JPH0545089Y2 - - Google Patents

Info

Publication number
JPH0545089Y2
JPH0545089Y2 JP18938587U JP18938587U JPH0545089Y2 JP H0545089 Y2 JPH0545089 Y2 JP H0545089Y2 JP 18938587 U JP18938587 U JP 18938587U JP 18938587 U JP18938587 U JP 18938587U JP H0545089 Y2 JPH0545089 Y2 JP H0545089Y2
Authority
JP
Japan
Prior art keywords
coil
coils
shape
winding
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18938587U
Other languages
Japanese (ja)
Other versions
JPH0193937U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18938587U priority Critical patent/JPH0545089Y2/ja
Publication of JPH0193937U publication Critical patent/JPH0193937U/ja
Application granted granted Critical
Publication of JPH0545089Y2 publication Critical patent/JPH0545089Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本考案は回転電機の単層巻巻線に関する。[Detailed explanation of the idea] [Purpose of invention] (Industrial application field) The present invention relates to a single-layer winding for a rotating electric machine.

(従来の技術) 回転電機の電機子巻線及び誘導機の二次巻線は
同一スロツト内に上コイル及び下コイルを挿入す
る二層巻巻線が多く採用される一方、スロツト内
の導体の占積率が良くかつコイル数が減少する等
の有利さから一スロツト内一コイルとした単層巻
巻線が採用されることもある。単層巻巻線の接続
手段は二層巻巻線と同様第6図または第7図に示
す様な鉄心10にコイル15を重ね巻または波巻
した接続が一般的である。ところで、上記のいず
れの接続手段においても上コイルと下コイルを順
送りで接続するためコイルエンド部において第9
図に示す様に傾斜部17を設ける必要がある。こ
の傾斜部17におけるコイル相互間距離δはコイ
ル相互間のコロナ放電を防止するため回転電機の
電圧から定まり、電圧が高くなる程絶縁に必要と
される最小空間距離が拡がる。ここでδを増加さ
せるためにはコイル傾斜部13の軸方向長さを延
長することによつて可能となる。ところが、この
様な場合高電圧の機械においてはδを増加させる
ためにコイル傾斜部17の軸方向長さCを極端に
大きくしなくてはならない場合があり、例えば遠
心力場で使用される誘導機の二次巻線等ではコイ
ルエンド部を支持する事が不可能となつて、機械
が成立しなくなり、また固定子側で使用の場合で
もコイルエンド部の空間を広くとらなくてはなら
ないために機械寸法を大きくしなくてはならない
等の欠点があつた。また逆に回転電機の設置場所
の制約がある場合には、単層巻巻線は二層巻巻線
に比べて条件は良いものの、絶縁に必要な最小空
間距離をコイルエンド部の傾斜部において確保で
きない場合があるという不都合を生じていた。こ
の欠点を解決する手段の一つとして単層巻巻線で
は第8図に示す様な鎖巻接続が一般的に知られて
いる。鎖巻接続の場合、同一相の隣接する相帯間
でコイルを近接するコイル同志から順に接続する
事から本考案による第2図と同様にコイルエンド
部渡り部のコイル相互間距離δ0を任意に広く確保
することが可能であり、高電圧の機械にてコイル
相互間の絶縁空間距離を広くする必要がある場合
には好都合である。しかしながら、この場合には
コイル形状が多種〔最低でも回転電機の毎極毎相
当りのスロツト数(以下TAと称す)の2倍の種
類、ワンターンコイルの場合更にその2倍の種
類〕となるため、コイルの互換性が無くなり、予
備コイルの本数が増加し、またコイルの製造にお
いても形状が多種に及ぶために生産性が他の形状
のコイルに比べて悪く製造価格も上昇する等の欠
点があつた。
(Prior art) For armature windings of rotating electric machines and secondary windings of induction machines, two-layer windings in which upper and lower coils are inserted in the same slot are often adopted. A single-layer winding with one coil per slot is sometimes used because of its advantages such as a good space factor and a reduction in the number of coils. As with the two-layer winding, the connection means for the single-layer winding is generally a connection in which a coil 15 is lap-wound or wave-wound around the iron core 10 as shown in FIG. 6 or 7. By the way, in any of the above connection means, in order to connect the upper coil and the lower coil in sequence, the 9th coil is connected at the coil end.
As shown in the figure, it is necessary to provide an inclined portion 17. The distance δ between the coils in the inclined portion 17 is determined from the voltage of the rotating electric machine in order to prevent corona discharge between the coils, and the higher the voltage, the wider the minimum spatial distance required for insulation. Here, δ can be increased by extending the length of the coil inclined portion 13 in the axial direction. However, in such cases, in high-voltage machines, the axial length C of the coil inclined portion 17 may have to be made extremely large in order to increase δ. It becomes impossible to support the coil end with the machine's secondary winding, etc., making the machine unusable, and even when used on the stator side, a large space must be provided for the coil end. However, there were drawbacks such as the need to increase the size of the machine. Conversely, if there are restrictions on the installation location of the rotating electrical machine, single-layer windings have better conditions than double-layer windings, but the minimum space distance required for insulation is This caused the inconvenience that it may not be possible to secure it. As one means for solving this drawback, a chain-wound connection as shown in FIG. 8 is generally known for single-layer windings. In the case of chain-wound connection, since the coils are connected in order from the adjacent coils between adjacent phase bands of the same phase, the distance δ 0 between the coils at the transition portion of the coil ends can be set arbitrarily as shown in Fig. 2 according to the present invention. This is advantageous when it is necessary to widen the insulation space between coils in a high-voltage machine. However, in this case, there are many different coil shapes (at least twice as many types as the number of slots per pole (hereinafter referred to as TA) of the rotating electrical machine, and twice as many types in the case of one-turn coils). , coils become incompatible, the number of spare coils increases, and coils come in a wide variety of shapes, so productivity is poor compared to coils of other shapes, and manufacturing costs increase. It was hot.

本考案の目的とするところは、ワンターコイル
にて構成される単層巻巻線にて、コイルエンド部
のコイル相互間距離を必要とする絶縁空間距離以
上とすることを可能とし、かつ構成するコイル形
状の種類を極力減らす事によりコイルの互換性の
ある巻線を提供することにある。
The purpose of this invention is to make it possible to make the distance between the coils at the coil ends equal to or greater than the required insulation space distance in a single-layer winding composed of one-turn coils, and to The purpose of the present invention is to provide compatible windings of coils by reducing the number of types of coil shapes as much as possible.

〔考案の構成〕[Structure of the idea]

(問題点を解決するための手段) 上記目的を達成するために本考案においては、
一スロツトに一導体のコイルのエンド部の形状を
両端ともに直線部を延長した上コイルと、両端と
もに上コイルの下方に折り曲げた下コイルと、一
方端を上コイル形状にし他方端を下コイル形状に
した上下コイルとの3種類にし、各コイルエンド
部の先端の曲げ方向をコイル直線部方向を中心と
して反転させ、それぞれの種類のコイルについて
コイルエンド部にて所定のコイル相互間の空間を
保つように一相帯内で同一形状のものを軸方向に
位置をずらして配置し、隣接する同一相の相帯間
でのコイル同志の接続は両端それぞれについて鎖
巻と同様に接続する渡り線を設けたことを特徴と
する回転電機の単層巻巻線を提供する。
(Means for solving the problem) In order to achieve the above purpose, in this invention,
The shape of the end part of a coil with one conductor in one slot is an upper coil with straight parts extended at both ends, a lower coil with both ends bent downward from the upper coil, and one end shaped like an upper coil and the other end shaped like a lower coil. There are three types of coils, upper and lower coils, and the bending direction of the tip of each coil end is reversed around the direction of the straight part of the coil, and a predetermined space between the coils is maintained at the coil end for each type of coil. As shown in the figure, coils of the same shape are arranged with their positions shifted in the axial direction within a single phase band, and the connection of coils between adjacent phase bands of the same phase is performed using crossover wires connected at both ends in the same manner as chain winding. A single-layer winding for a rotating electric machine is provided.

〔作用〕[Effect]

この様に構成されたものにおいては、コイルエ
ンド部の接続手段が鉄心端片端ずつそれぞれにつ
いて見れば鎖巻と同等であるので限られたスペー
スの中でもコイルエンド部の渡り線部のコイル相
互間距離を広くする事が可能となり、高電圧の回
転電機でもコイル相互間の絶縁空間距離を十分に
確保することができる。また、コイル形状も3種
類であり、しかもコイルエンド部形状は上コイル
形状、下コイル形状の2種類であるので、コイル
の製造上においても鎖巻に比べて簡素化して、従
来の重ね巻及び波巻の単層巻コイルと同等となり
予備コイルの本数も従来の鎖巻コイルに比べて大
幅に減少する。
In a device configured in this way, the connection means of the coil end portion is equivalent to a chain winding when looking at each end of the core, so even in a limited space, the distance between the coils at the crossover wire portion of the coil end portion can be adjusted. This makes it possible to make the coils wider, and even in high-voltage rotating electric machines, it is possible to secure a sufficient insulating space distance between the coils. In addition, there are three types of coil shapes, and there are two types of coil end shapes, an upper coil shape and a lower coil shape, so the manufacturing of the coil is simplified compared to chain winding, and conventional lap winding and coil winding. It is equivalent to a single-layer wave-wound coil, and the number of spare coils is significantly reduced compared to conventional chain-wound coils.

(実施例) 以下、本考案の一実施例について、第1図ない
し第4図を参照して説明する。第1図において、
1は下コイル、2は上コイル、3はコイルエンド
の一方端が上コイル、残る他方端が下コイル形状
となつたコイル(以下上下コイルと称す)である
が、上下コイル3はコイルの向きを反転させると
同一であるので、結局下コイル1、上コイル2、
上下コイル3の3種類の形状となる。鉄心10内
の相帯区分線10aは相帯の区分を明瞭にしたも
のである。各コイル1,2,3はコイルエンド渡
り部5の曲げ方向をコイル直線部方向を中心とし
て反転させ、それぞれの種類のコイルについてコ
イルエンド部にて所定のコイル相互相の空間を保
つように一相帯内で同一形状のものを軸方向に位
置をずらして配置し、隣接する同一相の相帯間で
のコイル同志の接続はそれぞれ鎖巻と同様に渡り
線4で接続する。6は接続部である。第2図、第
3図は各コイル1,2,3をスロツトに挿入した
場合のコイルエンド部の構成を示す。そして、第
2のコイルと渡り線4には斜線を施したが、これ
は区分を明瞭にするもので、断面表示ではない。
第2図において上コイル2の渡り線4は鉄心端側
から2A,2B,2C,2Dの順に必要とされる
コイル相互間の絶縁空間距離δ0を保ちつつ配置さ
れている。上コイル2は2A,2B,2C,2D
共、同一形状のコイルを軸方向にずらして挿入し
ているので第2図に示した鉄心端部と反対側の鉄
心端部では渡り線4は鉄心端X0から2D,2C,
2B,2Aの順番に並ぶことになる。尚、11は
外側間隔片、12は押え板、13はスロツトを示
す。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 4. In Figure 1,
1 is a lower coil, 2 is an upper coil, and 3 is a coil in which one end of the coil end is an upper coil, and the remaining end is a lower coil (hereinafter referred to as the upper and lower coil). If you reverse them, they are the same, so in the end, the lower coil 1, upper coil 2,
There are three types of shapes for the upper and lower coils 3. A phase zone division line 10a in the iron core 10 clearly distinguishes the phase zones. Each of the coils 1, 2, and 3 is arranged such that the bending direction of the coil end transition portion 5 is reversed with respect to the direction of the straight coil portion, and the coils are aligned so that a predetermined mutual phase space between the coils is maintained at the coil end portion for each type of coil. Coils of the same shape are arranged with their positions shifted in the axial direction within a phase band, and the coils between adjacent phase bands of the same phase are connected by crossover wires 4 similarly to chain winding. 6 is a connection part. FIGS. 2 and 3 show the structure of the coil end portion when each coil 1, 2, 3 is inserted into the slot. The second coil and the connecting wire 4 are shaded with diagonal lines, but this is to make the division clear and is not a cross-sectional representation.
In FIG. 2, the connecting wires 4 of the upper coil 2 are arranged in the order of 2A, 2B, 2C, and 2D from the core end side while maintaining the required insulation space distance δ 0 between the coils. Upper coil 2 is 2A, 2B, 2C, 2D
In both cases, the coils of the same shape are inserted shifted in the axial direction, so at the end of the core opposite to the end of the core shown in FIG .
They will be lined up in the order of 2B and 2A. In addition, 11 is an outer spacer piece, 12 is a presser plate, and 13 is a slot.

ところで、第1図、第2図、第3図に使用され
るコイルは1ターンコイルであるが、前記した様
に挿入スロツトに対して軸方向をずらして挿入さ
れるため、鉄心長内で360°レーベル転位を行なう
従来の方式ではコイルによつて鉄心長内にてレー
ベル転位の存在しない部分が発生し、漂遊損失の
増加をもたらすし、また、コイル毎に使用場所に
あわせてレーベル転位位置をずらしていたのでは
本考案の目的の一つとするコイルの互換性の条件
を満足しない事になる。この解決策を第2図及び
第4図を使用して説明する。
By the way, the coils used in Figures 1, 2, and 3 are one-turn coils, but as mentioned above, they are inserted with the axial direction shifted relative to the insertion slot, so there is a 360-turn coil within the core length. ° In the conventional method of performing Lebel dislocation, a portion where Lebel dislocation does not exist occurs within the core length due to the coil, resulting in an increase in stray loss. Also, the Lebel dislocation position is determined depending on the location of use for each coil. If they were shifted, the conditions for coil compatibility, which is one of the purposes of the present invention, would not be satisfied. This solution will be explained using FIGS. 2 and 4.

第4図においてコイルの直線部におけるレーベ
ル転位の始点“X”は第2図において示した渡り
線4が最も鉄心端に近いコイル2Aの鉄心端表面
位置“X0”とする。コイルは鉄心端表面X0に対
応する位置Xを始点として所定の転位ピツチγに
て鉄心長l内にて360°レーベル転位され、第2図
のコイル2Aに使用すれば一応レーベル転位の目
的を果たせる。
In FIG. 4, the starting point "X" of the Lebel dislocation in the straight section of the coil is assumed to be the core end surface position "X 0 " of the coil 2A where the crossover wire 4 shown in FIG. 2 is closest to the core end. The coil is subjected to 360° Lebel transposition within the core length l at a predetermined dislocation pitch γ starting at position X corresponding to the core end surface I can accomplish it.

レーベル転位ピツチγはコイルの素線数をNと
すれば γ=l/N ……(101) となる。ところで360°分のレーベル転位のみでは
第2図のコイル2B,2C,2Dに使用した場
合、レーベル転位始点が鉄心の外側になり、レー
ベル転位範囲が鉄心内全長には亘らなくなるた
め、第4図に示す様に360°分のレーベル転位の終
点“Y”から更に第2図におけるコイル2A,2
D間の距離α以上にてレーベル転位範囲を延長し
て nγ≧α ……(102) (nは整数)となる様に延長部終点“Z”まで
転位を行なう。その結果、第4図に示すコイルは
第2図の2A,2B,2C,2Dのいずれのコイ
ルとして使用しても鉄心内全長では必ずレーベル
転位が360°分となる。第2図及び第4図では上コ
イルについて説明したが、第1図の下コイル1、
上コイル3についても全く同様の手段でレーベル
転位を行なう。尚、もし(N+n)γ>(l+α)
となる場合は第4図のレーベル転位始点位置
“X”を更に渡り線部側にずらしても構わない。
The Lebel dislocation pitch γ is given by γ=l/N (101), where N is the number of wires in the coil. By the way, when only 360 degrees of Lebel dislocation is used in coils 2B, 2C, and 2D in Fig. 2, the starting point of Lebel dislocation will be outside the core, and the range of Lebel dislocation will not span the entire length inside the core, so the fourth As shown in the figure, coils 2A and 2 in Figure 2 are further from the end point "Y" of the 360° Lebel transposition.
The Lebel transposition range is extended beyond the distance α between D and the transposition is performed to the extension end point “Z” so that nγ≧α (102) (n is an integer). As a result, regardless of whether the coil shown in FIG. 4 is used as any of the coils 2A, 2B, 2C, and 2D in FIG. 2, the Lebel dislocation will always be 360° over the entire length within the core. Although the upper coil was explained in FIGS. 2 and 4, the lower coil 1 in FIG.
The upper coil 3 is also subjected to Lebel transposition using exactly the same method. Furthermore, if (N+n)γ>(l+α)
In this case, the Label dislocation starting point position "X" in FIG. 4 may be further shifted toward the crossover section.

次に第1図において、コイルの挿入順序を考察
する。下コイル1を最初、上コイル2を最後に挿
入するのは自明であるが、上下コイル3は下コイ
ル1の次にいずれを先に挿入しても、渡り部5が
邪魔をして後から挿入する方が挿入できなくな
り、揚げコイルまたは浮力かしコイル作業が必要
となる可能性がある。この点については以下に説
明する手段にて解決できる。
Next, in FIG. 1, the order of insertion of the coils will be considered. It is obvious that the lower coil 1 should be inserted first and the upper coil 2 last, but no matter which of the upper and lower coils 3 is inserted after the lower coil 1, the transition part 5 will get in the way and it will be difficult to insert the upper coil 3 later. If you insert it, you may not be able to insert it, and you may need to use a fried coil or a buoyancy coil. This point can be solved by the means described below.

すなわち第3図において渡り部5の上コイル及
び下コイル間の間隔dを d>〔スロツト深さ〕 ……(3) とすれば、例えば先に忍入した上下コイル3の上
コイル形状U部の渡り部5の背後に上下コイル3
の下コイル形状L部の渡り部5を通し、ずらしな
がら上下コイル3を所定のスロツト位置まで運ぶ
事ができる。尚、第2図のコイル2A,2B,2
C,2Dの渡り部5の所要とする長さはコイルに
よつて異なるが最長の長さにて製作しておき、組
立時に切断するか、あるいは銅帯を使用してコイ
ル間を接続する事にすれば2A,2B,2C,2
Dは渡り部5も含めて同一形状のコイルとなる。
また第1図“S”部の口出し部ではコイル同志を
接続銅帯14で接続すれば良い。
That is, in Fig. 3, if the distance d between the upper and lower coils of the transition section 5 is d>[slot depth]...(3), then, for example, the upper coil shape U section of the upper and lower coils 3 that sneaked in earlier. The upper and lower coils 3 are placed behind the transition part 5 of
The upper and lower coils 3 can be carried to a predetermined slot position while being shifted through the transition portion 5 of the lower coil-shaped L portion. In addition, the coils 2A, 2B, 2 in Fig. 2
The required length of the transition section 5 of C and 2D varies depending on the coil, but it can be manufactured at the longest length and then cut at the time of assembly, or the coils can be connected using a copper strip. 2A, 2B, 2C, 2
D is a coil having the same shape including the transition portion 5.
Further, the coils may be connected to each other by a connecting copper band 14 at the lead-out portion of the "S" section in FIG.

次に、この実施例の作用について説明する。上
記のように構成によれば、コイルエンド部の渡り
線4の相互間距離δ0を自由に選定する事ができ
る。またコイルエンド部の形状がそれぞれ形状を
同一として上コイル2形状及び下コイル1形状の
2種類のほかに、コイルとしては一方端は上コイ
ル形状U、他方端は下コイル形状Lの組み合せに
よる上下コイルを加えた合計3種類となる。更に
上コイル2と下コイル1間の渡り部5の間隔を適
当に製作して各コイルを渡り線4で接続すること
により、巻線組立時の揚げコイル作業あるいは浮
かしコイル作業が不要となる。
Next, the operation of this embodiment will be explained. According to the configuration as described above, the distance δ 0 between the connecting wires 4 at the coil end portions can be freely selected. In addition, in addition to two types of coil end parts, each with the same shape, upper coil shape 2 shape and lower coil shape 1 shape, the coil has upper coil shape U at one end and lower coil shape L at the other end. There are a total of three types including coils. Furthermore, by appropriately manufacturing the interval between the transition portions 5 between the upper coil 2 and the lower coil 1 and connecting each coil with the crossover wire 4, there is no need for lifting coil work or floating coil work during winding assembly.

このようにして、コイルエンド部のコイル相互
間の空間距離を広くとれるので、コイル相互間の
絶縁強度が増し、コロナ放電更にフラツシユオー
バーの発生する危険性が減少する等、回転電機の
信頼性が向上する。またコイルの種類が少なくな
る事から、コイルの互換性が増して予備コイルが
少なくて済むほか、コイル製造における生産性も
従来の鎖巻コイルより向上して重ね巻、波巻コイ
ル並みで済む。更に揚げコイル作業が不要である
事から、巻線組立時にコイル絶縁を傷つける事は
なく、この面からも回転電機の信頼性が確保され
る。
In this way, the spatial distance between the coils at the coil ends can be widened, increasing the insulation strength between the coils, reducing the risk of corona discharge and flashover, and improving the reliability of rotating electrical machines. will improve. In addition, since there are fewer types of coils, coil compatibility is increased and the need for spare coils is reduced, and productivity in coil manufacturing is also improved compared to conventional chain-wound coils, which can be done at the same level as lap-wound or wave-wound coils. Furthermore, since there is no need to lift the coil, the coil insulation will not be damaged during winding assembly, and the reliability of the rotating electric machine is ensured from this point of view as well.

本考案は上記し、かつ図面に示した実施例のみ
に限定されるものではなく、第1図は毎極毎相当
りスロツト数(TA)が4の場合を示したが、
TA=n(n:整数)のいずれの場合でも本考案
が成立する事は言までもない。また、TA=n+
1/2(n:整数で第5図の場合3)の場合でも第 5図に示す様に、接続線20を設ける事により、
同様に構成可能である。
The present invention is not limited to the embodiments described above and shown in the drawings; FIG. 1 shows a case where the number of slots per pole (TA) is 4;
It goes without saying that the present invention is valid in any case where TA=n (n: integer). Also, TA=n+
Even in the case of 1/2 (n: an integer, 3 in the case of Figure 5), by providing the connecting line 20 as shown in Figure 5,
Similarly configurable.

〔考案の効果〕[Effect of idea]

以上説明した様に本考案によれば、コイルエン
ド部のコイル相互間の空間距離を広くとれ、コイ
ル相互間の絶縁強度が大となるので、回転電機の
信頼性が向上する一方、使用するコイル形状が3
種類、コイルエンド部の形状で見れば2種類とな
るので、コイルの互換性が増し従来の鎖巻コイル
に比べて予備コイル本数を少なくする事ができ、
コイル製造上においても生産性が向上する。また
巻線組立にあたり、揚げコイル作業も不要であ
り、コイル絶縁を痛める事もないので回転電機の
信頼性が確保される。
As explained above, according to the present invention, the spatial distance between the coils at the coil end portion can be widened, and the insulation strength between the coils can be increased. The shape is 3
There are two types in terms of type and shape of the coil end, so the compatibility of the coils increases and the number of spare coils can be reduced compared to conventional chain-wound coils.
Productivity also improves in coil manufacturing. In addition, when assembling the winding, there is no need to perform coil frying work, and the coil insulation is not damaged, so the reliability of the rotating electric machine is ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の単層巻巻線の一実施例を示す
接続図、第2図は第1図における巻線のコイルエ
ンド部の構成を示す展開図、第3図は第2図の側
面図、第4図は第1図ないし第3図のコイルのレ
ーベル転位を示す斜視図、第5図は本考案の毎極
毎相当りスロツト数がn+1/2(n:整数)の場 合の実施例の接続図、第6図は重ね巻による従来
の単層巻巻線の接続図、第7図は波巻による従来
の単層巻巻線の接続図、第8図は鎖巻による従来
の単層巻巻線の接続図、第9図は第5図及び第6
図における従来の巻線のコイルエンド部の構成を
示す展開図である。 1……下コイル、2……上コイル、3……上下
コイル、4……渡り線、5……渡り部、6……接
続部、10……鉄心。
Fig. 1 is a connection diagram showing an embodiment of the single-layer winding of the present invention, Fig. 2 is an exploded view showing the configuration of the coil end portion of the winding in Fig. 1, and Fig. 3 is the same as Fig. 2. 4 is a perspective view showing the Lebel transition of the coil shown in FIGS. 1 to 3, and FIG. 5 is a diagram showing the case where the number of slots per pole of the present invention is n+1/2 (n: integer). Connection diagram of the embodiment, Fig. 6 is a connection diagram of a conventional single-layer winding using lap winding, Fig. 7 is a connection diagram of a conventional single-layer winding using wave winding, and Fig. 8 is a conventional connection diagram of a conventional single-layer winding using chain winding. Connection diagram of single-layer winding, Figure 9 is similar to Figures 5 and 6.
It is a development view showing the structure of the coil end part of the conventional winding in the figure. 1...lower coil, 2...upper coil, 3...upper and lower coils, 4...crossing wire, 5...crossing section, 6...connection section, 10...iron core.

Claims (1)

【実用新案登録請求の範囲】 (1) 一スロツトに一導体のコイルのエンド部の形
状を両端ともに直線部を延長した上コイルと、
両端ともに上コイルの下方に折り曲げた下コイ
ルと、一方端を上コイル形状にし他方端を下コ
イル形状にした上下コイルとの3種類にし、各
コイルエンド部の先端の曲げ方向をコイル直線
部方向を中心として反転させ、それぞれの種類
のコイルについてコイルエンド部にて所定のコ
イル相互間の空間を保つように一相帯内で同一
形状のものを軸方向に位置をずらして配置し、
隣接する同一相の相帯間でのコイル同志の接続
は両端それぞれについて鎖巻と同様に接続する
渡り線を設けたことを特徴とする回転電機の単
層巻巻線。 (2) コイル直線部は鉄心に対してずらしても鉄心
長内に360°分のレーベル転位が納まるように、
レーベル転位を長くしたことを特徴とする実用
新案登録請求の範囲第1項記載の回転電機の単
層巻巻線。 (3) コイル渡り部の上コイルと下コイルとの相互
間隔をスロツト深さ以上としたことを特徴とす
る実用新案登録請求の範囲第1項または第2項
記載の回転電機の単層巻巻線。
[Claims for Utility Model Registration] (1) An upper coil in which the shape of the end portion of a coil with one conductor in one slot is extended with straight portions at both ends;
There are three types of coils: a lower coil in which both ends are bent downward from the upper coil, and an upper and lower coil in which one end is in the upper coil shape and the other end is in the lower coil shape, and the bending direction of the tip of each coil end is in the direction of the coil straight part For each type of coil, coils of the same shape are arranged with their positions shifted in the axial direction within the single-phase band so as to maintain a predetermined space between the coils at the coil end.
A single-layer winding for a rotating electrical machine, characterized in that the coils are connected between adjacent phase bands of the same phase by providing crossover wires at both ends for connection in the same manner as chain winding. (2) Even if the straight part of the coil is shifted relative to the core, 360° of Lebel dislocation can be accommodated within the length of the core.
A single-layer winding for a rotating electrical machine according to claim 1, characterized in that the Leber's dislocation is lengthened. (3) Single-layer winding for a rotating electric machine according to claim 1 or 2 of the utility model registration claim, characterized in that the mutual interval between the upper coil and the lower coil at the coil transition portion is equal to or greater than the slot depth. line.
JP18938587U 1987-12-15 1987-12-15 Expired - Lifetime JPH0545089Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18938587U JPH0545089Y2 (en) 1987-12-15 1987-12-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18938587U JPH0545089Y2 (en) 1987-12-15 1987-12-15

Publications (2)

Publication Number Publication Date
JPH0193937U JPH0193937U (en) 1989-06-21
JPH0545089Y2 true JPH0545089Y2 (en) 1993-11-17

Family

ID=31480418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18938587U Expired - Lifetime JPH0545089Y2 (en) 1987-12-15 1987-12-15

Country Status (1)

Country Link
JP (1) JPH0545089Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688003B2 (en) * 2007-03-05 2011-05-25 株式会社デンソー Rotating electric machine stator and rotating electric machine using the same
JP4623129B2 (en) * 2008-04-21 2011-02-02 株式会社デンソー Rotating electric machine stator and rotating electric machine
JP2017099118A (en) * 2015-11-24 2017-06-01 株式会社東芝 Armature coil for rotary electric machine

Also Published As

Publication number Publication date
JPH0193937U (en) 1989-06-21

Similar Documents

Publication Publication Date Title
US10658897B2 (en) Stator for rotary electric machine
CN110235342B (en) Stator for an electric machine
US4901048A (en) Magnetic core multiple tap or windings devices
US4247978A (en) Methods of making slot liners and stator assemblies including same
CN211629956U (en) Coil, stator and motor
US4417388A (en) Method of making a multiple open turn lap wound dynamoelectric machine
EP0025452B1 (en) Multi-turn wire armature coils
PL123750B1 (en) Commutator-induction motor
CN110784043B (en) Stator assembly and motor with same
JPH0545089Y2 (en)
US3419835A (en) Electrical winding structures
CN109888955B (en) High-power-density disc type motor winding structure and winding preparation method thereof
CN110784040B (en) Stator assembly and motor with same
US4151436A (en) Electrical insulator for slotted magnetic cores
CN213585304U (en) Motor stator and motor
CN110784042B (en) Stator assembly and motor with same
US4467234A (en) Armature of rotating machine with means to balance the mutual inductance of adjacent pairs of coils
US20220069652A1 (en) Distributed Double Litz Wire Winding in Open Slots
CN112332566A (en) Motor stator and motor
CN111211625A (en) Motor stator and motor
CN112152337A (en) Motor stator assembly, winding method thereof and motor
JP2002505070A (en) Method of winding into two notches for a rotating electrical device
CN211880198U (en) Motor stator and motor
JPS5936123Y2 (en) Lebel transition coil for rotating electrical machines
CN216564705U (en) Flat wire motor and stator thereof