JPH0547219A - Anisotropic conductive film and connecting method of electronic part using the same - Google Patents

Anisotropic conductive film and connecting method of electronic part using the same

Info

Publication number
JPH0547219A
JPH0547219A JP20208091A JP20208091A JPH0547219A JP H0547219 A JPH0547219 A JP H0547219A JP 20208091 A JP20208091 A JP 20208091A JP 20208091 A JP20208091 A JP 20208091A JP H0547219 A JPH0547219 A JP H0547219A
Authority
JP
Japan
Prior art keywords
film
anisotropic conductive
conductive film
needle
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20208091A
Other languages
Japanese (ja)
Inventor
Toshiaki Iwabuchi
寿章 岩渕
Yoshihiro Yoshida
芳博 吉田
Takeshi Kozuka
武 小▲塚▼
Hiroshi Kobayashi
寛史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20208091A priority Critical patent/JPH0547219A/en
Publication of JPH0547219A publication Critical patent/JPH0547219A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Abstract

PURPOSE:To secure certain connection while absorbing the thermal stress imposed on a connecting part, depending on the difference in coefficient of thermal expansion between parts to be mutually connected or with an anisotropic conductive film, improve reliability of connection, and provide repairability. CONSTITUTION:Into the through hole 2 of a porous insulating film 3, nickel which is a conductive material is electrodeposited to form a needle projection 4a and a bump 4b on both the surfaces of the porous insulating film 3. The needle projection 4a is also formed on an electrode side to be connected, and after positioning is conducted, the both are mutually superposed. Thus, a certain electric connection can be performed while providing repairability, and even if a thermal stress is imposed, this can be absorbed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔性絶縁膜の貫通孔
内に導電部が形成され、絶縁膜の厚み方向にのみ導電性
を備える異方性導電膜およびそれを用いた電子部品の接
続方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive film having a conductive portion formed in a through hole of a porous insulating film and having conductivity only in the thickness direction of the insulating film, and an electronic component using the anisotropic conductive film. Regarding connection method.

【0002】[0002]

【従来の技術】従来の異方性導電膜には、高分子接着材
などの絶縁性樹脂中に、金属などの導電粒子を分散させ
たものとして、例えば、特開昭63−102110号公
報に記載されている。しかし、このタイプの異方性導電
膜は、接続ピッチが小さくなると隣接電極間でショート
を起こす恐れがあるため、微細ピッチの電極間接続には
適さない。
2. Description of the Related Art A conventional anisotropic conductive film is disclosed, for example, in Japanese Patent Laid-Open No. 63-102110, in which conductive particles such as metal are dispersed in an insulating resin such as a polymer adhesive. Have been described. However, this type of anisotropic conductive film is not suitable for inter-electrode connection with a fine pitch because a short circuit between adjacent electrodes may occur when the connection pitch becomes small.

【0003】そこで、最近では、このような微細ピッチ
にも対応可能なように、多孔性絶縁膜の孔中に導電材料
を形成して、絶縁膜の膜厚方向にのみ導通を持たせた、
特開平2−172107号公報記載のような異方性導電
膜が提案されている。
Therefore, recently, in order to cope with such a fine pitch, a conductive material is formed in the pores of the porous insulating film so that conduction is provided only in the film thickness direction of the insulating film.
An anisotropic conductive film as described in JP-A-2-172107 has been proposed.

【0004】[0004]

【発明が解決しようとする課題】このような従来の異方
性導電膜は、無機質の多孔性絶縁材料を用いると、耐熱
性が良く、加熱処理が可能なため、実装工程での自由度
が高くなるという利点がある。しかしながら、上記異方
性導電膜を用いて電極間の接続を行うと、電子部品、異
方性導電膜及び配線基板のそれぞれの熱膨張率が異なる
ため、電極接続部においてストレスが発生し、接続不良
が生じるなど熱応力による問題があった。
When an inorganic porous insulating material is used in such a conventional anisotropic conductive film, it has good heat resistance and can be heat-treated, so that the degree of freedom in the mounting process is high. It has the advantage of being expensive. However, when the electrodes are connected using the anisotropic conductive film, stress is generated in the electrode connection portion because the thermal expansion coefficients of the electronic component, the anisotropic conductive film, and the wiring board are different from each other. There were problems due to thermal stress such as defects.

【0005】また、異方性導電膜を用いて信頼性の高い
確実な接続を行うと、リペアが困難になるという問題が
あった。すなわち、複数の半導体チップをユニット基板
に実装した後に、不良の半導体チップが1個でもある
と、当該ユニット全体が不良とならざるを得なかった。
本発明は、上記従来の問題に鑑みてなされたものであ
り、接続すべき部品同士や異方性導電膜との熱膨張率の
違いにより、接続部に加わる熱応力を吸収しつつ、確実
な接続を行って、接続の信頼性を向上させると共に、リ
ペア性をも合わせ持つことができる異方性導電膜および
それを用いた電子部品の接続方法を提供することを目的
とする。
Further, if reliable and reliable connection is made using an anisotropic conductive film, there is a problem that repair becomes difficult. That is, if there is even one defective semiconductor chip after mounting a plurality of semiconductor chips on the unit substrate, the entire unit must be defective.
The present invention has been made in view of the above conventional problems, and due to the difference in the coefficient of thermal expansion between the components to be connected and the anisotropic conductive film, while absorbing the thermal stress applied to the connection portion, An object of the present invention is to provide an anisotropic conductive film which can be connected to improve reliability of the connection and also have repairability, and a method of connecting electronic components using the anisotropic conductive film.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
多数の貫通孔を有する多孔性絶縁膜が用いられ、その貫
通孔内を貫通して膜厚方向に導通し、多孔性絶縁膜の少
なくとも一方の側に針状突起の密集した導電部が形成さ
れ、その導電部の針状突起と接続すべき電極側に形成し
た密集した針状突起とを重ね合わせて電気的導通を得る
ことを特徴とする。
The invention according to claim 1 is
A porous insulating film having a large number of through-holes is used, which penetrates through the through-holes and conducts in the film thickness direction, and a conductive portion having dense needle-shaped projections is formed on at least one side of the porous insulating film. It is characterized in that the needle-like protrusions of the conductive portion and the dense needle-like protrusions formed on the electrode side to be connected are overlapped to obtain electrical conduction.

【0007】請求項2記載の発明は、多数の貫通孔を有
するフィルム状絶縁膜が用いられ、その貫通孔内を貫通
して膜厚方向に導通し、フィルム状絶縁膜の少なくとも
一方の側に針状突起が密集した導電部が形成された異方
性導電膜であって、前記導電部を備えた2枚以上のフィ
ルム状絶縁膜の対向する密集した針状突起同士を互いに
重ね合わせたことを特徴とする。
According to a second aspect of the present invention, a film-like insulating film having a large number of through holes is used. The film-like insulating film penetrates through the through holes to conduct in the film thickness direction, and at least one side of the film-like insulating film is provided. An anisotropic conductive film in which a conductive portion having dense needle-like protrusions is formed, and the dense needle-like protrusions facing each other of two or more film-like insulating films having the conductive portion are overlapped with each other. Is characterized by.

【0008】請求項3記載の発明は、前記導電部を備え
た2枚以上のフィルム状絶縁膜同士の間に弾性を有する
樹脂を介在させて重ね合わせ、両者を接合することを特
徴とする。請求項4記載の発明は、請求項1記載の異方
性導電膜を用いて電子部品側と配線基板側とにそれぞれ
個別に接続し、それぞれの異方性導電膜の対向する密集
した針状突起同士を重ね合わせて、電子部品と配線基板
とを電気的に接続することを特徴とする。
According to a third aspect of the present invention, a resin having elasticity is interposed between two or more film-shaped insulating films having the conductive portion, and the two are joined to each other, and the two are bonded. According to a fourth aspect of the present invention, the anisotropic conductive film according to the first aspect is used to connect individually to the electronic component side and the wiring substrate side, respectively, and the anisotropic conductive films face each other in a dense needle shape. It is characterized in that the projections are overlapped with each other to electrically connect the electronic component and the wiring board.

【0009】請求項5記載の発明は、多数の貫通孔を有
する多孔性絶縁膜が用いられ、その貫通孔内に弾性を持
たせた金属線材を埋設し、多孔性絶縁膜の両面から金属
線材を露出させた異方性導電膜であって、接続すべき電
極間に介在させて電気的に接続することを特徴とする。
請求項6記載の発明は、請求項5記載の異方性導電膜を
用いて、接続すべき電子部品との間には熱硬化樹脂を介
在させて接合し、その電子部品が接合された異方性導電
膜と配線基板との間には紫外線硬化樹脂を介在させて接
合することにより、電子部品と配線基板とを電気的に接
続することを特徴とする。
According to a fifth aspect of the present invention, a porous insulating film having a large number of through holes is used, an elastic metal wire is embedded in the through holes, and the metal wire is provided on both sides of the porous insulating film. Is an exposed anisotropic conductive film, and is electrically connected by being interposed between electrodes to be connected.
According to a sixth aspect of the present invention, the anisotropic conductive film according to the fifth aspect is used to bond an electronic component to be connected with a thermosetting resin interposed therebetween. It is characterized in that the electronically conductive film and the wiring board are electrically connected to each other by interposing an ultraviolet curable resin therebetween and joining them.

【0010】[0010]

【作用】従って、請求項1及び4記載の発明では、多孔
性絶縁膜の貫通孔に密集した針状突起を形成し、接続す
べき電極側にも密集した針状突起を形成して、互いに重
ね合わせて接続する。このため、接続を行う配線基板、
電子部品及び異方性導電膜の熱膨張率の違いにより、電
極接続部にストレスが加わっても、上記針状突起部分同
士で吸収しながら電気的接続を確実に維持することがで
きる。また、リペアを行う場合は、針状突起の方向に垂
直に持ち上げるだけで、容易に取り外したり、再度の取
り付けを行うことができる。
Therefore, according to the first and fourth aspects of the invention, the dense needle-like protrusions are formed in the through holes of the porous insulating film, and the dense needle-like protrusions are formed also on the electrode side to be connected to each other. Overlap and connect. For this reason, the wiring board for connection,
Even if stress is applied to the electrode connection portion due to the difference in thermal expansion coefficient between the electronic component and the anisotropic conductive film, the electrical connection can be reliably maintained while being absorbed by the needle-shaped protrusions. Further, when performing repair, it is possible to easily remove or re-attach by simply lifting the needle in a direction perpendicular to the direction of the needle-like protrusion.

【0011】請求項2記載の発明では、針状突起部分で
接続されるフィルム状絶縁膜を用いた異方性導電膜が多
層構造を形成しており、異方性導電膜が膜厚方向にさら
に厚く形成されている。このため、熱膨張率の違いによ
るストレス方向に対して、より多くの熱応力を吸収する
ことができるようになり、さらに確実に接続することが
できる。
According to the second aspect of the present invention, the anisotropic conductive film using the film-shaped insulating film connected by the needle-shaped protrusions forms a multilayer structure, and the anisotropic conductive film is formed in the thickness direction. It is formed thicker. For this reason, more thermal stress can be absorbed in the stress direction due to the difference in the coefficient of thermal expansion, and more reliable connection can be achieved.

【0012】請求項3記載の発明では、請求項2記載の
フィルム状絶縁膜を用いた異方性導電膜同士を重ね合わ
せて接合する際に、弾性を有する樹脂を介在させる。こ
のため、熱ストレスに対する有効性を失うことなく、電
子部品同士を確実に接続することができる。請求項5記
載の発明では、多孔性絶縁膜の貫通孔に弾性をもった金
属線材を多孔性絶縁膜の両面から露出するように埋設
し、その金属線材を接続すべき電極間に介在させて電気
的接続を行う。このため、金属線材の弾性力によって熱
ストレスに対応することができ、確実で信頼性の高い接
続を行うことができる。
According to the third aspect of the present invention, when the anisotropic conductive films using the film-shaped insulating film according to the second aspect are superposed and joined, a resin having elasticity is interposed. Therefore, the electronic components can be reliably connected to each other without losing the effectiveness against the heat stress. According to the invention of claim 5, an elastic metal wire is embedded in the through hole of the porous insulation film so as to be exposed from both surfaces of the porous insulation film, and the metal wire is interposed between the electrodes to be connected. Make electrical connection. For this reason, the elastic force of the metal wire can cope with thermal stress, and reliable and highly reliable connection can be performed.

【0013】請求項6記載の発明では、請求項5記載の
異方性導電膜を用いて、接続すべき電子部品との間には
熱硬化樹脂を介し、配線基板との間には紫外線硬化樹脂
を介して接続する。このため、請求項5の利点を生かし
つつ、容易かつ確実に電子部品と配線基板とを接続する
ことができる。
According to a sixth aspect of the present invention, by using the anisotropic conductive film according to the fifth aspect, a thermosetting resin is interposed between the anisotropic conductive film and an electronic component to be connected, and an ultraviolet ray is cured between the wiring substrate and the electronic component. Connect via resin. Therefore, it is possible to easily and reliably connect the electronic component and the wiring board while taking advantage of the advantage of claim 5.

【0014】[0014]

【実施例】以下、本発明を図面に基づいて説明する。図
1〜図2は請求項1記載の発明に係る異方性導電膜の一
実施例を示す図である。まず、構成を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. 1 and 2 are views showing an embodiment of the anisotropic conductive film according to the invention of claim 1. First, the configuration will be described.

【0015】図1に示されるように、本実施例の異方性
導電膜1−1、1−2は、多孔性絶縁膜3の多数の貫通
孔2に導電部4が形成されている。導電部4は、図1の
ように、多孔性絶縁膜3の少なくとも一方の面に密集し
た針状突起部4aがパターン状に形成されており、反対
側の面にはバンプ(突起電極)4bが形成されている。
As shown in FIG. 1, in the anisotropic conductive films 1-1 and 1-2 of this embodiment, conductive portions 4 are formed in a large number of through holes 2 of the porous insulating film 3. As shown in FIG. 1, the conductive part 4 has a pattern of dense needle-like protrusions 4a formed on at least one surface of the porous insulating film 3, and bumps (projection electrodes) 4b on the opposite surface. Are formed.

【0016】そして、このように構成された異方性導電
膜1−1と1−2とを対向配置して互いに密集した針状
突起4a同士の位置を合わせて重ねると、図2に示すよ
うな状態で両導電部4同士が電気的に接続される。つま
り、多数の密集した針と針の間に対向する針が入り込ん
で多数の接点で接続されることになる。このため、確実
な接続が容易に行えると共に、針の突起方向に両者を引
き離すことによって、容易に接続前の状態に戻す(リペ
ア)することができる。
Then, when the anisotropic conductive films 1-1 and 1-2 having the above-described structures are arranged so as to face each other and the needle-like projections 4a densely packed with each other are aligned with each other in position, as shown in FIG. In such a state, both conductive parts 4 are electrically connected to each other. In other words, a large number of closely packed needles and opposing needles enter between the needles and are connected by a large number of contact points. For this reason, reliable connection can be easily performed, and by pulling them apart in the protrusion direction of the needle, the state before connection can be easily restored (repair).

【0017】ここでは、異方性導電膜1−1と1−2の
間の導電部4同士の接続例を説明したが、異方性導電膜
によって接続すべき電子部品の電極面にも同様に密集し
た針状突起を設けて、両者を重ね合わせることにより、
容易かつ確実に接続することができる。この場合、電子
部品と異方性導電膜に使われている部材の熱膨張係数が
異なっていると、温度変化により接続された電極部に熱
ストレスが加わわる。
Although an example of connecting the conductive parts 4 between the anisotropic conductive films 1-1 and 1-2 has been described here, the same applies to the electrode surface of the electronic component to be connected by the anisotropic conductive film. By providing dense needle-shaped protrusions on both sides and overlapping them,
The connection can be made easily and surely. In this case, if the thermal expansion coefficients of the electronic component and the member used for the anisotropic conductive film are different, thermal stress is applied to the connected electrode portion due to temperature change.

【0018】しかしながら、上記のような異方性導電膜
を用いた場合は、針状突起4a同士が相互に噛み合った
状態で、ストレスが加わる方向に移動可能であり、確実
な接続状態を維持しつつ、熱応力を吸収することができ
る。図3〜図8は、多孔性絶縁膜の貫通孔に密集した針
状突起を有する導電部を形成する工程断面図である。ま
ず、図3に示すように、アルミニウム基板6の表面を
0.4%のリン酸溶液で陽極酸化する。この陽極酸化に
より、Al2 3 からなる陽極酸化膜5が形成される。
この陽極酸化膜5は、図4の拡大図に示すように、小さ
な孔5aが多数形成されている。そして、図5に示すよ
うに、陽極酸化膜5の表面をフォトレジストで覆い、露
光、現像することにより所定の開口部をもったフォトレ
ジスト7のパターンを形成することができる。ここで
は、開口部の径をφ40μmとし、ピッチが80μmの
ドットマトリックス状に形成している。
However, when the above-mentioned anisotropic conductive film is used, the needle-like projections 4a can be moved in a direction in which stress is applied while meshing with each other, and a reliable connection state is maintained. At the same time, thermal stress can be absorbed. 3 to 8 are process cross-sectional views of forming a conductive portion having needle-like protrusions densely packed in the through hole of the porous insulating film. First, as shown in FIG. 3, the surface of the aluminum substrate 6 is anodized with a 0.4% phosphoric acid solution. By this anodic oxidation, the anodic oxide film 5 made of Al 2 O 3 is formed.
As shown in the enlarged view of FIG. 4, the anodic oxide film 5 has many small holes 5a formed therein. Then, as shown in FIG. 5, by covering the surface of the anodic oxide film 5 with a photoresist and exposing and developing it, a pattern of the photoresist 7 having a predetermined opening can be formed. Here, the diameter of the openings is φ40 μm, and the dot matrix is formed with a pitch of 80 μm.

【0019】次に、図6では陽極酸化膜5の孔5a内に
電解析出により、導電材料8であるニッケル(Ni)を
形成する。すなわち、多孔性絶縁膜の孔内に導電材料8
が形成される。そして、今度は図7に示すように、30
%のリン酸溶液中で地金のアルミニウム基板6と陽極酸
化膜5の一部を溶解除去した後、図8のようにフォトレ
ジスト7を除去する。これにより、前記図1及び図2で
説明したように、多孔性絶縁膜3の貫通孔を貫通して、
膜厚方向の両面に針状突起4aとバンプ(突起電極)4
bとが形成された導電部4とすることができる。
Next, in FIG. 6, nickel (Ni) which is the conductive material 8 is formed in the holes 5a of the anodic oxide film 5 by electrolytic deposition. That is, the conductive material 8 is placed in the holes of the porous insulating film.
Is formed. And this time, as shown in FIG.
% Of the bare aluminum substrate 6 and the anodic oxide film 5 are dissolved and removed in a phosphoric acid solution of 10%, and then the photoresist 7 is removed as shown in FIG. As a result, as described in FIGS. 1 and 2, the porous insulating film 3 penetrates through the through-holes,
Needle-like projections 4a and bumps (projection electrodes) 4 on both sides in the film thickness direction
b can be used as the conductive portion 4.

【0020】上記製造工程では、片側面にのみ針状突起
4aを形成したが、両側面に針状突起を形成することも
できる。この場合は、図6で示すニッケルの電解析出を
途中で止め、陽極酸化膜5の膜表面で隣接する貫通孔内
のニッケル同士がショートしないようにした後、フォト
レジスト7を取り除いて、リン酸溶液中で不要なアルミ
ニウム基板6と陽極酸化膜5とを除去することにより形
成することができる。
In the above manufacturing process, the needle-like protrusions 4a are formed only on one side surface, but the needle-like protrusions may be formed on both side surfaces. In this case, the electrolytic deposition of nickel shown in FIG. 6 is stopped midway so that nickel in adjacent through holes on the film surface of the anodic oxide film 5 does not short-circuit, and then the photoresist 7 is removed to remove phosphorus. It can be formed by removing unnecessary aluminum substrate 6 and anodic oxide film 5 in an acid solution.

【0021】次に、作用を説明する。図9は、フィルム
状絶縁膜の両側に上記のような導電部が形成した異方性
導電膜を2枚以上用いて、交互に重ね合わせた状態であ
る。図9に示されるように、異方性導電膜1−1及び1
−2は、針状突起4aが片側にのみ形成され、その間に
挟まれて接続を行う異方性導電膜1−3は両側に針状突
起4aが形成されたものである。このように、複数の異
方性導電膜を用いて積層構造とすると、接続すべき電子
部品間において熱膨張率が異なっていても、熱ストレス
が加わる方向に対する接続部における熱応力の吸収が十
分となり、さらに確実な接続を行うことができる。
Next, the operation will be described. FIG. 9 shows a state in which two or more anisotropic conductive films having the above-described conductive portions are formed on both sides of the film-shaped insulating film and are alternately stacked. As shown in FIG. 9, anisotropic conductive films 1-1 and 1 are used.
In No. 2, the needle-like protrusions 4a are formed only on one side, and the anisotropic conductive film 1-3 sandwiched between them and connected is formed with the needle-like protrusions 4a on both sides. In this way, when the laminated structure is formed by using a plurality of anisotropic conductive films, even if the thermal expansion coefficients of the electronic components to be connected are different, the thermal stress in the connection portion is sufficiently absorbed in the direction in which the thermal stress is applied. Therefore, more reliable connection can be performed.

【0022】また、図10に示されるように、片側面に
のみ針状突起4aが形成された2枚の異方性導電膜を用
いて、異方性導電膜1−1を例えば半導体チップの電極
に熱硬化樹脂等で接着し、異方性導電膜1−2を例えば
半田付け等により配線基板に接続する。そして、両異方
性導電膜1−1、1−2同士を位置合わせした後に、弾
性を有するシリコンゴム等の弾性を持った樹脂9を介し
て両者を接合するようにしたものである。このように、
異方性導電膜同士を重ね合わせた隙間に、弾性を有する
樹脂を介在させることにより、熱ストレスに対する対応
が可能であって、さらに電子部品同士を確実に接続させ
ることができる。
Further, as shown in FIG. 10, the anisotropic conductive film 1-1 is formed, for example, in a semiconductor chip by using two anisotropic conductive films having the needle-like protrusions 4a formed on only one side surface. The electrodes are bonded with a thermosetting resin or the like, and the anisotropic conductive film 1-2 is connected to the wiring board by, for example, soldering. Then, after the bi-anisotropic conductive films 1-1 and 1-2 are aligned with each other, they are bonded to each other via an elastic resin 9 such as elastic silicon rubber. in this way,
By interposing a resin having elasticity in the gap in which the anisotropic conductive films are overlapped with each other, it is possible to cope with thermal stress and further reliably connect the electronic components.

【0023】上記したように、異方性導電膜の導電部に
形成された針状突起同士を噛み合わせることによって、
電子部品間の電気的な接続を行うので、容易にリペアす
ることができると共に、配線基板や電子部品の熱膨張率
の違いによって接続部に生じる熱ストレスを吸収しつ
つ、確実に接続を行って、信頼性の高い異方性導電膜と
することができる。
As described above, by interlocking the needle-like protrusions formed on the conductive portion of the anisotropic conductive film,
Since electrical connections are made between electronic components, it can be easily repaired, and the connections can be reliably made while absorbing the thermal stress generated in the connection part due to the difference in the thermal expansion coefficient of the wiring board and electronic components. It is possible to obtain a highly reliable anisotropic conductive film.

【0024】図11〜図14は請求項5及び6記載の発
明に係る異方性導電膜の一実施例を示す図である。図1
1に示されるように、多孔性絶縁膜3の膜厚方向には多
数の貫通孔2が形成されている。その貫通孔2内には、
図12(a)に示すように、例えばニッケルなどで形成
された弾性を有する構造の金属線材11を埋設する。つ
まり、図6に示すようなパンプ構造の導電部を多孔性絶
縁膜の両側に盛り上げて形成する。そして、多孔性絶縁
膜の両面をソフトエッチングすることにより、金属線材
11の先端部が露出して、図12(a)のような構造の
金属線材11を形成することができる。
11 to 14 are views showing an embodiment of the anisotropic conductive film according to the present invention. Figure 1
As shown in FIG. 1, a large number of through holes 2 are formed in the film thickness direction of the porous insulating film 3. In the through hole 2,
As shown in FIG. 12A, a metal wire rod 11 made of nickel or the like and having a structure having elasticity is embedded. That is, a conductive portion having a pump structure as shown in FIG. 6 is formed by raising both sides of the porous insulating film. Then, by soft-etching both surfaces of the porous insulating film, the tip of the metal wire rod 11 is exposed, and the metal wire rod 11 having a structure as shown in FIG. 12A can be formed.

【0025】図12(b)は同図(a)のA部分拡大図
であり、金属線材11が針状突起部分とその先端のバン
プ部分とで構成されているため、弾性を有する。このよ
うな異方性導電膜1を用いて、電子回路部品同士を接続
する。例えば、図12(a)に示すように、半導体チッ
プ10と配線基板12の透明電極(ITOなど)13と
を接続する場合は、異方性導電膜1と半導体チップ10
とを熱硬化性樹脂などで予め接合させ、これを配線基板
12の透明電極13に異方性導電膜1の金属線材11を
圧接する。これにより、半導体チップ10と配線基板1
2との熱膨張率が異なっていても、金属線材11は透明
電極13上を移動しながら接続状態を保持するので熱ス
トレスを吸収しつつ、確実な接続を行うことができる。
FIG. 12 (b) is an enlarged view of the portion A of FIG. 12 (a). Since the metal wire rod 11 is composed of the needle-like protrusions and the bumps at the tips thereof, it has elasticity. Electronic circuit components are connected to each other using such an anisotropic conductive film 1. For example, as shown in FIG. 12A, when connecting the semiconductor chip 10 and the transparent electrode (ITO or the like) 13 of the wiring substrate 12, the anisotropic conductive film 1 and the semiconductor chip 10 are connected.
Are previously bonded with a thermosetting resin or the like, and the metal wire 11 of the anisotropic conductive film 1 is pressed against the transparent electrode 13 of the wiring board 12. Thereby, the semiconductor chip 10 and the wiring board 1
Even if the coefficient of thermal expansion is different from that of 2, the metal wire 11 maintains the connection state while moving on the transparent electrode 13, so that it is possible to perform reliable connection while absorbing thermal stress.

【0026】また、図13に示されるように、複数の異
方性導電膜1を用いて積層する半導体チップ10の間に
介在させて、半導体チップ等の電子部品を3次元的に接
続することも可能である。この場合、熱膨張率の違いに
よる電子部品間の接続部に生じる熱ストレスは、それぞ
れの異方性導電膜の金属線材11がこれを吸収して、確
実に接続することができる。
Further, as shown in FIG. 13, three-dimensionally connecting electronic parts such as semiconductor chips by interposing them between semiconductor chips 10 stacked by using a plurality of anisotropic conductive films 1. Is also possible. In this case, the thermal stress generated in the connecting portion between the electronic components due to the difference in the coefficient of thermal expansion can be absorbed by the metal wire rods 11 of the respective anisotropic conductive films, and the connection can be surely made.

【0027】さらに、図14に示されるように、半導体
チップ10とガラス配線基板14とを接続する場合に
は、まず、半導体チップ10と異方性導電膜1との間に
熱硬化樹脂15を介在させ、半導体チップ10側から熱
ヘッドを使って加圧・加熱を行って接合させる。次に、
その半導体チップ10を接合した異方性導電膜1をガラ
ス配線基板14の透明電極13との間に紫外線(UV)
硬化樹脂16を介在させて接続し、ガラス配線基板14
の下側から紫外線を照射し、硬化させて接合させる。こ
のように、各種樹脂を介して異方性導電膜を使った電子
部品間の接続を確実かつ容易に行うことができる。この
ため、異方性導電膜を用いて信頼性の高い実装を行うこ
とができる。
Further, as shown in FIG. 14, when connecting the semiconductor chip 10 and the glass wiring board 14, first, a thermosetting resin 15 is provided between the semiconductor chip 10 and the anisotropic conductive film 1. The semiconductor chip 10 side is interposed, and pressure and heat are applied from the semiconductor chip 10 side using a thermal head to bond them. next,
The anisotropic conductive film 1 to which the semiconductor chip 10 is bonded is placed between the transparent electrode 13 of the glass wiring board 14 and ultraviolet rays (UV).
The glass wiring board 14 is connected with the cured resin 16 interposed therebetween.
Ultraviolet rays are irradiated from the lower side to cure and bond. In this way, the connection between the electronic components using the anisotropic conductive film can be reliably and easily performed through the various resins. Therefore, highly reliable mounting can be performed using the anisotropic conductive film.

【0028】なお、この実施例においても、金属線材1
1を埋設する多孔性絶縁膜3にアルミニウムの陽極酸化
膜を用いて実施することができるので、微細ピッチの電
極間の接続に対応することができる。
In this embodiment also, the metal wire 1
Since the anodic oxide film of aluminum can be used for the porous insulating film 3 in which 1 is embedded, it is possible to cope with connection between electrodes with a fine pitch.

【0029】[0029]

【発明の効果】請求項1及び4記載の発明によれば、多
孔性絶縁膜の少なくとも一方の面に針状突起を有する導
電部が形成され、接続すべき電極側にも針状突起を形成
したので、針状突起同士を噛み合わせて接続することに
より、接続を行う配線基板、電子部品及び異方性導電膜
の熱膨張率が違っていても、接続部分に加わる熱ストレ
スを吸収して、確実な電気的接続を行うことができる。
また、リペアも容易であるので、取り外しや取り付けが
容易となり、信頼性の高い実装を行うことができる。
According to the inventions of claims 1 and 4, a conductive portion having needle-like protrusions is formed on at least one surface of the porous insulating film, and needle-like protrusions are formed also on the electrode side to be connected. Therefore, by connecting the needle-like protrusions to each other, the thermal stress applied to the connection part can be absorbed even if the wiring board, electronic component and anisotropic conductive film to be connected have different thermal expansion coefficients. Therefore, reliable electrical connection can be performed.
Further, since the repair is easy, the removal and the attachment are facilitated, and the highly reliable mounting can be performed.

【0030】請求項2記載の発明によれば、針状突起部
分で接続されるフィルム状絶縁膜を多層構造としたの
で、熱ストレスの吸収力が向上し、さらに確実な接続を
行うことができる。請求項3記載の発明によれば、請求
項2記載のフィルム状絶縁膜を用いた異方性導電膜の間
に弾性を有する樹脂を介在させて、両者を接合するの
で、熱ストレスに対する有効性を失うことなく、電子部
品同士を確実に接続することができる。
According to the second aspect of the invention, since the film-shaped insulating film connected by the needle-shaped protrusions has a multi-layer structure, the absorption of heat stress is improved, and more reliable connection can be made. .. According to the invention described in claim 3, since the resin having elasticity is interposed between the anisotropic conductive films using the film-shaped insulating film according to claim 2 to bond them, the effectiveness against heat stress is improved. The electronic components can be reliably connected to each other without losing.

【0031】請求項5記載の発明によれば、多孔性絶縁
膜の貫通孔に弾性をもった金属線材の先端部が露出する
ように埋設し、その金属線材を用いた異方性導電膜を電
子部品間に介在させて電気的接続を行うので、金属線材
が有する弾性によって熱ストレスに対応することが可能
であり、信頼性の高い確実な実装を行うことができる。
According to the fifth aspect of the present invention, an anisotropic conductive film is embedded in the through hole of the porous insulating film so that the tip of the elastic metal wire is exposed and the metal wire is used. Since the electrical connection is made by interposing between the electronic components, it is possible to cope with thermal stress due to the elasticity of the metal wire rod, and reliable and reliable mounting can be performed.

【0032】請求項6記載の発明によれば、請求項5記
載の異方性導電膜を用いて、半導体チップとの間には熱
硬化樹脂を介し、ガラス配線基板との間には紫外線硬化
樹脂を介して接続するので、請求項5の効果に加えて、
容易かつ確実な半導体チップとガラス配線基板との接続
を行うことができる。
According to the sixth aspect of the invention, the anisotropic conductive film of the fifth aspect is used, and a thermosetting resin is interposed between the semiconductor chip and the glass wiring board and ultraviolet curing is performed. Since the connection is made through a resin, in addition to the effect of claim 5,
It is possible to easily and surely connect the semiconductor chip and the glass wiring board.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の発明に係る異方性導電膜の一実
施例を示す斜視図である。
FIG. 1 is a perspective view showing an embodiment of an anisotropic conductive film according to the invention of claim 1.

【図2】図1の異方性導電膜同士の接続状態を示す断面
斜視図である。
FIG. 2 is a cross-sectional perspective view showing a connection state between the anisotropic conductive films of FIG.

【図3】図1の導電部を形成する陽極酸化膜の形成工程
断面図である。
3 is a cross-sectional view of a process of forming an anodic oxide film forming the conductive portion of FIG.

【図4】図3の陽極酸化膜の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the anodic oxide film of FIG.

【図5】図4にフォトレジストを選択的に形成した断面
図である。
FIG. 5 is a cross-sectional view in which a photoresist is selectively formed in FIG.

【図6】図5の孔内に導電材料を電解析出した断面図で
ある。
6 is a cross-sectional view in which a conductive material is electrolytically deposited in the holes of FIG.

【図7】図6の陽極酸化膜の一部を溶解除去した断面図
である。
FIG. 7 is a cross-sectional view in which a part of the anodic oxide film of FIG. 6 is dissolved and removed.

【図8】図7のフォトレジストを除去した断面図であ
る。
8 is a cross-sectional view of the photoresist of FIG. 7 removed.

【図9】請求項2記載の発明に係る異方性導電膜の一実
施例を示す断面図である。
FIG. 9 is a cross-sectional view showing an embodiment of an anisotropic conductive film according to the invention of claim 2.

【図10】請求項3及び4記載の発明に係る異方性導電
膜およびその実装方法を説明する断面図である。
FIG. 10 is a cross-sectional view illustrating an anisotropic conductive film and a method of mounting the anisotropic conductive film according to the inventions of claims 3 and 4.

【図11】他の実施例に係る異方性導電膜の多孔性絶縁
膜の斜視図である。
FIG. 11 is a perspective view of a porous insulating film of an anisotropic conductive film according to another example.

【図12】図11の多孔性絶縁膜に金属線材を埋設した
異方性導電膜の図であり、(a)は実装状態を示す図、
(b)は(a)のA部分拡大図である。
12 is a view of an anisotropic conductive film in which a metal wire is embedded in the porous insulating film of FIG. 11, (a) showing a mounted state;
(B) is an enlarged view of part A of (a).

【図13】図12の異方性導電膜を用いて電子部品を多
層に接続した状態図である。
13 is a state diagram in which electronic components are connected in multiple layers by using the anisotropic conductive film of FIG.

【図14】請求項6記載の発明に係る異方性導電膜の一
実施例を示す図である。
FIG. 14 is a diagram showing an embodiment of an anisotropic conductive film according to the invention of claim 6;

【符号の説明】[Explanation of symbols]

1−1、1−2、1−3 異方性導電膜 2 貫通孔 3 多孔性絶縁膜 4 導電部 4a 針状突起 4b バンプ(突起電極) 5 陽極酸化膜 6 アルミニウム基板 7 フォトレジスト 10 半導体チップ 11 金属線材 12 配線基板 13 透明電極 14 ガラス配線基板 15 熱効果樹脂 16 紫外線硬化樹脂 1-1, 1-2, 1-3 Anisotropic conductive film 2 Through hole 3 Porous insulating film 4 Conductive part 4a Needle-like protrusion 4b Bump (protruding electrode) 5 Anodized film 6 Aluminum substrate 7 Photoresist 10 Semiconductor chip 11 metal wire material 12 wiring board 13 transparent electrode 14 glass wiring board 15 thermal effect resin 16 ultraviolet curing resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 寛史 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroshi Kobayashi 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】多数の貫通孔を有する多孔性絶縁膜が用い
られ、 その貫通孔内を貫通して膜厚方向に導通し、多孔性絶縁
膜の少なくとも一方の側に針状突起の密集した導電部が
形成され、 その導電部の針状突起と接続すべき電極側に形成した密
集した針状突起とを重ね合わせて電気的導通を得ること
を特徴とする異方性導電膜。
1. A porous insulating film having a large number of through holes is used, which penetrates through the through holes to conduct in the film thickness direction, and needle-like protrusions are densely packed on at least one side of the porous insulating film. An anisotropic conductive film, characterized in that a conductive portion is formed, and the needle-like protrusions of the conductive portion and the dense needle-like protrusions formed on the electrode side to be connected are overlapped to obtain electrical conduction.
【請求項2】多数の貫通孔を有するフィルム状絶縁膜が
用いられ、 その貫通孔内を貫通して膜厚方向に導通し、フィルム状
絶縁膜の少なくとも一方の側に針状突起が密集した導電
部が形成された異方性導電膜であって、 前記導電部を備えた2枚以上のフィルム状絶縁膜の対向
する密集した針状突起同士を互いに重ね合わせたことを
特徴とする異方性導電膜。
2. A film-shaped insulating film having a large number of through-holes is used, the film-shaped insulating film penetrates through the through-holes and conducts in a film thickness direction, and needle-like projections are densely formed on at least one side of the film-shaped insulating film. An anisotropic conductive film having a conductive part formed thereon, wherein two or more film-like insulating films having the conductive part and having closely spaced needle-like protrusions are overlapped with each other. Conductive film.
【請求項3】前記導電部を備えた2枚以上のフィルム状
絶縁膜同士の間に弾性を有する樹脂を介在させて重ね合
わせ、両者を接合することを特徴とする請求項2記載の
異方性導電膜。
3. An anisotropic method according to claim 2, wherein two or more film-like insulating films having the conductive portion are superposed with an elastic resin interposed therebetween and are joined together. Conductive film.
【請求項4】請求項1記載の異方性導電膜を用いて電子
部品側と配線基板側とにそれぞれ個別に接続し、それぞ
れの異方性導電膜の対向する密集した針状突起同士を重
ね合わせて、電子部品と配線基板とを電気的に接続する
ことを特徴とする電子部品の接続方法。
4. The anisotropic conductive film according to claim 1 is separately connected to the electronic component side and the wiring board side, respectively, and the dense needle-shaped protrusions facing each other of the anisotropic conductive film are formed. A method of connecting electronic components, characterized in that the electronic components and the wiring board are electrically connected to each other by superimposing them.
【請求項5】多数の貫通孔を有する多孔性絶縁膜が用い
られ、 その貫通孔内に弾性を持たせた金属線材を埋設し、多孔
性絶縁膜の両面から金属線材を露出させた異方性導電膜
であって、 接続すべき電極間に介在させて電気的に接続することを
特徴とする異方性導電膜。
5. An anisotropic method in which a porous insulating film having a large number of through holes is used, an elastic metal wire is embedded in the through holes, and the metal wire is exposed from both sides of the porous insulating film. An anisotropic conductive film, which is a conductive film and is electrically connected by being interposed between electrodes to be connected.
【請求項6】請求項5記載の異方性導電膜を用いて、接
続すべき電子部品との間には熱硬化樹脂を介在させて接
合し、その電子部品が接合された異方性導電膜と配線基
板との間には紫外線硬化樹脂を介在させて接合すること
により、電子部品と配線基板とを電気的に接続すること
を特徴とする電子部品の接続方法。
6. An anisotropic conductive film in which the anisotropic conductive film according to claim 5 is bonded to an electronic component to be connected with a thermosetting resin interposed therebetween, and the electronic component is bonded. An electronic component connecting method characterized by electrically connecting an electronic component and a wiring substrate by bonding an ultraviolet curable resin between the film and the wiring substrate.
JP20208091A 1991-08-13 1991-08-13 Anisotropic conductive film and connecting method of electronic part using the same Pending JPH0547219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20208091A JPH0547219A (en) 1991-08-13 1991-08-13 Anisotropic conductive film and connecting method of electronic part using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20208091A JPH0547219A (en) 1991-08-13 1991-08-13 Anisotropic conductive film and connecting method of electronic part using the same

Publications (1)

Publication Number Publication Date
JPH0547219A true JPH0547219A (en) 1993-02-26

Family

ID=16451631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20208091A Pending JPH0547219A (en) 1991-08-13 1991-08-13 Anisotropic conductive film and connecting method of electronic part using the same

Country Status (1)

Country Link
JP (1) JPH0547219A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811245A1 (en) * 1995-09-27 1997-12-10 Texas Instruments Incorporated Microelectronic assemblies including z-axis conductive films
WO2005053005A3 (en) * 2003-11-19 2005-09-15 Univ Florida A method to contact patterned electrodes on porous substrates and devices thereby
JP2009259980A (en) * 2008-04-15 2009-11-05 Toshiba Corp Electrode, semiconductor package, and substrate
JP2013167023A (en) * 2013-04-01 2013-08-29 Fujifilm Corp Method for manufacturing microstructure
WO2014098329A1 (en) * 2012-12-18 2014-06-26 제일모직주식회사 Anisotropic conductive film, and semiconductor device using same
JPWO2022004179A1 (en) * 2020-07-02 2022-01-06

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811245A1 (en) * 1995-09-27 1997-12-10 Texas Instruments Incorporated Microelectronic assemblies including z-axis conductive films
EP0811245A4 (en) * 1995-09-27 1998-11-18 Texas Instruments Inc Microelectronic assemblies including z-axis conductive films
WO2005053005A3 (en) * 2003-11-19 2005-09-15 Univ Florida A method to contact patterned electrodes on porous substrates and devices thereby
US7333257B2 (en) 2003-11-19 2008-02-19 University Of Florida Research Foundation, Inc. Device for contacting patterned electrodes on porous substrates
JP2009259980A (en) * 2008-04-15 2009-11-05 Toshiba Corp Electrode, semiconductor package, and substrate
WO2014098329A1 (en) * 2012-12-18 2014-06-26 제일모직주식회사 Anisotropic conductive film, and semiconductor device using same
JP2013167023A (en) * 2013-04-01 2013-08-29 Fujifilm Corp Method for manufacturing microstructure
JPWO2022004179A1 (en) * 2020-07-02 2022-01-06

Similar Documents

Publication Publication Date Title
JP3637969B2 (en) Method for manufacturing multilayer circuit board for semiconductor device
US6645607B2 (en) Method and structure for producing Z-axis interconnection assembly of printed wiring board elements
US5311341A (en) Connection structure between a tab film and a liquid crystal panel
US6720644B2 (en) Semiconductor device using interposer substrate and manufacturing method therefor
WO2008069275A1 (en) Wiring board and method for manufacturing the same
JPH0738222A (en) Rigid-flexible circuit board and preparation thereof
JP2006135277A (en) Wiring board and its manufacturing method
JP2011090865A (en) Conductive film and manufacturing method therefor, and semiconductor device and manufacturing method therefor
JP2011091185A (en) Conductive film, method of manufacturing the same, and semiconductor device and method of manufacturing the same
JPH0547219A (en) Anisotropic conductive film and connecting method of electronic part using the same
KR20040023776A (en) Contact sheet for inspecting an electric device and manufacturing method of the same
JP3185452B2 (en) Manufacturing method of circuit board inspection adapter device, circuit board inspection adapter device, and circuit board inspection method and apparatus using the same
JP2004266144A (en) Flexible wiring circuit board
JPH08203583A (en) Connector and manufacture thereof
JP4417938B2 (en) Method for manufacturing printed wiring board
JP2001326250A (en) Flip-chip semiconductor device and method of manufacture
JPH07226569A (en) Circuit board and electrode connection member and its manufacture
JP3438583B2 (en) Anisotropic conductive film connection method
JPH10125725A (en) Semiconductor device and manufacturing method thereof
JP2000294931A (en) Multilayer wiring board and manufacture thereof
JP3883744B2 (en) Method for manufacturing printed wiring board
JP2005072098A (en) Semiconductor device
JP2733359B2 (en) Test head structure
JP2597051B2 (en) Multilayer printed circuit board
JP2005260012A (en) Method for manufacturing double-sided wiring board and multilayer wiring board