JPH054824A - Production of infrared-transmitting lens - Google Patents

Production of infrared-transmitting lens

Info

Publication number
JPH054824A
JPH054824A JP3151412A JP15141291A JPH054824A JP H054824 A JPH054824 A JP H054824A JP 3151412 A JP3151412 A JP 3151412A JP 15141291 A JP15141291 A JP 15141291A JP H054824 A JPH054824 A JP H054824A
Authority
JP
Japan
Prior art keywords
glass
lens
mold
chalcogenide glass
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3151412A
Other languages
Japanese (ja)
Inventor
Yasuo Mizuno
康男 水野
Masakatsu Sugai
正克 菅井
Masaki Ikeda
正樹 池田
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3151412A priority Critical patent/JPH054824A/en
Publication of JPH054824A publication Critical patent/JPH054824A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • C03C3/323Chalcogenide glasses, e.g. containing S, Se, Te containing halogen, e.g. chalcohalide glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts

Abstract

PURPOSE:To provide a process for forming a press-formable non-toxic lens transmitting infrared ray and visible light. CONSTITUTION:A chalcogenide glass 1 is hot-pressed with hot molds 2, 3 having polished optical surfaces. The molds 2, 3 are made of a metallic material having a thermal expansion coefficient nearly equal to that of the chalcogenide glass 1. The forming of the lens is carried out in an inert gas atmosphere to prevent the oxidation of the glass. The breakage of the lens during the cooling process after press-forming can be prevented by this process. The hot-press forming of lens enables the production of high-precision lens in high productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線センサの集光レ
ンズに用いる、カルコゲナイドガラスを主体とする赤外
線透過性レンズの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an infrared transmissive lens mainly composed of chalcogenide glass used for a condenser lens of an infrared sensor.

【0002】[0002]

【従来の技術】焦電型赤外センサを用いた人体検知セン
サは家電製品や産業機器分野において広く利用されてい
る。例えば、ドアーの開閉、便器の自動給水栓、エアコ
ンの作動などに用いられている。一般に、人体から出る
8〜12μm の赤外線を効率よく集光するため、センサ
の前部には赤外光のみを透過するレンズが設けられてい
る。
2. Description of the Related Art A human body detection sensor using a pyroelectric infrared sensor is widely used in the fields of home electric appliances and industrial equipment. For example, it is used for opening and closing doors, automatic water faucet of toilets, and operation of air conditioners. Generally, in order to efficiently collect infrared rays of 8 to 12 μm emitted from the human body, a lens that transmits only infrared light is provided at the front of the sensor.

【0003】従来、この種のレンズは塊ガラスから切り
出したガラスを研磨加工する方法か、予め型に鋳込んで
レンズに近い形に成形し、その後研磨加工する方法で作
製していた。しかし、切り出し法や鋳込み法では、非常
に多くの加工工程を必要とし、時間も要する。また、カ
ルコゲナイドガラスは酸化物系ガラスに比較して柔らか
いガラスであるため、研磨加工中にガラスの割れなどが
発生し易く、光学的に平滑な表面を有するレンズを作製
することは非常に困難であった。このような問題に対し
ては、たとえば特願平2-160631号公報に、ガラス製の型
に挟みプレス成形してレンズを作製する方法が開示され
ている。
Conventionally, this type of lens has been manufactured by a method of polishing glass cut out from a lump glass, or by casting in a mold in advance to form a shape close to the lens and then polishing. However, the cutting method and the casting method require a great number of processing steps and require time. Further, since chalcogenide glass is a softer glass than oxide-based glass, cracking of the glass is likely to occur during polishing, and it is very difficult to produce a lens having an optically smooth surface. there were. For such a problem, for example, Japanese Patent Application No. 2-160631 discloses a method of sandwiching a glass mold and press-molding it to manufacture a lens.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような従
来のガラス製の型は、石英ガラス製の型を使用していた
ため、熱膨張係数がカルコゲナイドガラスに比較してき
わめて小さく、熱プレス成形した後、冷却時にレンズに
引っ張り応力が加わり、レンズが割れることが頻繁にあ
った。
However, since such a conventional glass mold uses a quartz glass mold, the coefficient of thermal expansion is extremely smaller than that of chalcogenide glass, and hot press molding is performed. Later, when the lens was cooled, tensile stress was applied to the lens, and the lens was often cracked.

【0005】本発明はこのような課題を解決するもの
で、加工工数が少なく、生産性に優れ、成形時にガラス
レンズが破損しない赤外線透過性レンズの製造方法を提
供することを目的とするものである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing an infrared transmissive lens that requires a small number of processing steps, is excellent in productivity, and does not damage a glass lens during molding. is there.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明は、カルコゲナイドガラスを光学的な研磨表面
を有する加熱された金型に挟み、熱プレス成形するよう
にしたものである。
In order to solve this problem, the present invention is one in which a chalcogenide glass is sandwiched between heated dies having an optically polished surface and hot pressed.

【0007】また、カルコゲナイドガラスの熱膨張係数
とほぼ等しい熱膨張係数を有する金型により熱プレス成
形するようにしたものである。
[0007] Further, hot pressing is performed by a mold having a coefficient of thermal expansion substantially equal to that of chalcogenide glass.

【0008】また、金型の温度をカルコゲナイドガラス
の屈伏点以上、軟化点以下の温度に保持して熱プレス成
形するようにしたものである。
Further, the temperature of the mold is kept at a temperature not lower than the sag point of the chalcogenide glass and not higher than the softening point for hot press molding.

【0009】また、ゲルマニウムとイオウを主体とする
ガラスを熱プレス成形するようにしたものである。
Further, glass mainly containing germanium and sulfur is formed by hot press molding.

【0010】また、不活性ガス雰囲気中でカルコゲナイ
ドガラスを熱プレス成形するようにしたものである。
Further, the chalcogenide glass is hot press molded in an inert gas atmosphere.

【0011】[0011]

【作 用】この方法によれば、レンズを損傷することな
く熱プレス成形することができる。一般に、カルコゲナ
イドガラスの熱膨張係数は(150〜250)×10-7
℃ときわめて大きい。したがって、ステンレス、アルミ
ニウム、鋳鉄のような大きな熱膨張係数を有する金属材
料を使用して金型を作製し、金形の温度をカルコゲナイ
ドガラスの屈伏点以上、軟化点以下の温度に保持して熱
プレスすれば、ガラスと金型が接着した状態で冷却して
も、冷却時にガラスに割れが生じることがない。しか
し、金型温度がガラスの軟化点を越えると、ガラスと金
型の離型性が悪くなるので好ましくない。
[Operation] According to this method, it is possible to perform hot press molding without damaging the lens. Generally, the coefficient of thermal expansion of chalcogenide glass is (150 to 250) × 10 −7 /
Extremely large at ℃. Therefore, a metal mold having a large coefficient of thermal expansion such as stainless steel, aluminum, and cast iron is used to manufacture a mold, and the mold temperature is kept at a temperature not lower than the sag point of the chalcogenide glass and not higher than the softening point. If pressed, even if the glass and the mold are bonded and cooled, the glass does not crack during cooling. However, if the mold temperature exceeds the softening point of the glass, the releasability between the glass and the mold deteriorates, which is not preferable.

【0012】また家電製品や産業機器に使用される人体
検出センサに使用する赤外線レンズには毒性のない元素
を主成分とする必要がある。カルコゲナイドガラスの主
要元素はイオウ、セレン、テルル、ゲルマニウム、ヒ
素、アンチモンである。このうち毒物に指定されている
のはヒ素、セレンであるが、特に毒性が強いのはヒ素と
されている。セレンはトマトジュースに多く含まれ、家
畜の必須栄養素であることからそれ自体の毒性は弱いと
されている。
Further, an infrared lens used for a human body detection sensor used in home electric appliances and industrial equipment needs to contain a nontoxic element as a main component. The main elements of chalcogenide glass are sulfur, selenium, tellurium, germanium, arsenic and antimony. Of these, arsenic and selenium are designated as poisons, but arsenic is said to be particularly toxic. Since selenium is abundant in tomato juice and is an essential nutrient for livestock, it is said that its toxicity is weak.

【0013】さらに可視光をほとんど透過しないカルコ
ゲナイドガラスは、組み立て時のレンズとセンサとの光
軸合わせに目視による調整は不可能で、数千万円もする
高価な赤外撮像装置が必要であった。したがって、ヒ素
を除いた元素でレンズを構成し、さらに可視光も透過す
ることを条件に入れると、ゲルマニウム、イオウがレン
ズ材料の主成分となる。またガラスにはゲルマニウム、
イオウに加えて、赤外透過域の拡大や結晶化の抑制のた
めヨウ素、アンチモン、テルル、セレンなどを含有する
ものである。なお熱膨張係数の適正化のため少量のリチ
ウム、ナトリウム、銅、銀、ホウ素、ガリウム、インジ
ウム、シリコン、スズ、鉛、ビスマス、リン、臭素を含
ませてもよい。
Further, in chalcogenide glass that transmits almost no visible light, it is impossible to visually adjust the optical axis alignment between the lens and the sensor at the time of assembly, and an expensive infrared imaging device that costs tens of millions of yen is required. It was Therefore, if a lens is composed of elements other than arsenic and the visible light is also transmitted, germanium and sulfur will be the main components of the lens material. Also, for glass, germanium,
In addition to sulfur, iodine, antimony, tellurium, selenium, etc. are contained in order to expand the infrared transmission region and suppress crystallization. A small amount of lithium, sodium, copper, silver, boron, gallium, indium, silicon, tin, lead, bismuth, phosphorus, or bromine may be contained in order to optimize the coefficient of thermal expansion.

【0014】カルコゲナイドガラスは構成成分が酸化さ
れ易いので、レンズ成形の際の雰囲気を不活性ガス雰囲
気とする必要がある。酸化雰囲気では赤外域に酸化物の
吸収が出て、透過性の低下を招くからである。
Since the constituent components of chalcogenide glass are easily oxidized, it is necessary to set the atmosphere during lens molding to an inert gas atmosphere. This is because in an oxidizing atmosphere, absorption of oxides occurs in the infrared region, leading to a decrease in transmittance.

【0015】[0015]

【実施例】以下に本発明の一実施例を図面を参照しなが
ら説明する。図1に本発明の実施例のレンズ成形装置の
構成を示す。この成形装置は清浄な不活性雰囲気中で操
作し、基本的にガラスの屈伏点以上軟化点以下の温度に
保持可能な、光学研磨された表面を有する金型からな
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a lens molding apparatus according to an embodiment of the present invention. This molding apparatus consists of a mold having an optically polished surface, which can be operated in a clean inert atmosphere and basically maintained at a temperature not lower than the yield point and not higher than the softening point of glass.

【0016】原子%でGe:S:I=30:60:10
の比でゲルマニウムとイオウとヨウ素を秤量し、石英ア
ンプル中に真空封止した。これを電気炉中で800℃、
12時間溶融してガラスを得た。得られたガラスは肉眼
では黄色で、2mm厚の場合(以下同じ)10.5μm ま
で50%以上の透過率を有していた。熱膨張係数は19
5×10-7/℃であった。このガラス1を成形装置に入
るように適当なサイズに切り出した。2、3はステンレ
ス304(熱膨張係数180×10-7/℃)からなる金
型である。成形装置全体はアルゴンガス雰囲気中に設置
した。その後10℃/分の昇温速度でガラスの屈伏点3
74℃まで、外部加熱ヒータ4で金型2、3、ピストン
5、シリンダ6および受けピストン7を加熱した。この
温度で30分間キープしたのち、さらにガラスの軟化点
(505℃)近くの480℃まで加熱して、20kg/cm2
で押圧した。その後、金型を冷却し、ガラスの屈伏点ま
で金型温度が下がる間に徐々に減圧した。さらにガラス
の転移点324℃まで冷えた時点より、24時間かけて
徐冷をおこない、ガラスの残留歪を除去した。この方法
によりレンズを成形すると、レンズに割れが生じること
なく、きわめて精度の高い、光学的にきれいなレンズを
成形することができた。
Ge: S: I = 30: 60: 10 in atomic%.
Germanium, sulfur, and iodine were weighed in a ratio of, and vacuum-sealed in a quartz ampoule. This in an electric furnace at 800 ℃,
Glass was obtained by melting for 12 hours. The obtained glass was yellow to the naked eye and had a transmittance of 50% or more up to 10.5 μm when the thickness was 2 mm (the same applies hereinafter). The coefficient of thermal expansion is 19
It was 5 × 10 −7 / ° C. This glass 1 was cut into an appropriate size so as to enter the molding apparatus. 2 and 3 are molds made of stainless steel 304 (coefficient of thermal expansion 180 × 10 −7 / ° C.). The entire molding apparatus was installed in an argon gas atmosphere. Then, the yield point 3 of the glass at a temperature rising rate of 10 ° C / min.
The molds 2 and 3, the piston 5, the cylinder 6 and the receiving piston 7 were heated to 74 ° C. by the external heater 4. After keeping at this temperature for 30 minutes, further heat up to 480 ° C, which is near the softening point (505 ° C) of the glass, 20 kg / cm 2
Pressed with. Then, the mold was cooled, and the pressure was gradually reduced while the mold temperature was lowered to the sag point of the glass. Further, after the glass was cooled to the transition point of 324 ° C., it was gradually cooled for 24 hours to remove the residual strain of the glass. When a lens is molded by this method, an extremely clean and optically clean lens can be molded without cracking of the lens.

【0017】(比較例)従来の石英ガラス製の成形型を
使用し、他の成形条件は実施例の条件で成形を行った。
この製造方法では、型とガラスを慎重に徐冷したにもか
かわらず、レンズは真二つに割れていた。この理由は、
押圧したときにカルコゲナイドガラスと型が接着し、ガ
ラスの熱膨張係数は石英(熱膨張係数5×10-7/℃)
に比較して二桁も大きいので、冷却時にガラスは石英型
よりも大きく縮もうとする。しかし、型とガラスは接着
状態にあるため、ガラスは縮むことができない。そのた
めカルコゲナイドガラスは引き延ばされて引っ張り応力
がかかり、型には圧縮応力がかかる。ガラスの強度は引
っ張り強度は圧縮強度の10分の1であるといわれてい
る。しかもカルコゲナイドガラスは酸化物系ガラスよ
り、強度が弱いガラスである。以上の結果として引っ張
り応力を受けたカルコゲナイドガラスは割れを生じたと
考えられる。
(Comparative Example) A conventional mold made of quartz glass was used, and other molding conditions were the same as those of the example.
In this manufacturing method, the lens was broken into two despite careful cooling of the mold and the glass. The reason for this is
When pressed, the chalcogenide glass and the mold adhere to each other, and the coefficient of thermal expansion of the glass is quartz (coefficient of thermal expansion 5 × 10 -7 / ° C)
Since it is two orders of magnitude larger than that of glass, the glass tends to shrink more than the quartz mold when cooled. However, since the mold and the glass are in an adhered state, the glass cannot shrink. Therefore, the chalcogenide glass is stretched and a tensile stress is applied to it, and a compressive stress is applied to the mold. It is said that the tensile strength of glass is 1/10 of the compressive strength. Moreover, the chalcogenide glass is a glass having a lower strength than the oxide glass. As a result of the above, it is considered that the chalcogenide glass subjected to tensile stress cracked.

【0018】[0018]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明によれば、研磨法による従来のレンズ作製方法
に比べ、加工工程が非常に少なく、平滑表面を有する赤
外線透過用カルコゲナイドガラスレンズを簡易に作製す
ることができる。また従来の石英ガラス製型を使用する
方法に比較して、成形後の冷却工程でレンズが割れるこ
とがない。しかも、このレンズは可視光も透過し、毒性
のないカルコゲナイドガラスを使用しているので、光学
系の組み立てが簡易であり、民生器具や産業機器に安心
して組み込むことができる。また清浄な不活性ガス雰囲
気中で成形するので、レンズの表面酸化および雰囲気中
のゴミによって生じるレンズ表面損傷を防止することが
できる。
As is apparent from the above description of the embodiments, according to the present invention, the chalcogenide glass for infrared transmission which has a very small number of processing steps and has a smooth surface as compared with the conventional lens manufacturing method by the polishing method. The lens can be easily manufactured. Further, compared to the conventional method using a quartz glass mold, the lens does not crack in the cooling step after molding. Moreover, since this lens also transmits visible light and uses non-toxic chalcogenide glass, the optical system can be easily assembled and can be incorporated in consumer appliances and industrial equipment with confidence. In addition, since the molding is performed in a clean inert gas atmosphere, it is possible to prevent the lens surface from being damaged by surface oxidation of the lens and dust in the atmosphere.

【0019】[0019]

【図面の簡単な説明】[Brief description of drawings]

【0020】[0020]

【図1】本発明の一実施例のレンズ成形装置の断面図FIG. 1 is a sectional view of a lens molding apparatus according to an embodiment of the present invention.

【0021】[0021]

【符号の説明】[Explanation of symbols]

1 ガラス 2、3 金型 4 外部加熱ヒータ 5 ピストン 6 シリンダ 7 受けピストン 1 glass A few molds 4 External heating heater 5 pistons 6 cylinders 7 Receiving piston

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihiko Yoshida             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】カルコゲナイドガラスを光学的な研磨表面
を有する加熱された金型に挟み、熱プレス成形する赤外
線透過性レンズの製造方法。
1. A method for producing an infrared transmissive lens, which comprises sandwiching a chalcogenide glass in a heated mold having an optically polished surface and performing hot press molding.
【請求項2】カルコゲナイドガラスの熱膨張係数とほぼ
等しい熱膨張係数を有する金型により熱プレス成形する
請求項1記載の赤外線透過性レンズの製造方法。
2. The method of manufacturing an infrared transmissive lens according to claim 1, wherein the mold is heat-pressed by a mold having a coefficient of thermal expansion substantially equal to that of chalcogenide glass.
【請求項3】金型の温度をカルコゲナイドガラスの屈伏
点以上、軟化点以下の温度に保持して熱プレス成形する
請求項1または2記載の赤外線透過性レンズの製造方
法。
3. The method for producing an infrared transmissive lens according to claim 1, wherein the temperature of the mold is maintained at a temperature not lower than the sag point of the chalcogenide glass and not higher than the softening point, and hot press molding is performed.
【請求項4】ゲルマニウムとイオウを主体とするガラス
を熱プレス成形する請求項1〜3のいずれかに記載の赤
外線透過性レンズの製造方法。
4. The method for manufacturing an infrared transmissive lens according to claim 1, wherein glass mainly containing germanium and sulfur is hot press molded.
【請求項5】不活性ガス雰囲気中でガラスを熱プレス成
形する請求項4記載の赤外線透過性レンズの製造方法。
5. The method for manufacturing an infrared transmissive lens according to claim 4, wherein the glass is hot press molded in an inert gas atmosphere.
JP3151412A 1991-06-24 1991-06-24 Production of infrared-transmitting lens Pending JPH054824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3151412A JPH054824A (en) 1991-06-24 1991-06-24 Production of infrared-transmitting lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3151412A JPH054824A (en) 1991-06-24 1991-06-24 Production of infrared-transmitting lens

Publications (1)

Publication Number Publication Date
JPH054824A true JPH054824A (en) 1993-01-14

Family

ID=15518043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3151412A Pending JPH054824A (en) 1991-06-24 1991-06-24 Production of infrared-transmitting lens

Country Status (1)

Country Link
JP (1) JPH054824A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291328A3 (en) * 2001-03-02 2004-01-02 Schott Glas Method for the production of a substrate material for a mirror film
JP2007093901A (en) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd Method for manufacturing lens cap
WO2009084619A1 (en) 2007-12-28 2009-07-09 Isuzu Glass Co., Ltd. Infrared transmitting glass for mold forming
KR100937454B1 (en) * 2005-08-29 2010-01-19 가부시키가이샤 고마쓰 세이사쿠쇼 Jaw crusher and self-traveling crusher
JP2014034047A (en) * 2012-08-08 2014-02-24 Nachi Fujikoshi Corp Molten molding tool, cooling method of the same, and molten germanium molding method
WO2020153435A1 (en) 2019-01-25 2020-07-30 株式会社五鈴精工硝子 Glass material that transmits light beams having wavelength range from visible light to far infrared light

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291328A3 (en) * 2001-03-02 2004-01-02 Schott Glas Method for the production of a substrate material for a mirror film
KR100937454B1 (en) * 2005-08-29 2010-01-19 가부시키가이샤 고마쓰 세이사쿠쇼 Jaw crusher and self-traveling crusher
JP2007093901A (en) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd Method for manufacturing lens cap
WO2009084619A1 (en) 2007-12-28 2009-07-09 Isuzu Glass Co., Ltd. Infrared transmitting glass for mold forming
US8603928B2 (en) 2007-12-28 2013-12-10 Isuzu Glass Co., Ltd. Infrared transmitting glass for mold forming
JP2014034047A (en) * 2012-08-08 2014-02-24 Nachi Fujikoshi Corp Molten molding tool, cooling method of the same, and molten germanium molding method
WO2020153435A1 (en) 2019-01-25 2020-07-30 株式会社五鈴精工硝子 Glass material that transmits light beams having wavelength range from visible light to far infrared light

Similar Documents

Publication Publication Date Title
US5383990A (en) Method for bending and laminating a pair of glass plates
US4481023A (en) Process to mold precision glass articles
US4734118A (en) Process to mold precision glass articles
US3348045A (en) Ge-se-te glass and infrared detection system
EP0939147A3 (en) A manufacturing method for calcium fluoride and calcium fluoride for photolithography
US5346523A (en) Method of molding chalcogenide glass lenses
JPH054824A (en) Production of infrared-transmitting lens
WO2015125850A1 (en) Optical element production method and optical element
JP2006016286A (en) Method for manufacturing glass optical element
CN104926119A (en) High performance infrared chalcogenide glass and preparation method thereof
US11155487B2 (en) Method for manufacturing infrared-transmissible lens, infrared-transmissible lens, and infrared camera
US3475116A (en) Hot pressed cadmium telluride
JP2818132B2 (en) Manufacturing method of optical waveguide
JP2010168224A (en) Method for producing glass molded article
US3190738A (en) Method for uniting an abraded element to an envelope
US3511993A (en) Ge-se-te glass in an infrared detection system
JPH0777964B2 (en) Lens making method
US2901811A (en) Process for flattening thermistor flakes
JPH0692652A (en) Production of ir light-transmitting lens
US2819561A (en) Application of vitreous sealant to glass sealing edges
JPH06183779A (en) Production of infrared-transmissible glass
JPH05229838A (en) Method for forming infrared-transmitting glass rod
US3371210A (en) Inorganic glass composition
JP2718452B2 (en) Glass optical element molding method
US3915723A (en) Photochromic multifocal lenses and method of fabrication thereof