JPH054556B2 - - Google Patents

Info

Publication number
JPH054556B2
JPH054556B2 JP61205877A JP20587786A JPH054556B2 JP H054556 B2 JPH054556 B2 JP H054556B2 JP 61205877 A JP61205877 A JP 61205877A JP 20587786 A JP20587786 A JP 20587786A JP H054556 B2 JPH054556 B2 JP H054556B2
Authority
JP
Japan
Prior art keywords
tube
inner ring
residual stress
groove
tube body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61205877A
Other languages
Japanese (ja)
Other versions
JPS6362992A (en
Inventor
Hidenori Doge
Kenichi Suzuki
Tsugio Oyamada
Hirobumi Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20587786A priority Critical patent/JPS6362992A/en
Publication of JPS6362992A publication Critical patent/JPS6362992A/en
Publication of JPH054556B2 publication Critical patent/JPH054556B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低残留応力型管体接続構造に係り、特
に原子力プラント、火力プラント、化学プラント
等の材料の腐食環境下で用いられる管体の接続部
に生じる残留応力を低減するのに好適な低残留応
力型管体接続構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a low residual stress type pipe body connection structure, and is particularly applicable to pipe bodies used in corrosive environments such as nuclear power plants, thermal power plants, chemical plants, etc. The present invention relates to a low residual stress type tube connection structure suitable for reducing residual stress generated in a connection portion.

〔従来の技術〕[Conventional technology]

従来の管体のサンドイツチ型管体接続構造は、
第4図に示すように、接続される内側の管体1を
相手方の外側の管体2とサポート用の内リング3
との間に差し込んで接合する構造であつた。
The traditional sandwich-type pipe connection structure of the pipe is
As shown in FIG.
The structure was such that it could be inserted and connected between the two.

この接合方法は、第4図に示すように、外側の
管体2の内面に接合用溝部4を設け、管体1およ
び内リング3をマンドレル5を押し込むことによ
つてローラ6によつて拡管し、管体2に管体1お
よび内リング3を機械的に拡管接合するようにし
てある。
As shown in FIG. 4, in this joining method, a joining groove 4 is provided on the inner surface of the outer tubular body 2, and the tubular body 1 and inner ring 3 are expanded by rollers 6 by pushing a mandrel 5 into them. The tube body 1 and the inner ring 3 are mechanically expanded and joined to the tube body 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第5図は従来の接続構造において測定された接
合部近傍の管体1の内面に発生する残留応力分布
の説明図、第6図はその結果を示す線図で、aは
軸方向残留応力を示す線図、bは周方向残留応力
を示す線図である。第6図はa,bより軸方向残
留応力および周方向残留応力はともに内リング先
端近傍A部において高い引張残留応力を示してい
る。
Fig. 5 is an explanatory diagram of the residual stress distribution generated on the inner surface of the tube body 1 near the joint part measured in the conventional connection structure, and Fig. 6 is a diagram showing the results. The diagram shown in FIG. 1B is a diagram showing residual stress in the circumferential direction. In FIG. 6, as shown in a and b, both the axial residual stress and the circumferential residual stress show a high tensile residual stress in the portion A near the tip of the inner ring.

この高引張残留応力は、管体1の内側を流れる
内部流体による材料の腐食に起因する管体1の応
力腐食割れあるいは水素遅れ割れ等の材料破壊を
発生させる原因となる。
This high tensile residual stress causes material failure such as stress corrosion cracking or hydrogen delayed cracking of the tube body 1 due to corrosion of the material by the internal fluid flowing inside the tube body 1.

したがつて、この残留応力を応力腐食割れある
いは水素遅れ割れの発生する限界応力値以下にす
る必要がある。
Therefore, it is necessary to keep this residual stress below the critical stress value at which stress corrosion cracking or hydrogen delayed cracking occurs.

この残留応力を低減させる方法として、接続作
業完了後に第5図のA部分を加熱して応力除去を
行う方法がある。
As a method for reducing this residual stress, there is a method of heating the part A in FIG. 5 to remove the stress after the connection work is completed.

しかし、この方法では、接合部での結合力を保
持するために、B部分を冷却する必要があり、加
熱および冷却機能を有する複雑で高価な装置が必
要となる。また、応力除去焼純には、多大な作業
時間が必要となり、経済性が極めて悪いという欠
点がある。
However, in this method, it is necessary to cool part B in order to maintain the bonding strength at the joint, and a complicated and expensive device with heating and cooling functions is required. In addition, stress-relieving annealing requires a large amount of working time and has the disadvantage of being extremely uneconomical.

このため、作業工程を増加させないようにし、
かつ、特別な装置を用いることなく、さらに、接
続部のシール性能および機械的強度を低下させる
ことなく、残留応力を低減できる接続構造の改善
が必要であつた。
For this reason, avoid increasing the work process,
In addition, there was a need for an improvement in the connection structure that can reduce residual stress without using special equipment and without reducing the sealing performance and mechanical strength of the connection.

本発明の目的は、腐食環境下で用いられる管体
の接続部において、残留応力に起因する材料破壊
を防止することが可能な低残留応力型管体接続構
造を提供することにある。
An object of the present invention is to provide a low residual stress type tube connection structure that can prevent material failure due to residual stress at a connection portion of a tube used in a corrosive environment.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、サンドイツチ型管体接続構造の内
リング先端部近傍の内側の管体の内面に発生する
残留応力が第5図に示す如く、内リングの拡管に
より内側の管体を押し拡げる力Qおよび外側の管
体による弾性回復力P1およびP2によることに着
目し、しかも、内リングの先端部よりl´側にある
内側の管体は直接内部流体と接触することがない
ため、応力腐食割れを起すことがなく、また、内
リングの内面には、外側の管体と内側の管体の弾
性回復力が加わるため、圧縮応力が生じており、
内リングの内面で応力腐食割れあるいは水素遅れ
割れ等の材料破壊が生じることはなく、以上によ
り、サンドイツチ型管体接続構造において、腐食
に起因する材料破壊が生じる可能性があるのは、
内側の管体の内部流体に接する部分であり、か
つ、残留応力が高い内リング先端部近傍であり、
この残留応力を低下させるには、内リングによる
押し付け力Qと外側の管体の弾性回復力P1およ
びP2を低減させることが考えられるが、押し付
け力Qは、接合部の結合力に直接関係しているた
め、押し付け力Qの低下は、結合力の低下もたら
すので好ましくなく、また、弾性回復力P1とP2
のうち、A部の残留応力に影響する度合は、力と
距離によるモーメントによる関係でP1の方がP2
よりかなり大きくなり、このため、弾性回復力
P1の低減を図ることが残留応力を低下させる上
で有効である。
The purpose of the above is that the residual stress generated on the inner surface of the inner tube near the tip of the inner ring of the Sanderch-type tube connection structure causes a force Q to push and expand the inner tube due to the expansion of the inner ring, as shown in Figure 5. We focused on the elastic recovery forces P 1 and P 2 due to the outer tube and the outer tube.Moreover, since the inner tube located on the l′ side from the tip of the inner ring does not come into direct contact with the internal fluid, the stress It does not cause corrosion cracking, and compressive stress is generated on the inner surface of the inner ring due to the elastic recovery force of the outer and inner tubes.
Material failure such as stress corrosion cracking or hydrogen delayed cracking does not occur on the inner surface of the inner ring, and as a result of the above, material failure due to corrosion may occur in the sandwich type tube connection structure.
This is the part of the inner pipe body that is in contact with the internal fluid and is near the tip of the inner ring where residual stress is high.
In order to reduce this residual stress, it is possible to reduce the pressing force Q of the inner ring and the elastic recovery forces P 1 and P 2 of the outer tube, but the pressing force Q is directly affected by the bonding force of the joint. Therefore, a decrease in the pressing force Q is undesirable because it causes a decrease in the bonding force, and the elastic recovery forces P 1 and P 2
Of these, the degree of influence on the residual stress in part A is determined by the relationship between force and moment due to distance, and P 1 is greater than P 2 .
Because of this, the elastic recovery force is considerably larger than
Reducing P 1 is effective in reducing residual stress.

ここで、弾性回復力P1を低減させるには、P1
に対応する外側の管体の剛性を低下させればよ
く、言い換えれば体積を減少させればよい。しか
しながら、ここで問題となるのは、外側の管体の
剛性が接合部の結合力に大きく寄与しているた
め、外側の管体の剛性の大きな低下は、接合部の
結合力の低下をもたらし、また、接合用溝部真上
の外側の管体の剛性は結合力に直接寄与するた
め、剛性を低下させることはできない。以上は外
側が管体である場合について説明したが、管板で
ある場合についても同様である。
Here, to reduce the elastic recovery force P 1 , P 1
It is only necessary to reduce the rigidity of the outer tube body corresponding to the above, or in other words, to reduce the volume. However, the problem here is that the stiffness of the outer tube greatly contributes to the bonding force of the joint, so a large decrease in the stiffness of the outer tube will lead to a decrease in the bonding force of the joint. Furthermore, since the rigidity of the outer tubular body directly above the joining groove directly contributes to the bonding force, the rigidity cannot be reduced. The above description has been made for the case where the outside is a tube body, but the same applies to the case where the outside is a tube plate.

以上により、本発明では、小さな剛性低下で効
果的に残留応力を低下させるため、極力モーメン
トが大きくなる位置、すなわち、外側の管体また
は管板の内面の接合用溝部近傍で、かつ接合用溝
部とは所定の間隔を持つて配置されると共に、内
リングの幅方向内側に円周方向の第1の溝を設
け、さらに外側の管体または管板の内面の内リン
グの端部外側近傍に位置する部分に円周方向の第
2の溝を設けた構造として上記目的を達成するよ
うにした。
As described above, in the present invention, in order to effectively reduce residual stress with a small decrease in rigidity, it is possible to reduce the residual stress at a position where the moment is as large as possible, that is, in the vicinity of the joining groove on the inner surface of the outer tube body or tube sheet, and in the vicinity of the joining groove. are arranged at a predetermined interval, and a first groove in the circumferential direction is provided on the inner side in the width direction of the inner ring, and a first groove in the circumferential direction is further provided on the inner surface of the outer tube body or tube plate near the outer end of the inner ring. The above object is achieved by a structure in which a second groove in the circumferential direction is provided in the positioning portion.

〔作用〕[Effect]

外側の管体または管板の内面の接合用溝部近傍
部で、かつ接合用溝部とは所定の間隔を持つて配
置されると共に、内リングの幅方向内側に円周方
向の第1の溝を設け、さらに内リングの端部外側
近傍に位置する部分に円周方向の第2の溝を設け
るようにしたので、管体と管体または管板との接
触面積を削減することができ、残留応力を大きく
低減することができる。
A first groove in the circumferential direction is arranged in the vicinity of the joining groove on the inner surface of the outer tube body or the tube plate and at a predetermined distance from the joining groove, and on the inner side in the width direction of the inner ring. In addition, a second groove in the circumferential direction is provided in a portion located near the outside of the end of the inner ring, so the contact area between the tube body and the tube body or tube sheet can be reduced, and residual Stress can be significantly reduced.

〔実施例〕〔Example〕

以下本発明を第1図、第3図に示した実施例お
よび第2図を用いて詳細に説明する。
The present invention will be explained in detail below with reference to the embodiments shown in FIGS. 1 and 3 and FIG. 2.

第1図は本発明の低残留応力型管体接続構造の
一実施例を示す縦断面図、第2図は第1図におけ
る残留応力分布図で、aは軸方向残留応力分布、
bは周方向残留応力分布を示す線図である。な
お、従来と同じ部品には同じ符号を付したので説
明を省略する。第1図は内側の管体1、外側の管
体2および内リング3より構成されており、外側
の管体2の内面の接合用溝部4近傍部で、かつ接
合用溝部4とは所定の間隔を持つて配置されると
共に、内リング3の幅方向内側に円周方向の第1
の溝7を設け、さらに内リング3の端部外側近傍
に位置する部分に円周方向の第2の溝8を設け
た。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the low residual stress type tube connection structure of the present invention, and FIG. 2 is a residual stress distribution diagram in FIG. 1, where a is the axial residual stress distribution,
b is a diagram showing the circumferential residual stress distribution. It should be noted that the same parts as in the prior art have been given the same reference numerals, so their explanation will be omitted. Fig. 1 shows a structure consisting of an inner pipe body 1, an outer pipe body 2, and an inner ring 3, which is located near the joint groove 4 on the inner surface of the outer pipe body 2, and at a predetermined distance from the joint groove 4. A first ring in the circumferential direction is arranged at intervals, and is arranged on the inner side in the width direction of the inner ring 3.
A second groove 7 is provided in the inner ring 3, and a second circumferential groove 8 is provided in a portion located near the outer end of the inner ring 3.

第1図に示す構造によれば、接合用溝部4近傍
で内リング3の幅方向内側および内リング3の端
部外側近傍において、管体2と管体1とが接触す
る面積が極めて少なくなるため、管体1を押し付
ける管体2の弾性回復力P1、P2(第5図参照)は
極めて微小となる。
According to the structure shown in FIG. 1, the contact area between the tubular body 2 and the tubular body 1 is extremely small near the joining groove 4, on the inner side in the width direction of the inner ring 3, and near the outer end of the inner ring 3. Therefore, the elastic recovery forces P 1 and P 2 (see FIG. 5) of the tube 2 that presses against the tube 1 are extremely small.

このように管体1のA部(第5図参照)に加わ
るP2が小さくなるのみならずA部に加わるP1
よるモーメントが小さくなるため、A部の管体1
の内面に生じる幅方向残留応力および周方向残留
応力をそれぞれ第2図a,bに示すように大幅に
低減させることができる。
In this way, not only the P 2 applied to the A part of the tube 1 (see Fig. 5) becomes smaller, but also the moment due to P 1 applied to the A part becomes smaller.
The width direction residual stress and the circumferential direction residual stress generated on the inner surface of the groove can be significantly reduced as shown in FIGS. 2a and 2b, respectively.

なお、一般に内部流体の圧力により生じる応力
は、管体の材料の弾性限度以下に設計されるた
め、管体1の変形は0.2%以下と小さく、管体1
の外面が管体2の切り欠き部分、すなわち、溝
7,8で盛り上がることはなく、常に健全な形状
を保つ。
Note that the stress caused by the pressure of the internal fluid is generally designed to be below the elastic limit of the tube material, so the deformation of the tube 1 is as small as 0.2% or less, and the
The outer surface of the tubular body 2 is not raised by the notched portions, that is, the grooves 7 and 8, and always maintains a healthy shape.

第3図は本発明の他の実施例を示す第1図に相
当する縦断面図で、第3図においては、管板に管
体を接続する場合を示してある。第3図において
は、管板9に管体10を内リング11により接続
するようにしてあり、この場合は、管板9の管体
10に接触する部分の両側にそれぞれ溝12,1
3を設けるようにしてあり、それぞれの溝12
は、管板9の接合用溝部14近傍の左右で内リン
グ11の幅方向内側に設けてあり、それぞれの溝
13はそれぞれの溝12の外側の内リング11の
端部外側近傍に設けてある。第3図の実施例によ
れば、内リング11の先端部の管体10の内面に
生ずる残留応力を低減することができる。
FIG. 3 is a longitudinal sectional view corresponding to FIG. 1 showing another embodiment of the present invention, and FIG. 3 shows the case where a tube body is connected to a tube plate. In FIG. 3, the tube body 10 is connected to the tube sheet 9 by an inner ring 11, and in this case, grooves 12 and 1 are formed on both sides of the portion of the tube sheet 9 that contacts the tube body 10.
3, and each groove 12
are provided on the inner side in the width direction of the inner ring 11 on the left and right sides near the joining groove 14 of the tube plate 9, and the respective grooves 13 are provided near the outer end of the inner ring 11 outside the respective grooves 12. . According to the embodiment shown in FIG. 3, the residual stress generated on the inner surface of the tube body 10 at the tip of the inner ring 11 can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、管体ま
たは管板と管体とを内リングを用いてサンドイツ
チ型として接続する場合に、外側の管体あるいは
管板の接続部の内面で内リングの幅方向内側およ
び内リングの端部外側近傍に円周方向の溝を設け
たので、内側の管体に生じる残留応力を確実に低
減することができ、残留応力に起因する応力腐食
割れあるいは水素遅れ割れ等の材料破壊の発生を
防止できるという効果がある。
As explained above, according to the present invention, when connecting the tube body or tube sheet and the tube body in a Sanderch type manner using the inner ring, the inner ring Circumferential grooves are provided on the inner side in the width direction and near the outer end of the inner ring, so it is possible to reliably reduce the residual stress that occurs in the inner tube, preventing stress corrosion cracking or hydrogen cracking caused by residual stress. This has the effect of preventing the occurrence of material failure such as delayed cracking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の低残留応力型管体接続構造の
一実施例を示す縦断面図、第2図は第1図におけ
る残留応力分布図、第3図は本発明の他の実施例
を示す第1図に相当する縦断面図、第4図は従来
のサンドイツチ型接合方法を説明するための縦断
面図、第5図は第4図における場合の残留応力発
生状態を説明するための縦断面図、第6図は第5
図における残留応力分布図である。 1,2……管体、3……内リング、4……接合
用溝部、5……マンドレル、6……ローラ、7,
8,12,13……溝、9……管板、10……管
体、11……内リング、14……接合用溝部。
FIG. 1 is a vertical cross-sectional view showing one embodiment of the low residual stress type tube connection structure of the present invention, FIG. 2 is a residual stress distribution diagram in FIG. 1, and FIG. 3 is a diagram showing another embodiment of the present invention. FIG. 4 is a vertical cross-sectional view for explaining the conventional sand-deutsch type joining method, and FIG. 5 is a vertical cross-sectional view for explaining the residual stress generation state in the case shown in FIG. 4. Front view, Figure 6 is the 5th
It is a residual stress distribution diagram in the figure. 1, 2... Pipe body, 3... Inner ring, 4... Joining groove, 5... Mandrel, 6... Roller, 7,
8, 12, 13...Groove, 9...Tube plate, 10...Tube body, 11...Inner ring, 14...Joining groove.

Claims (1)

【特許請求の範囲】[Claims] 1 外側の管体または管板と内側の管体と内リン
グとよりなり、前記外側の管体または管板に接合
用溝部を設け、前記内リングを拡管することによ
つて前記外側の管体または管板に前記内側の管体
を接合してなるサンドイツチ型管体接続構造にお
いて、前記外側の管体または管板の内面の前記接
合用溝部近傍部で、かつ前記接合用溝部とは所定
の間隔を持つて配置されると共に、前記内リング
の幅方向内側に円周方向の第1の溝を設け、さら
に前記内リングの端部外側近傍に位置する部分に
円周方向の第2の溝を設けたことを特徴とする低
残留応力型管体接続構造。
1 Consisting of an outer tube body or tube plate, an inner tube body, and an inner ring, the outer tube body is formed by providing a joining groove in the outer tube body or tube plate, and expanding the inner ring. Alternatively, in a sandwich-type tube connection structure in which the inner tube is joined to a tube sheet, a portion of the outer tube or the inner surface of the tube sheet near the joining groove, and where the joining groove is a predetermined portion. A first groove in the circumferential direction is provided on the inner side in the width direction of the inner ring, and a second groove in the circumferential direction is provided in a portion located near the outer side of the end of the inner ring. A low residual stress type tube connection structure characterized by the provision of.
JP20587786A 1986-09-03 1986-09-03 Low residual stress type pipe body connecting structure Granted JPS6362992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20587786A JPS6362992A (en) 1986-09-03 1986-09-03 Low residual stress type pipe body connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20587786A JPS6362992A (en) 1986-09-03 1986-09-03 Low residual stress type pipe body connecting structure

Publications (2)

Publication Number Publication Date
JPS6362992A JPS6362992A (en) 1988-03-19
JPH054556B2 true JPH054556B2 (en) 1993-01-20

Family

ID=16514209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20587786A Granted JPS6362992A (en) 1986-09-03 1986-09-03 Low residual stress type pipe body connecting structure

Country Status (1)

Country Link
JP (1) JPS6362992A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024234A (en) * 1983-07-21 1985-02-06 Power Reactor & Nuclear Fuel Dev Corp Joint structure of pipe ends

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024234A (en) * 1983-07-21 1985-02-06 Power Reactor & Nuclear Fuel Dev Corp Joint structure of pipe ends

Also Published As

Publication number Publication date
JPS6362992A (en) 1988-03-19

Similar Documents

Publication Publication Date Title
KR100680282B1 (en) Shrink fitting including deformation
GB1595670A (en) Method of forming a connection between and an assembly of two metallic parts
US2294137A (en) Heat exchanger
US3922768A (en) Method of manufacturing a heat exchanger
GB2079204A (en) Methods of Securing a Tube in the Bore of a Wall
JPH054556B2 (en)
JPS58173035A (en) Flaring method of tube end
JP2019178695A (en) Pipe joint
JP3014627B2 (en) Manufacturing method of cooling wall made of dissimilar metal
JPH11342493A (en) Structure and method for welding tube body
JP2640111B2 (en) How to connect metal tubes
JPH0724541A (en) Shape memory alloy joint and its production
JPS644855B2 (en)
JPS585513A (en) Thrust collar of rotor made of chrome steel
JPS62147190A (en) Tube body connecting structure
JPH11218302A (en) Seal structure of furnace wall through part
JP2002188764A (en) Method of connecting pipe
JPS5933452B2 (en) Double pipe manufacturing method
JPS62161430A (en) Manufacture of clad pipe
JPH0543351Y2 (en)
JPH02284728A (en) Production of double-pipe reducer pipe joint
JPH04171391A (en) Connection structure between thin tube and metal tube
GB2126674A (en) Tube in shell heat exchangers
JPH01306072A (en) Method for welding heat exchanger tube to tube plate
JPS6076289A (en) Production of clad steel pipe