JPH0546169Y2 - - Google Patents

Info

Publication number
JPH0546169Y2
JPH0546169Y2 JP1987011168U JP1116887U JPH0546169Y2 JP H0546169 Y2 JPH0546169 Y2 JP H0546169Y2 JP 1987011168 U JP1987011168 U JP 1987011168U JP 1116887 U JP1116887 U JP 1116887U JP H0546169 Y2 JPH0546169 Y2 JP H0546169Y2
Authority
JP
Japan
Prior art keywords
wires
plating
wire
thick
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987011168U
Other languages
Japanese (ja)
Other versions
JPS63120311U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987011168U priority Critical patent/JPH0546169Y2/ja
Publication of JPS63120311U publication Critical patent/JPS63120311U/ja
Application granted granted Critical
Publication of JPH0546169Y2 publication Critical patent/JPH0546169Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)
  • Non-Insulated Conductors (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、錫または半田メツキ層を有する素線
で撚られた撚線に関し、より具体的には素線同志
が錫または半田メツキ層の加熱溶融により一体化
させる熔着撚線に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention relates to stranded wires twisted with strands having a tin or solder plating layer, and more specifically, the invention relates to stranded wires twisted with strands having a tin or solder plating layer. This relates to welded twisted wires that are integrated by heating and melting.

本考案の熔着撚線は、機器配線用のコードまた
はリード線の導体として利用される。
The fused stranded wire of the present invention is used as a conductor for cords or lead wires for equipment wiring.

〔従来の技術〕[Conventional technology]

従来、電子機器類の配線板としては、端子板や
プリント基板が好んで使用され、配線用コード
は、配線の際に配線板の穴へ通されたりその先端
が折り曲げられたりした後に端子板などの所定部
分に半田付される。このように配線作業において
配線用コードの柔軟性が必要な場合には、導体と
して撚線を用いたコードが使用されるが、撚線を
端子板の小さな穴に通すのはかなり困難であり、
指先で撚りをかけるなど配線作業に余分な作業を
必要とし、作業効率が著しく低下し、時には素線
がバラけて短絡事故を起こす危険もある等、問題
が多い。
Conventionally, terminal boards and printed circuit boards have been preferred as wiring boards for electronic devices, and wiring cords are passed through holes in the wiring board during wiring, and after the ends are bent, they are placed on terminal boards, etc. It is soldered to a predetermined part of. When the flexibility of the wiring cord is required during wiring work, cords using twisted wires are used as conductors, but it is quite difficult to pass the twisted wires through the small holes in the terminal board.
Wiring requires extra work such as twisting with fingertips, which significantly reduces work efficiency, and there are many problems such as sometimes the wires come apart and there is a risk of short circuit accidents.

そこで、従来では、機器配線用のコードまたは
リード線の導体として、錫または半田メツキした
銅線や裸銅線の素線を撚り合わせ、その上に錫ま
たは半田を一括被覆して一体化したものや、錫ま
たは半田を厚めにメツキした素線を撚り合わせた
後、加熱して素線のメツキ層同志を加熱溶融して
熔着したものが用いられていた。
Therefore, in the past, as conductors for cords or lead wires for equipment wiring, tin or solder-plated copper wires or bare copper wires were twisted together and then coated with tin or solder all at once to integrate them. Alternatively, wires plated with tin or solder were twisted together, and then heated to melt and fuse the plating layers of the wires together.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

前述した従来例のうち前者の所謂一括コーテイ
ング撚線は、絡素線のメツキの有無または厚さは
あまり意味がなく、実用上はメツキ無しのもので
も十分であるが、素線を撚り合わせたのちに一括
被覆される錫または半田メツキは、実用上過剰な
量で付着する。この過剰な量は、製造技術として
もある値以下に低減することができず、過剰な付
着量により撚線の製造コストが大幅に上がり、ま
た、錫または半田が一括して被覆されることで、
撚線の重要な特徴である柔軟性が著しく損なわれ
てしまう問題があつた。
Of the conventional examples mentioned above, in the former so-called bulk coated stranded wire, the presence or absence of plating or the thickness of the stranded wires is of little significance, and for practical purposes, it is sufficient to use one without plating. Tin or solder plating, which is later coated all at once, adheres in an excessive amount for practical purposes. This excessive amount cannot be reduced below a certain value using manufacturing technology, and the manufacturing cost of the stranded wire increases significantly due to the excessive amount of adhesion, and also because tin or solder is coated all at once. ,
There was a problem in that the flexibility, which is an important characteristic of stranded wires, was significantly impaired.

一方、後者のように、厚いメツキ層を有する素
線を撚り合わせ、加熱によりメツキ層同志を溶融
して熔着させたものでは、素線のメツキ厚は、
1.0μm以上必要であるが、通常素線としては直径
で0.26mm以下の細線は使用されているので、溶融
メツキ法では、上記のように細い素線に、1.0μm
以上の厚くメツキを施し且つ良好な外観と品質を
もつものを得ることは極めて困難であり、また、
最も安定して均一なメツキ厚さが得られる電気メ
ツキ法によるものとしても、その製造設備と排水
処理設備に多大な工数を必要とするので、得られ
るメツキ線のコスト高は避けられず、これのみに
より撚り合わせ構成される撚線では極めてコスト
の高いものとなり、さらに撚線を構成する全ての
素線が厚いメツキの溶融により熔着一体化してし
まうと、熔着後の撚線の柔軟性が著しく損なわ
れ、撚線のもつ特徴が失われるという問題があつ
た。
On the other hand, in the case of the latter, in which wires with thick plating layers are twisted together and the plating layers are melted and fused together by heating, the plating thickness of the wires is
1.0μm or more is required, but normally thin wires with a diameter of 0.26mm or less are used, so in the melt plating method, 1.0μm or more is required for thin wires as described above.
It is extremely difficult to obtain a product with such thick plating and good appearance and quality.
Even if the electroplating method is used to obtain the most stable and uniform plating thickness, it requires a large amount of man-hours for manufacturing equipment and wastewater treatment equipment, so the cost of the resulting plating wire is unavoidable. Stranded wires made by twisting together with a chisel are extremely expensive, and if all the wires that make up the stranded wire are melted into a single piece by melting the thick plating, the flexibility of the stranded wire after welding will decrease. There was a problem in that the characteristics of the stranded wire were significantly damaged and the characteristics of the stranded wire were lost.

〔問題点を解決するための手段・作用〕[Means and actions to solve the problem]

本考案は、前述した従来技術の問題を解決する
ため、錫または半田メツキにより熔着される熔着
撚線において、撚線のバラケ防止と撚線本来の柔
軟性の維持とをともに共存できるこの種の熔着撚
線を経済的に提供することを目的としたものであ
る。
In order to solve the problems of the prior art described above, the present invention has been developed to prevent the strands from coming apart and to maintain the original flexibility of the strands in a welded stranded wire that is welded using tin or solder plating. The purpose of this invention is to economically provide a type of welded stranded wire.

上記目的達成のために提供する本考案の熔着撚
線は、3本乃至19本の素線からなる撚線におい
て、撚線を構成する素線として、1.0μm以上の錫
または半田メツキ層を有する厚メツキ線と、
0.5μm以下の錫または半田メツキ層を有する溶融
メツキ線とを用い、厚メツキ線が溶融メツキ線よ
りも少ない本数で全ての溶融メツキ線に隣接し且
つ溶融メツキ線同志が隣接しあうように幾何学的
に撚り合わせ配置され、溶融メツキ線同志の隣接
部分では熔着されることなく、厚メツキ線と溶融
メツキ線との隣接部分が厚メツキ線の錫または半
田メツキ層の加熱溶融のみによつて熔着されたも
のである。
The welded stranded wire of the present invention, which is provided to achieve the above object, is a stranded wire consisting of 3 to 19 strands, with a tin or solder plating layer of 1.0 μm or more as the strands constituting the stranded wire. A thick plated wire having
Using molten plating wires having a tin or solder plating layer of 0.5 μm or less, the geometry is such that the thick plating wires are adjacent to all the molten plating wires in fewer numbers than the molten plating wires, and the molten plating wires are adjacent to each other. The adjacent parts of the molten plating wires are not fused together, and the adjacent parts of the molten plating wires are only heated and melted by the tin or solder plating layer of the thick plating wires. It was then welded together.

ここで、加熱溶融に供する厚メツキ線の錫また
は半田メツキ層を1.0μm以上と厚くするのは、
300℃〜350℃で低温で当該1.0μm以上の錫または
半田メツキ層が溶融可能となるという知見に基づ
いている。これは、溶融メツキ線の溶融メツキ法
により形成される0.5μm以下の錫または半田メツ
キ層の溶融温度となる550℃〜600℃よりも十分に
低い加熱温度で済む。
Here, increasing the thickness of the tin or solder plating layer of the thick plating wire to be heated and melted to 1.0 μm or more is as follows:
This is based on the knowledge that the tin or solder plating layer of 1.0 μm or more can be melted at a low temperature of 300°C to 350°C. This requires a heating temperature that is sufficiently lower than 550° C. to 600° C., which is the melting temperature of a tin or solder plating layer of 0.5 μm or less formed by a melt plating method using a melt plating wire.

本考案は、かかる加熱溶融温度に高低差を有す
る点に着目し、厚メツキ線を全ての撚線本数より
も十分に少ない本数として製造コストの小さな溶
融メツキ線との複合撚りとし、その際、厚メツキ
線が全ての溶融メツキ線に隣接し而も溶融メツキ
線同志が隣接しあうように幾何学的な配置での撚
り合わせとし、このようにして構成される複合撚
線に対し、300℃〜350℃の低温で加熱処理するこ
とにより、厚メツキ線の錫または半田メツキ層の
みを加熱溶融させ、もつて、溶融メツキ線同志の
隣接部分では熔着せず、厚メツキ線と溶融メツキ
線との隣接部分が熔着した、所定の素線のバラケ
防止と撚線本来の柔軟性とをともに満足できる熔
着撚線を提供するものである。
The present invention focuses on the fact that there is a difference in height between heating and melting temperatures, and the number of thick plated wires is sufficiently smaller than the total number of stranded wires to form a composite strand with the melted plated wire, which has a low manufacturing cost. The strands are arranged in a geometrical arrangement so that the thick plated wires are adjacent to all the molten plated wires, and the molten plated wires are adjacent to each other. By heat-treating at a low temperature of ~350℃, only the tin or solder plating layer of the thick plated wire is heated and melted, and the adjacent parts of the molten plated wires are not melted, but the thick plated wire and the molten plated wire are separated. To provide a welded stranded wire in which adjacent portions of the wire are welded, and which can satisfy both the prevention of disintegration of a predetermined strand and the inherent flexibility of the stranded wire.

〔実施例〕〔Example〕

第1図は、本考案の熔着撚線の構成例を示し、
aは3本の素線で撚られた撚線、bは7本の素線
で撚られた撚線、cは13本の素線で撚られた撚
線、d及びeは19本の素線て撚られた撚線の例で
ある。
FIG. 1 shows an example of the structure of the welded twisted wire of the present invention,
a is a stranded wire with 3 strands, b is a stranded wire with 7 strands, c is a stranded wire with 13 strands, d and e are stranded wires with 19 strands. This is an example of twisted wire.

何れの例においても、斜線入りの円で示す1
が、錫または半田によるメツキ層を1.0μm以上に
厚く施した厚メツキ線であり、白抜きの円で示す
2が、錫または半田によるメツキ層を溶融メツキ
法により0.5μm以下で薄く施した溶融メツキ線で
ある。
In both examples, 1 is indicated by a circle with diagonal lines.
2 is a thick plating wire with a plating layer of tin or solder applied to a thickness of 1.0 μm or more, and 2, shown by an open circle, is a fused wire with a thin plating layer of tin or solder applied to a thickness of 0.5 μm or less by the melt plating method. This is the Metsuki line.

しかして、aの例では、1本の厚メツキ線1と
2本の溶融メツキ線2とを撚り合わせることによ
り、1本の厚メツキ線1が2本の溶融メツキ線2
の何れにも隣接し且つ溶融メツキ線同志が隣接す
るように幾何学的に配置された3本撚線を構成す
るものである。この複合撚線を300℃〜350℃の低
温で加熱処理することにより、厚メツキ線1の
1.0μm以上の錫または半田メツキ層のみが溶融し
て、厚メツキ線1が2本の溶融メツキ線2の何れ
の隣接部分でも熔着された熔着撚線が構成され
る。2本の溶融メツキ線2は、上記のような低温
加熱では自己の溶融メツキ方法による0.5μm以下
の錫または半田メツキ層が溶融しないので、溶融
メツキ線2同志の隣接部分では熔着されることが
なく、その分撚線としての柔軟性が保たれる。
Therefore, in the example a, by twisting one thick plating wire 1 and two melt plating wires 2, one thick plating wire 1 becomes two melt plating wires 2.
The three stranded wires are geometrically arranged so that they are adjacent to each other and the melt-plated wires are adjacent to each other. By heat-treating this composite stranded wire at a low temperature of 300°C to 350°C, thick plated wire 1
Only the tin or solder plating layer of 1.0 μm or more is melted, and a welded twisted wire is formed in which the thick plating wire 1 is welded to any adjacent portion of the two molten plating wires 2. The two melt-plated wires 2 should be fused at the adjacent portions of the two melt-plated wires 2 because the tin or solder plating layer of 0.5 μm or less created by the own melt-plating method will not melt when heated at low temperatures as described above. Therefore, the flexibility of the twisted wire is maintained.

bの例では、1本の厚メツキ線1と6本の溶融
メツキ線2とが用いられ、厚メツキ線1を軸とし
て6本の溶融メツキ線2を撚り合わせることによ
り、1本の厚メツキ線1が6本の溶融メツキ線2
の何れにも隣接し、而も6本の溶融メツキ線2が
数珠繋ぎに隣接するように幾何学的に撚り合わせ
配置された7本撚線を構成する。この複合撚線を
300℃〜350℃の低温で加熱処理するこにより、厚
メツキ線1の1.0μm以上の錫または半田メツキ層
のみが溶融して、厚メツキ線1が6本の溶融メツ
キ線2の何れの隣接部分でも溶着された熔着撚線
が構成れる。6本の溶融メツキ線2は、上記のよ
うな低温加熱では自己の溶融メツキ法による
0.5μm以下の錫または半田メツキ層が溶融しない
ので、溶融メツキ線2同志の隣接部分では熔着さ
れることがなく、その分撚線としての柔軟性が保
たれる。
In the example b, one thick plating wire 1 and six melt plating wires 2 are used, and by twisting the six melt plating wires 2 around the thick plating wire 1, one thick plating wire 1 is used. Wire 1 is 6 melted plating wires 2
The seven stranded wires are geometrically arranged so that the six melt-plated wires 2 are adjacent to each other in a daisy chain. This composite stranded wire
By heat treatment at a low temperature of 300°C to 350°C, only the tin or solder plating layer of 1.0 μm or more of the thick plating wire 1 is melted, and the thick plating wire 1 is not adjacent to any of the six melt plating wires 2. The welded strands are also welded together. The six melt plating wires 2 are formed by the self-melting plating method at low temperature heating as mentioned above.
Since the tin or solder plating layer of 0.5 μm or less is not melted, adjacent portions of the melt-plated wires 2 are not welded together, and the flexibility of the twisted wires is maintained accordingly.

cの例では、3本の厚メツキ線1と10本の溶融
メツキ線2とが用いられ、3本の厚メツキ線1が
互いに隣接することなく分散し、これら3本の厚
メツキ線1に10本の溶融メツキ線2の全てが隣接
し、而も溶融メツキ線2同志の隣接を含むよう
に、幾何学的に撚り合わせ配置された13本撚線を
構成する。この複合撚線を300℃〜350℃の低温で
加熱処理することにより、3本の厚メツキ線1の
1.0μm以上の錫または半田メツキ層のみが溶融し
て、3本の厚メツキ線1と10本の溶融メツキ線2
との全ての隣接部分でも熔着された熔着撚線が構
成される。10本の溶融メツキ線2は、上記のよう
な低温加熱では自己の溶融メツキ法による0.5μm
以下の錫または半田メツキ層が溶融しないので、
溶融メツキ線2同志の何れの隣接部分でも熔着さ
れることがなく、その分撚線としての柔軟性が保
たれる。
In the example of c, three thick plating wires 1 and ten melt plating wires 2 are used, and the three thick plating wires 1 are distributed without being adjacent to each other, and these three thick plating wires 1 are The 13 stranded wires are geometrically arranged so that all of the 10 melt-plated wires 2 are adjacent to each other, including adjacent melt-plated wires 2. By heat-treating this composite stranded wire at a low temperature of 300°C to 350°C, the three thick plated wires 1
Only the tin or solder plating layer of 1.0 μm or more is melted, resulting in 3 thick plating wires 1 and 10 molten plating wires 2.
All adjacent portions of the welded strands also constitute welded strands. The 10 melt-plated wires 2 are 0.5 μm thick by the self-melted plating method when heated at low temperature as mentioned above.
Since the tin or solder plating layer below will not melt,
Adjacent portions of the melt-plated wires 2 are not welded together, so that the flexibility of the twisted wires is maintained.

キ層が溶融しないので、溶融メツキ線2同志の
何れの隣接部分でも熔着されることがなく、その
分撚線としての柔軟性が保たれる。
Since the layer is not melted, neither adjacent portions of the melt-plated wires 2 are welded together, and the flexibility of the twisted wires is maintained accordingly.

dの例では、6本の厚メツキ線1と13本の溶融
メツキ線2とが用いられ、6本の厚メツキ線1が
隣接しあうことなく分散し、これら6本の厚メツ
キ線1に13本の溶融メツキ線2の全てが隣接し、
而も溶融メツキ線2同志の隣接を含むように、幾
何学的に撚り合わせ配置された19本撚線を構成す
る。この複合撚線を300℃〜350℃の低温で加熱処
理することにより、6本の厚メツキ線1の1.0μm
以上の錫または半田メツキ層のみが溶融して、6
本の厚メツキ線1と13本との全ての隣接部分で熔
着された熔着撚線が構成される。13本の溶融メツ
キ線2は、上記のような低温加熱では自己の溶融
メツキ法による0.5μm以下の錫または半田メツキ
層が溶融しないので、溶融メツキ線2同志の何れ
の隣接部分でも熔着されることはなく、その分撚
線としての柔軟性が保たれる。
In the example of d, 6 thick plating wires 1 and 13 melt plating wires 2 are used, and the 6 thick plating wires 1 are distributed without being adjacent to each other, and these 6 thick plating wires 1 are All 13 melt plating wires 2 are adjacent to each other,
In addition, 19 stranded wires are geometrically arranged so as to include two adjacent fused wires. By heat-treating this composite stranded wire at a low temperature of 300°C to 350°C, the thickness of the six thick plated wires 1 is 1.0 μm.
Only the tin or solder plating layer above is melted, and 6
A welded stranded wire is formed by welding all the adjacent parts of the thick plating wires 1 and 13 of the book. The 13 melt-plated wires 2 do not melt any adjacent parts of the melt-plated wires 2 because the tin or solder plating layer of 0.5 μm or less formed by the self-melt plating method does not melt when heated at low temperatures as described above. Therefore, the flexibility of the twisted wire is maintained.

eの例では、7本の厚メツキ線1と12本の溶融
メツキ線2とが用いられ、7本の厚メツキ線1が
隣接しあうことなく分散し、これら7本の厚メツ
キ線1に12本の溶融メツキ線2の全てが隣接し、
而も溶融メツキ線2同志の隣接を含むように、幾
何学的に撚り合わせ配置された19本撚線を構成す
る。この複合撚線を300℃〜350℃の低温で加熱処
理することにより、7本の厚メツキ線1の1.0μm
以上の錫または半田メツキ層のみが溶融して、7
本の厚メツキ線1と12本との全ての隣接部分で熔
着された熔着撚線が構成される。12本の溶融メツ
キ線2は、上記のような低温加熱では自己の溶融
メツキ法による0.5μm以下の錫または半田メツキ
層が溶融しないので、溶融メツキ線2同志の何れ
の隣接部分でも熔着されることはなく、その分撚
線としての柔軟性が保たれる。
In example e, 7 thick plating wires 1 and 12 melt plating wires 2 are used, and the 7 thick plating wires 1 are distributed without being adjacent to each other, and these 7 thick plating wires 1 are All of the 12 melted plating wires 2 are adjacent to each other,
In addition, 19 stranded wires are geometrically arranged so as to include two adjacent fused wires. By heat-treating this composite stranded wire at a low temperature of 300℃ to 350℃, the thickness of the seven thick plated wires 1 becomes 1.0 μm.
Only the tin or solder plating layer above melts and
A welded twisted wire is formed by welding all adjacent parts of the thick plating wires 1 and 12 of the book. The 12 melt-plated wires 2 do not melt any adjacent portions of the melt-plated wires 2 because the tin or solder plating layer of 0.5 μm or less formed by the self-melt plating method does not melt when heated at low temperatures as described above. Therefore, the flexibility of the twisted wire is maintained.

上述した各例の撚線は、電子機器用の配線やリ
ード用の細線として用いられるので、撚線を構成
する素線には0.026mmの外径からなる軟銅線が用
いられれば良いであろう。0.5μm以下の溶融メツ
キ法による錫または半田メツキ層は、撚線とした
後の端末処理つまり半田付処理時の半田漏れ性を
改善する。
The stranded wires in each of the above examples are used as thin wires for wiring and leads for electronic devices, so it would be best to use annealed copper wire with an outer diameter of 0.026 mm for the strands that make up the stranded wires. . A tin or solder plating layer of 0.5 μm or less formed by hot-dip plating improves solder leakage during terminal processing, that is, soldering processing, after stranding.

また、撚線への低温の加熱処理は、市販の窒素
ガス及び水素ガスの混合ガスの雰囲気中で行うと
錫または半田メツキ層の表面の変色が殆ど無くて
外観の維持を行える。
Further, when the low temperature heat treatment of the stranded wire is performed in an atmosphere of a commercially available mixed gas of nitrogen gas and hydrogen gas, there is almost no discoloration of the surface of the tin or solder plating layer, and the appearance can be maintained.

以下、具体的な実施例について説明する。 Specific examples will be described below.

直径0.164mmの軟銅線を錫を2.0μmに厚メツキし
た厚メツキ線と、直径0.16mmの軟銅線に錫に溶融
メツキ法により約0.5μmにメツキした溶融メツキ
線とを用い、第1図bに示した7本撚りの複合撚
線を構成し、これを窒素と水素の混合ガスの雰囲
気中で350℃の温度で加熱処理することにより、
所定の熔着撚線を製造した。
Figure 1b was prepared by using a thick plated wire, which is an annealed copper wire with a diameter of 0.164 mm and plated with tin to a thickness of 2.0 μm, and a hot-plated wire, which is an annealed copper wire with a diameter of 0.16 mm and plated with tin to a thickness of about 0.5 μm using the hot-dip plating method. By constructing a composite strand of seven strands as shown in , and heat-treating it at a temperature of 350°C in an atmosphere of a mixed gas of nitrogen and hydrogen,
A predetermined welded strand was produced.

このようにして製造された熔着撚線は、白色光
沢のある外観を示した。この撚線について
ASTMーB 470規格による“Fraying Test″を
3回行つたところ、結果は極めて良好であり、ま
た、曲げR=0.8、荷重=180g、90°往復、1
回/90°曲げの条件で行つた繰り返し屈曲試験で
は、120回をクリヤーした。さらに、30mmの支点
間で、直径6φのローラーによるU字曲げによる
最大応力を確認した結果、18.6gという好ましい
結果が得られた。
The fused strands produced in this way exhibited a white shiny appearance. About this stranded wire
The "Fraying Test" according to the ASTM-B 470 standard was performed three times, and the results were very good.
In the repeated bending test conducted under the condition of 90° bending, it passed 120 times. Furthermore, as a result of confirming the maximum stress due to U-shaped bending between 30 mm supporting points using a roller with a diameter of 6φ, a favorable result of 18.6 g was obtained.

比較例として、直径0.16mmの軟銅線に錫を溶融
メツキ法により0.3μmの厚さにメツキした溶融メ
ツキ線を7本撚りした撚線を構成し、その外周か
ら錫を一括コーテイングした。このようにして製
造された撚線についてASTMーB 470規格によ
る“Fraying Test″を3回行つた結果は良好であ
つたが、繰り返し屈曲試験を前述した実施例の場
合と同様に試みたところ、81回までしかクリヤー
できなかつた。さらに、前述した実施例と同様に
U字曲げによる最大応力を確認した結果、33.7g
であり、前述した実施例の場合と比較すると、そ
の柔軟性が犠牲にされ屈曲特性はかなり劣るもの
であつた。
As a comparative example, a stranded wire was constructed by twisting seven annealed copper wires having a diameter of 0.16 mm and tin plated to a thickness of 0.3 μm using the hot-melt plating method, and the outer periphery of the wire was coated with tin all at once. The stranded wire thus produced was subjected to the "Fraying Test" according to the ASTM-B 470 standard three times, and the results were good. However, when repeated bending tests were attempted in the same manner as in the above-mentioned example, I was only able to clear it up to 81 times. Furthermore, as in the above-mentioned example, the maximum stress due to U-shaped bending was confirmed to be 33.7g.
Compared to the above-mentioned embodiments, the flexibility was sacrificed and the bending properties were considerably inferior.

〔考案の効果〕[Effect of idea]

以上説明したような本考案の熔着撚線によれ
ば、1.0μm以上の錫または半田メツキ層を有する
厚メツキ線と、0.5μm以下の錫または半田メツキ
層を有する溶融メツキ線とを用い、厚メツキ線が
溶融メツキ線よりも少ない本数で全ての溶融メツ
キ線に隣接し且つ溶融メツキ線同志が隣接しあう
ように幾何学的に撚り合わせ配置され、溶融メツ
キ線同志の隣接部分では熔着されることなく、厚
メツキ線と溶融メツキ線との隣接部分が厚メツキ
線の錫または半田メツキ層の加熱溶融のみによつ
て熔着されたものであるから、撚線のバラケ防止
と撚線本来の柔軟性の維持とをともに共存させる
という所期の目的が達成され、また、厚メツキ線
は、撚線の一部の素線にだけ用い、残りの大半の
素線に溶融メツキ線を用いてこれらの複合撚りし
たので、素線の全部に厚メツキ線を用いた撚線よ
りも!?に製造コストが小さくなり、この種の熔着
撚線を安価に提供できる等、実用上の効果は甚大
である。
According to the welded stranded wire of the present invention as described above, a thick plated wire having a tin or solder plating layer of 1.0 μm or more and a fusion plated wire having a tin or solder plating layer of 0.5 μm or less are used. Thick plating wires are arranged geometrically so that the number of thick plating wires is smaller than that of the molten plating wires and that they are adjacent to all the molten plating wires, and the molten plating wires are adjacent to each other, and the adjacent parts of the molten plating wires are welded. Since the adjacent portions of the thickly plated wire and the melt-plated wire are fused only by heating and melting the tin or solder plating layer of the thickly plated wire, it is possible to prevent the stranded wires from coming apart and to prevent the stranded wires from coming apart. The original purpose of maintaining the original flexibility was achieved, and thick plated wire was used only for some of the strands of the stranded wire, and melt-plated wire was used for most of the remaining strands. Since the composite strands of these wires are used, the manufacturing cost is much lower than that of stranded wires using thick plated wires for all of the strands, and this type of welded stranded wire can be provided at low cost. The effect is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜eは、本考案にかかる熔着撚線の構
成例を示す断面図である。 符号において、1は厚メツキ線、2は溶融メツ
キ線である。
FIGS. 1a to 1e are cross-sectional views showing examples of the structure of the welded stranded wire according to the present invention. In the symbols, 1 is a thick plating wire, and 2 is a melt plating wire.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 3本乃至19本の素線からなる撚線において、撚
線を構成する素線として、1.0μm以上の錫または
半田メツキ層を有する厚メツキ線と、0.5μm以下
の錫または半田メツキ層を有する溶融メツキ線と
を用い、厚メツキ線が溶融メツキ線よりも少ない
本数で全ての溶融メツキ線に隣接し且つ溶融メツ
キ線同志が隣接しあうように幾何学的に撚り合わ
せ配置され、溶融メツキ線同志の隣接部分では熔
着されることなく、厚メツキ線と溶融メツキ線と
の隣接部分が厚メツキ線の錫または半田メツキ層
の加熱溶融のみによつて熔着されたことを特徴と
する熔着撚線。
In a stranded wire consisting of 3 to 19 strands, the strands constituting the strand are thickly plated wires with a tin or solder plating layer of 1.0 μm or more and tin or solder plating layers of 0.5 μm or less. Using molten plating wires, the thick plating wires are geometrically twisted and arranged so that the number of thick plating wires is smaller than the number of molten plating wires and is adjacent to all the molten plating wires, and the molten plating wires are adjacent to each other. Adjacent parts of the thick plating wire and the melt plating wire are not welded together, but the adjacent parts of the thick plating wire and the melt plating wire are welded only by heating and melting the tin or solder plating layer of the thick plating wire. Stranded wire.
JP1987011168U 1987-01-28 1987-01-28 Expired - Lifetime JPH0546169Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987011168U JPH0546169Y2 (en) 1987-01-28 1987-01-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987011168U JPH0546169Y2 (en) 1987-01-28 1987-01-28

Publications (2)

Publication Number Publication Date
JPS63120311U JPS63120311U (en) 1988-08-04
JPH0546169Y2 true JPH0546169Y2 (en) 1993-12-02

Family

ID=30798138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987011168U Expired - Lifetime JPH0546169Y2 (en) 1987-01-28 1987-01-28

Country Status (1)

Country Link
JP (1) JPH0546169Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136372A (en) * 1976-05-08 1977-11-15 Hitachi Cable Ltd Wire and manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136372A (en) * 1976-05-08 1977-11-15 Hitachi Cable Ltd Wire and manufacturing method

Also Published As

Publication number Publication date
JPS63120311U (en) 1988-08-04

Similar Documents

Publication Publication Date Title
DE19902405A1 (en) Corrosion resistant electrical connection, used in an automobile, is produced by pressing a copper contact clamp onto a tinned aluminum conductor and soldering or welding the parts together
US4756467A (en) Solderable elements and method for forming same
JP4847898B2 (en) Wiring conductor and method for manufacturing the same
JPH0546169Y2 (en)
JP4269374B2 (en) Tin-plated flat conductor manufacturing method and flat cable manufacturing method
JPH01289021A (en) Manufacture of copper clad steel stranded wire
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPS6276216A (en) High frequency wire
JPS6333245B2 (en)
JPS5949651B2 (en) Heat-resistant electrical conductor for wiring
JPS6240944A (en) Flexible metallic wire
JP4144855B2 (en) Wire processed product and manufacturing method thereof
JP5119591B2 (en) Flat cable manufacturing method
JPS62147608A (en) Wiring harness
JPS61283433A (en) Flexible metallic wire
WO2021205773A1 (en) Electronic component
JPS5837923B2 (en) Heat-resistant electrical conductor for wiring
JPH0221508A (en) Conductor for minute wire winding
JPS61262441A (en) Flexible metallic wire
JPH03226924A (en) Manufacture of tin coated strand wire
JP2663916B2 (en) Solder with metal wire
JP2003217352A (en) Fused twisted conductor
JP4914009B2 (en) Electrical conductor
JPS60175311A (en) Lead wire and flat cable using lead wire
KR100529526B1 (en) Overall tin coated stranded conducting wires and insulated electric wires thereof