器を収納する。このと
き、隣接した検出器の組の中性子検出器3同士
(またはガンマ線検出器5同士)は検出器収納容
器7の軸方向に等間隔で配置される。この間隔を
1ピツチと称する。さらに、中性子検出器3およ
びガンマ線検出器5は、第2図に示すように、鉛
直方向にほぼ同一平面内に配置される。
The device main body 9 is provided with approximately the same axial length as the reactor irradiated fuel assembly 13 irradiated in the nuclear reactor. Further, the detector storage container 7 is arranged so as to be slidable within the apparatus main body 9, and accommodates a large number of sets of detectors including the neutron detector 3 and the gamma ray detector 5 as one set of detectors. At this time, the neutron detectors 3 (or gamma ray detectors 5) of adjacent detector sets are arranged at equal intervals in the axial direction of the detector storage container 7. This interval is called one pitch. Further, the neutron detector 3 and the gamma ray detector 5 are arranged in substantially the same plane in the vertical direction, as shown in FIG.

検出器収納容器7に配置される中性子検出器3
は、ポリエチレン等の中性子減速材から成る固定
材15により検出器収納容器7に固定される。ま
た、ガンマ線検出器5は、鉛やタングステン等の
ガンマ線遮蔽材によつて形成されたコリメータ1
7内に内包され、このコリメータ17を介して検
出器収納容器7内に収納される。コリメータ17
のスリツト19は、原子炉照射燃料集合体13に
対して開口し得るように設けられ、原子炉照射燃
料集合体13からガンマ線を平行に集束し得るよ
う構成される。
Neutron detector 3 placed in detector storage container 7
is fixed to the detector storage container 7 by a fixing member 15 made of a neutron moderator such as polyethylene. The gamma ray detector 5 also includes a collimator 1 formed of a gamma ray shielding material such as lead or tungsten.
7 and is housed in the detector storage container 7 via this collimator 17. Collimator 17
The slit 19 is provided so as to be open to the reactor irradiated fuel assembly 13 and configured to focus gamma rays from the reactor irradiated fuel assembly 13 in parallel.

このような中性子検出器3またはガンマ線検出
器5は、原子炉照射燃料集合体13から放出され
る中性子またはガンマ線をそれぞれ検出するもの
である。一般に、原子炉照射燃料集合体13は、
特にその燃焼が進行したものほど内部に中性子放
出核種とガンマ線放出核種を多く含む。したがつ
て、これらから放出される中性子あるいはガンマ
線を中性子検出器3、ガンマ線検出器5でそれぞ
れ測定することによつて、原子炉照射燃料集合体
13の燃焼度や核***物質生成量等に関する情報
が得られる。
Such a neutron detector 3 or gamma ray detector 5 detects neutrons or gamma rays emitted from the reactor irradiated fuel assembly 13, respectively. Generally, the reactor irradiated fuel assembly 13 is
In particular, the more advanced the combustion, the more neutron-emitting nuclides and gamma-ray emitting nuclides it contains. Therefore, by measuring the neutrons or gamma rays emitted from these with the neutron detector 3 and gamma ray detector 5, information regarding the burnup of the reactor irradiated fuel assembly 13, the amount of fissile material produced, etc. can be obtained. can get.

検出器駆動部11は、検出器収納容器7の鉛直
方向に固定された駆動ロツド21に連結され、こ
の駆動ロツド21を介して検出器収納容器7を鉛
直上方または下方にスライドさせる。検出器駆動
部11の1回のスライド量は上記1ピツチであ
り、検出器駆動部11は、1ピツチずつずれた位
置で検出器収納容器7を正確に位置決めできるよ
う設けられる。
The detector drive unit 11 is connected to a drive rod 21 fixed in the vertical direction of the detector container 7, and slides the detector container 7 vertically upward or downward via the drive rod 21. The amount by which the detector drive section 11 slides at one time is the above-mentioned one pitch, and the detector drive section 11 is provided so that the detector storage container 7 can be accurately positioned at positions shifted by one pitch.

次に作用を説明する。 Next, the action will be explained.

原子炉照射燃料集合体の燃焼度等分布測定装置
1を第1図に示すように原子炉照射燃料集合体1
3の側面に配置し、中性子およびガンマ線の測定
を行なう。ここでは、ある位置で測定を実施した
ときの各検出器の信号を次のように表わす。これ
は、中性子検出器3およびガンマ線検出器5の双
方に適用できる。
As shown in FIG.
3 and measures neutrons and gamma rays. Here, the signals of each detector when measuring at a certain position are expressed as follows. This is applicable to both the neutron detector 3 and the gamma ray detector 5.

n番目の検出器の感度をEoとし、このn番目
の検出器からの信号をSoとする。また、最初の検
出時におけるn番目の検出器に対向する原子炉照
射燃料集合体13の軸方向位置をnとし、この位
置nにおける放射線量をφoとする。最初の測定
でn番目、(n−1)番目の検出器からの信号
(So1、(So-12はそれぞれ (So1、=Eo・φo ……(1) (So-11=Eo-1・φo-1 ……(2) と表わされる。
Let the sensitivity of the nth detector be E o and the signal from this nth detector be S o . Further, the axial position of the reactor irradiated fuel assembly 13 facing the n-th detector at the time of first detection is set to n, and the radiation dose at this position n is set to φ o . In the first measurement, the signals (S o ) 1 and (S o- 1 ) 2 from the nth and (n-1)th detectors are respectively (S o ) 1 , =E o・φ o ...(1 ) (S o-1 ) 1 = E o-1・φ o-1 ...(2)

次に、検出収納容器7を1ピツチだけスライド
させて、(n−1)番目の検出器が、最初の測定
でn番目の検出器があつた位置nにくるように設
定し、再び測定を行なう。この2番目の測定での
n番目、(n−1)番目の検出器からの信号(So
2、(So-12は、 (So2、=Eo・φo+1 ……(3) (So-12=Eo-1・φo ……(4) と表わされる。
Next, slide the detection storage container 7 by one pitch so that the (n-1)th detector is at the position n where the nth detector was in the first measurement, and repeat the measurement. Let's do it. Signals from the nth and (n-1)th detectors in this second measurement (S o )
2 , (S o-1 ) 2 is, (S o ) 2 , = E o・φ o+1 ……(3) (S o-1 ) 2 = E o-1・φ o ……(4) It is expressed as

よつて、式(1)および式(4)からn番目と(n−
1)番目の検出器との感度比は次のようになる。
Therefore, from equation (1) and equation (4), the nth and (n−
1) The sensitivity ratio with the second detector is as follows.

Eo/Eo-1=(So1/(So-12 ……(5) このようにして、隣合う検出器相互の感度の比
が得られるので、結果的に全ての検出器について
相互の感度比を求めることができる。それ故、こ
の相互の感度比に基づいて相対的に感度較正を行
なえば、正確な燃焼度の分布や核***物質の生成
量およびPu/U比等を迅速に求めることができ
る。
E o /E o-1 = (S o ) 1 / (S o-1 ) 2 ...(5) In this way, the ratio of sensitivities between adjacent detectors can be obtained, so as a result, all It is possible to determine the mutual sensitivity ratio of the detectors. Therefore, if relative sensitivity calibration is performed based on this mutual sensitivity ratio, accurate burnup distribution, amount of fissile material produced, Pu/U ratio, etc. can be quickly determined.

上記実施例では2回の測定を実施して各検出器
3,5の相対感度較正を実施するものにつき説明
したが、1ピツチずつずらしながら複数回の測定
を行ない、各検出器3,5間の感度比を多重に得
て、それらの平均をとる等の統計解析を行なうに
してもよい。これによつて、より高精度な相対感
度較正を実現することができ、一層正確な燃焼度
等の分布を求めることができる。
In the above embodiment, the relative sensitivity calibration of each detector 3, 5 is performed by performing two measurements. It is also possible to perform statistical analysis such as obtaining multiple sensitivity ratios and taking the average of the sensitivity ratios. As a result, more accurate relative sensitivity calibration can be achieved, and a more accurate distribution of burnup, etc. can be determined.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る原子炉照射燃料
集合体の燃焼度等分布測定装置によれば、複数の
放射線検出器を検出器収納容器の軸方向に等間隔
に収納し、この検出器収納容器を装置本体内で放
射線検出器の収納間隔毎にスライドさせるように
構成したことから、原子炉照射燃料集合体の側面
において検出器収納容器を放射線検出器の収納間
隔毎にスライドさせて測定することにより、原子
炉で照射された燃料集合体の燃焼度等の分布を短
時間かつ正確に測定可能であるという効果を奏す
る。
As described above, according to the burnup uniform distribution measuring device for a reactor irradiated fuel assembly according to the present invention, a plurality of radiation detectors are housed at equal intervals in the axial direction of the detector storage container, and the detector storage Since the container is configured to slide within the device main body at each storage interval of the radiation detector, measurements are made by sliding the detector storage container on the side of the reactor irradiated fuel assembly at each storage interval of the radiation detector. As a result, it is possible to accurately measure the distribution of burnup, etc. of a fuel assembly irradiated in a nuclear reactor in a short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る原子炉照射燃料集合体
の燃焼度等分布測定装置を示す断側面図、第2図
は第1図の−線に沿う断面図である。 1……原子炉照射燃料集合体の燃焼度等分布測
定装置、3……中性子検出器、5……ガンマ線検
出器、7……検出器収納容器、9……装置本体、
11……検出器駆動部、13……原子炉照射燃料
集合体。
FIG. 1 is a cross-sectional side view showing a burnup uniform distribution measuring device for a reactor irradiated fuel assembly according to the present invention, and FIG. 2 is a cross-sectional view taken along the - line in FIG. 1. 1... Device for measuring burnup uniform distribution of reactor irradiated fuel assembly, 3... Neutron detector, 5... Gamma ray detector, 7... Detector storage container, 9... Device main body,
11...Detector drive unit, 13...Reactor irradiation fuel assembly.

Claims (1)

【特許請求の範囲】 1 燃料集合体の軸方向長さと略同一長さの装置
本体と、その装置本体にその軸方向にスライド可
能に配設され、複数の放射線検出器を軸方向等間
隔に収納した検出器収納容器と、上記検出器収納
容器を前記装置本体に対し、複数の上記放射線検
出器の収納間隔毎にスライドさせる収納容器駆動
部とを有することを特徴とする原子炉照射燃料集
合体の燃焼度等分布測定装置。 2 検出器収納容器に収納される放射線検出器は
2種以上の異なつた種類の検出器の組であり、収
納容器駆動部は上記検出器収納容器を、同一種類
の放射線検出器の収納間隔毎にスライドさせるも
のである特許請求の範囲第1項記載の原子炉照射
燃料集合体の燃焼度等分布測定装置。
[Claims] 1. A device main body having approximately the same length as the axial length of the fuel assembly, and a plurality of radiation detectors disposed on the device main body so as to be slidable in the axial direction, and a plurality of radiation detectors arranged at equal intervals in the axial direction. A reactor irradiation fuel assembly comprising: a detector storage container; and a storage container drive unit that slides the detector storage container with respect to the apparatus main body at each storage interval of the plurality of radiation detectors. Body burnup distribution measuring device. 2. The radiation detectors housed in the detector storage container are a set of two or more different types of detectors, and the storage container drive section moves the detector storage container at each storage interval of radiation detectors of the same type. An apparatus for measuring burnup distribution, etc. of a nuclear reactor irradiated fuel assembly according to claim 1, which is adapted to slide the nuclear reactor irradiated fuel assembly.
JP62249913A 1987-10-05 1987-10-05 Instrument for measuring burnup distribution of irradiated fuel assembly of nuclear reactor Granted JPH0192692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249913A JPH0192692A (en) 1987-10-05 1987-10-05 Instrument for measuring burnup distribution of irradiated fuel assembly of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249913A JPH0192692A (en) 1987-10-05 1987-10-05 Instrument for measuring burnup distribution of irradiated fuel assembly of nuclear reactor

Publications (2)

Publication Number Publication Date
JPH0192692A JPH0192692A (en) 1989-04-11
JPH0549198B2 true JPH0549198B2 (en) 1993-07-23

Family

ID=17200056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249913A Granted JPH0192692A (en) 1987-10-05 1987-10-05 Instrument for measuring burnup distribution of irradiated fuel assembly of nuclear reactor

Country Status (1)

Country Link
JP (1) JPH0192692A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837343A1 (en) * 1996-10-15 1998-04-22 European Atomic Energy Community (Euratom) A monitor for measuring both the gamma spectrum and neutrons emitted by spent nuclear fuel
JP4709925B2 (en) * 2007-04-13 2011-06-29 株式会社東芝 Burnup relative distribution measuring method, burnup relative distribution measuring apparatus, radiation signal distribution measuring apparatus, and burnup relative distribution measuring program

Also Published As

Publication number Publication date
JPH0192692A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
US3786256A (en) Method and apparatus for nuclear fuel assay with a neutron source and coincident fission neutron detectors
US3636353A (en) Method and apparatus for the nondestructive assay of bulk nuclear reactor fuel using 1 kev. to 1 mev. range neutrons
US8946645B2 (en) Radiation-monitoring diagnostic hodoscope system for nuclear-power reactors
Mayorov et al. Gamma emission tomography for the inspection of spent nuclear fuel
Terremoto et al. Gamma-ray spectroscopy on irradiated MTR fuel elements
EP1576618B1 (en) Method and apparatus for carrying out a mox fuel rod quality control
Vitullo et al. A mm 3 fiber-coupled scintillator for in-core thermal neutron detection in CROCUS
US3728544A (en) Method and apparatus for measurement of concentration of thermal neutron absorber contained in nuclear fuel
US3736429A (en) Random source interrogation system
US4335466A (en) Method and apparatus for measuring irradiated fuel profiles
JP2526392B2 (en) Nondestructive inspection system for fuel rods for nuclear reactors
Menlove et al. A new method of calibration and normalization for neutron detector families
JPH0549198B2 (en)
KR910007717B1 (en) Method and apparatus to determine the activity volume and to estimate the plutonium mass contained in waste
Lévai et al. Use of high energy gamma emission tomography for partial defect verification of spent fuel assemblies
Owen Measurement of power and burn-up in irradiated nuclear reactor fuel by a non-destructive method
Gagliardi et al. Assessing performance of Nucleco Passive/Active System (PANWAS) through a long-term verification campaign
East et al. Automated nondestructive assay instrumentation for nuclear materials safeguards
RU2316064C2 (en) Method and device for quality control of mox fuel rods
Menlove et al. Californium-252 assay system for FBR-type fuel pins
JP3329859B2 (en) Neutron measurement method and its measurement device
Sanderson et al. A mixed gamma-ray standard for calibrating germanium well detectors
Phillips et al. Nondestructive verification with minimal movement of irradiated light-water-reactor fuel assemblies
Miller et al. Advanced Fuel Cycle Safeguards
Bramblett Fuel rod scanner for quality control and safeguards

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 15