JPH0544613A - Air fuel injecting device - Google Patents

Air fuel injecting device

Info

Publication number
JPH0544613A
JPH0544613A JP23216091A JP23216091A JPH0544613A JP H0544613 A JPH0544613 A JP H0544613A JP 23216091 A JP23216091 A JP 23216091A JP 23216091 A JP23216091 A JP 23216091A JP H0544613 A JPH0544613 A JP H0544613A
Authority
JP
Japan
Prior art keywords
passage
valve
fuel
wall
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23216091A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Masuda
達之 桝田
Seiichi Nishimura
誠一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP23216091A priority Critical patent/JPH0544613A/en
Publication of JPH0544613A publication Critical patent/JPH0544613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To enable stable operation by providing a compressed air passage which extends linearly across the valve shaft line of a solenoid valve and a fuel injection valve which injects the fuel directing toward the inner wall of the compressed air passage. CONSTITUTION:A passage 64 is formed between the part between a cylindrical part 54 and a valve seat member 56 and a valve shaft 58, and the lower end of the passage 64 is communicated with a valve body 60. The upper part of the passage 64 is communicated with a passage 66 for supplying the compressed air which is located thereacross. An injection port 70 of an electromagnetic type fuel injection valve 68 is directed toward the inner wall of the compressed air supplying passage 66. Thus, the fuel injected from this injection port 70 is impinged against the inner wall of the passage 66, and some of the injected fuel is homogeniously spread over and affixed onto the wall surface. This allows the stable operation even in a case where the load is fluctuated in the low speed/low loaded condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガソリンなどの液体燃
料と加圧空気とを混合して燃焼室内に噴射し点火栓によ
り着火する火花点火式エンジンに用いられる空気・燃料
噴射装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air / fuel injection device used in a spark ignition engine in which a liquid fuel such as gasoline and pressurized air are mixed and injected into a combustion chamber and ignited by a spark plug. is there.

【0002】[0002]

【従来の技術および発明の背景】ガソリンなどの液体燃
料の霧化を促進するためにこの燃料を加圧空気に混合し
てから燃焼室内に噴射する火花点火式エンジンが公知で
ある。このようなエンジンでは、噴射された混合気の濃
い領域に着火することにより、全体として希薄な混合気
であっても良好な燃焼が可能になる。
BACKGROUND OF THE INVENTION Spark ignition engines are known in which liquid fuel such as gasoline is mixed with pressurized air and then injected into a combustion chamber to promote atomization of the liquid fuel. In such an engine, by igniting a region where the injected air-fuel mixture is rich, good combustion is possible even with a lean air-fuel mixture as a whole.

【0003】図6は従来のこの種の装置の一例を示す側
断面図である。この図で符号10はボデーでありこの中
には電磁ソレノイド12が収容されている。14はボデ
ー10の下面に固定された外筒、16はこの外筒14内
に挿入された内筒である。この内筒16には弁軸20が
挿通され、その下端が外筒14の下端に開口する弁座に
下方から係合する傘型の弁体22となり、その上端はソ
レノイド12内に進入して可動鉄片24に結合されてい
る。そしてソレノイド12の励磁により可動鉄片24が
下方へ吸引され、弁軸20が下降して弁が開くものであ
る。
FIG. 6 is a side sectional view showing an example of a conventional device of this type. In this figure, reference numeral 10 is a body in which an electromagnetic solenoid 12 is housed. Reference numeral 14 is an outer cylinder fixed to the lower surface of the body 10, and 16 is an inner cylinder inserted into the outer cylinder 14. A valve shaft 20 is inserted through the inner cylinder 16, and a lower end thereof forms an umbrella-shaped valve body 22 that engages with a valve seat that opens at a lower end of the outer cylinder 14 from below, and an upper end thereof enters the solenoid 12. It is connected to the movable iron piece 24. The movable iron piece 24 is attracted downward by the excitation of the solenoid 12, the valve shaft 20 descends, and the valve opens.

【0004】ボデー10には加圧空気通路26が形成さ
れ、図示しない空気ポンプにより加圧された空気(約5
kg/cm2)は、弁軸20と内筒16との間の通路28を通
って弁体22の手前に導かれる。一方内筒16と外筒1
4との間には環状の通路30が形成され、この通路30
の上端は外筒14およびボデー10に穿設した通路32
を介して燃料噴射弁34に連通している。環状通路30
の下端は小孔36を介して加圧空気の通路28に連通し
ている。燃料噴射弁34は電磁弁により開閉制御され、
加圧空気より僅かに高い圧力(約5.1kg/cm2)の液体
燃料を噴出する。
A pressurized air passage 26 is formed in the body 10 and air (about 5%) is pressurized by an air pump (not shown).
kg / cm 2 ) is guided to the front side of the valve body 22 through the passage 28 between the valve shaft 20 and the inner cylinder 16. On the other hand, the inner cylinder 16 and the outer cylinder 1
4, an annular passage 30 is formed between
The upper end of the passage 32 is formed in the outer cylinder 14 and the body 10, and the passage 32 is formed.
Through the fuel injection valve 34. Circular passage 30
The lower end of is communicated with the passage 28 of the pressurized air through the small hole 36. The fuel injection valve 34 is controlled to open and close by a solenoid valve,
Eject liquid fuel at a pressure slightly higher than that of pressurized air (about 5.1 kg / cm 2 ).

【0005】しかしこの従来の装置によれば、燃料噴射
量の少ない低速・低負荷運転時に負荷変動があると燃焼
が不安定になるという問題があった。一般に燃料噴射量
が多い運転条件下では、十分な燃料が供給されるので点
火栓による着火が確実に行え運転も安定する。これに対
し、燃料噴射時間が非常に短かくなる低負荷時、特に燃
焼が不安定になる低速での低負荷運転時において負荷が
急変すると、通常は燃料噴射タイミングや点火タイミン
グを変化させて負荷変動に対応させているため、燃焼状
態が変化するからであると考えられている。
However, according to this conventional device, there is a problem that the combustion becomes unstable when the load is varied during the low speed / low load operation in which the fuel injection amount is small. In general, under operating conditions where the fuel injection amount is large, sufficient fuel is supplied, so ignition by the spark plug can be reliably performed and operation is stable. On the other hand, when the load suddenly changes at low load when the fuel injection time becomes very short, especially at low speed low load operation when combustion becomes unstable, the load is usually changed by changing the fuel injection timing or ignition timing. It is considered that this is because the combustion state changes because it corresponds to the fluctuation.

【0006】[0006]

【発明の目的】本発明はこのような事情に鑑みなされた
ものであり、低速・低負荷時に負荷の変動があった場合
にも安定した運転を可能にする空気・燃料噴射装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides an air / fuel injection device which enables stable operation even when the load changes at low speed and low load. With the goal.

【0007】[0007]

【発明の構成】本発明によればこの目的は、燃料を加圧
空気に混合し、この混合流を電磁弁を介して燃焼室に噴
射する空気・燃料噴射装置において、前記電磁弁の弁軸
に交叉して直線的にのびる加圧空気通路と、この加圧空
気通路の内壁を指向して燃料を噴射する燃料噴射弁とを
備えることを特徴とする空気・燃料噴射装置、により達
成される。
According to the present invention, an object of the present invention is to provide an air / fuel injection device which mixes fuel with pressurized air and injects this mixed flow into a combustion chamber through an electromagnetic valve, in which a valve shaft of the electromagnetic valve. And a fuel injection valve for injecting fuel toward the inner wall of the pressurized air passage. ..

【0008】[0008]

【実施例】図1は本発明の一実施例を示す側断面図、図
2はこれを用いるエンジンの燃料系統図である。図1で
符号50はボデー、52は電磁ソレノイドであり、この
電磁ソレノイド52の下部は円筒状の筒部54となって
ボデー50を垂直に貫通している。この筒部54の下端
には円筒状の弁座部材56が固着されている。
1 is a side sectional view showing an embodiment of the present invention, and FIG. 2 is a fuel system diagram of an engine using the same. In FIG. 1, reference numeral 50 is a body, and 52 is an electromagnetic solenoid. The lower portion of the electromagnetic solenoid 52 forms a cylindrical tubular portion 54 that vertically penetrates the body 50. A cylindrical valve seat member 56 is fixed to the lower end of the tubular portion 54.

【0009】58は弁軸であり、これら筒部54および
弁座部材56を貫通している。弁軸58の下端は傘形の
弁体60となり、弁座部材56の下端の開口である弁座
に下から係合する。弁軸58の上端はプランジャ62に
結合され、ソレノイド52の励磁によってこのプランジ
ャ62および弁軸58は下降して弁体60が弁を開く。
以下この弁を空気弁63という。
Reference numeral 58 denotes a valve shaft, which penetrates the cylindrical portion 54 and the valve seat member 56. The lower end of the valve shaft 58 becomes an umbrella-shaped valve body 60, which engages with a valve seat, which is an opening at the lower end of the valve seat member 56, from below. The upper end of the valve shaft 58 is connected to the plunger 62, and the solenoid 62 is excited to lower the plunger 62 and the valve shaft 58 and the valve body 60 opens the valve.
Hereinafter, this valve is referred to as an air valve 63.

【0010】筒部54および弁座部材56と弁軸58と
の間には通路64が形成され、この通路64の下端が弁
体60に連通する。この通路64の上部は、これに交叉
する他の通路すなわち加圧空気供給用の通路66が連通
している。この通路66の他端には加圧空気が供給され
る。
A passage 64 is formed between the tubular portion 54, the valve seat member 56 and the valve shaft 58, and the lower end of the passage 64 communicates with the valve body 60. The upper portion of the passage 64 communicates with another passage that intersects with the passage 64, that is, a passage 66 for supplying pressurized air. Pressurized air is supplied to the other end of the passage 66.

【0011】68は電磁式燃料噴射弁であり、その噴射
口70は通路66の内壁を指向している。従ってこの噴
射口70から噴射される燃料は、通路66の内壁40に
衝突して、一部の燃料は壁面に付着する。ここに燃料は
この通路66の内壁40に衝突してこの内壁に均質に広
がって付着する。
Reference numeral 68 is an electromagnetic fuel injection valve, and its injection port 70 is directed toward the inner wall of the passage 66. Therefore, the fuel injected from the injection port 70 collides with the inner wall 40 of the passage 66, and a part of the fuel adheres to the wall surface. The fuel collides with the inner wall 40 of the passage 66 and uniformly spreads and adheres to the inner wall 40.

【0012】この装置は図2に示すようにエンジン72
のシリンダヘッドに取付けられる。このエンジン72は
クランク室予圧式2サイクルエンジンであり、エアクリ
ーナ74から取入れた外気を、スロットル弁76および
リード弁(図示せず)を介してクランク室内へ吸入し、
さらに公知の掃気通路(図示せず)により燃焼室へ供給
する。このスロットル弁76の開度およびクランク軸7
8の角度はデジタルコンピュータ(以下CPU)80に
入力される。またクランク室内圧は圧力センサ82によ
って検出され、このクランク室内圧からCPU80は吸
入空気量を求めている。
This device is equipped with an engine 72 as shown in FIG.
It is attached to the cylinder head. The engine 72 is a crank chamber preload type two-cycle engine, and sucks the outside air taken in from the air cleaner 74 into the crank chamber through a throttle valve 76 and a reed valve (not shown),
Further, it is supplied to the combustion chamber by a known scavenging passage (not shown). The opening of the throttle valve 76 and the crankshaft 7
The angles of 8 are input to a digital computer (hereinafter CPU) 80. The pressure in the crank chamber is detected by the pressure sensor 82, and the CPU 80 determines the intake air amount from the pressure in the crank chamber.

【0013】84はベルトを介してクランク軸78によ
り駆動される空気ポンプであり、このポンプ84が吐出
する加圧空気は前記した図1の装置の通路66に導かれ
た後、差圧レギュレータ86を通って大気へ放出され
る。
Reference numeral 84 is an air pump driven by a crankshaft 78 via a belt. The pressurized air discharged from the pump 84 is introduced into the passage 66 of the apparatus shown in FIG. Is released into the atmosphere through.

【0014】燃料は燃料タンク88からフィルタ90を
介してサブタンク92に導かれている。この燃料は、サ
ブタンク92から電動式燃料ポンプ94により図1に示
す燃料噴射弁68に送出されると共に、差圧レギュレー
タ86を通ってサブタンク92に環流する。差圧レギュ
レータ86は加圧空気の圧力と燃料圧との差が常に一定
になるように両者の圧力を調整する。なお図2で96は
点火栓である。
Fuel is guided from the fuel tank 88 through the filter 90 to the sub tank 92. This fuel is sent from the sub tank 92 to the fuel injection valve 68 shown in FIG. 1 by the electric fuel pump 94, and also returns to the sub tank 92 through the differential pressure regulator 86. The differential pressure regulator 86 adjusts the pressure of the pressurized air and the fuel pressure so that the difference between the two is always constant. In FIG. 2, 96 is an ignition plug.

【0015】CPU80はスロットル弁76の開度やク
ランク回転速度などからエンジンの運転条件を判別し、
吸入空気量に適合した混合流を噴射するようにソレノイ
ド62および燃料噴射弁68を別々に開閉駆動する。
The CPU 80 determines the operating conditions of the engine from the opening of the throttle valve 76, the crank rotation speed, etc.
The solenoid 62 and the fuel injection valve 68 are separately opened and closed to inject a mixed flow suitable for the intake air amount.

【0016】図3はこの励磁電圧と空気弁63および燃
料噴射弁68の開閉タイミングおよび噴射率dQ/dt の関
係を示す図である。この図でVa は空気弁63のソレノ
イド52の励磁電圧を、Vf は燃料噴射弁68の励磁電
圧を示す。これらの電圧Va、Vf に一定時間遅れて弁
63、68が開き、そのリフト量はLa 、Lf で示す。
また噴射率dQ/dt は空気弁63から噴出する燃料量ある
いは燃料容積の変化速度であり、空気弁63の噴口から
約15mm離れた位置でこの噴口を横断するレーザー光に
より燃料の流れを測定して求めたものである。その単位
は例えばmm3 /ms で表されるものである。図中Iは点火
栓96の発火タイミングを示す。なお噴射率dQ/dt は多
数回(例えば1000回)の噴射に対する結果を重ねて
表したものでチェック模様領域Xはその変動幅を示して
いる。
FIG. 3 is a diagram showing the relationship between the exciting voltage, the opening / closing timing of the air valve 63 and the fuel injection valve 68, and the injection rate dQ / dt. In this figure, V a represents the exciting voltage of the solenoid 52 of the air valve 63, and V f represents the exciting voltage of the fuel injection valve 68. These voltages V a, the valve opens 63 and 68 delayed a predetermined time to V f, the lift amount shown by L a, L f.
The injection rate dQ / dt is the rate of change of the amount or volume of fuel ejected from the air valve 63, and the fuel flow is measured by a laser beam that crosses this nozzle at a position about 15 mm away from the nozzle of the air valve 63. It was sought after. The unit is, for example, expressed in mm 3 / ms. In the figure, I indicates the ignition timing of the spark plug 96. It should be noted that the injection rate dQ / dt is a result obtained by superimposing the results for a large number of injections (for example, 1000 times), and the check pattern area X shows the fluctuation range thereof.

【0017】図4は本発明の効果を、一定回転速度(1
500R.P.M.)で測定した噴射率で示す図であ
り、左側の(A)は図5に示した従来装置における噴射
率を、また右側の(B)は図1に示す本願の装置におけ
る噴射率を示す。これらの図で、Ta は空気弁63の励
磁電圧Va の印加時間とタイミングを示し、Tf は同じ
く電磁制御弁68の励磁電圧Vf の印加時間とタイミン
グを示している。
FIG. 4 shows the effect of the present invention at a constant rotation speed (1
500 R. P. M. 6A and 6B are graphs showing the injection rate measured in FIG. 5A, the left side (A) shows the injection rate in the conventional apparatus shown in FIG. 5, and the right side (B) shows the injection rate in the apparatus of the present application shown in FIG. In these figures, T a shows the application time and timing of the excitation voltage V a of the air valve 63, and T f also shows the application time and timing of the excitation voltage V f of the electromagnetic control valve 68.

【0018】この図4では、空気弁63の時間およびタ
イミングTa を一定にして、燃料噴射弁68の時間およ
びタイミングTf だけを変化させてゆく場合の噴射率の
変化が示されている。
FIG. 4 shows the change of the injection rate when the time and timing T a of the air valve 63 are kept constant and only the time and timing T f of the fuel injection valve 68 are changed.

【0019】今従来装置の場合(A)について考察す
る。タイミングTfが最も遅い場合(Aa )には、この
タイミングTf の間に通路66に噴射された燃料はこの
サイクル内の後半において空気弁63から燃焼室内に噴
射され、これが斜線の領域Yの山となって現れている。
このことから前半の山は1サイクル前に通路66内に噴
射された燃料が1サイクル遅れて燃焼室に噴射されてい
ることが解る。
Now, the case (A) of the conventional apparatus will be considered. When the timing T f is the latest (A a ), the fuel injected into the passage 66 during this timing T f is injected from the air valve 63 into the combustion chamber in the latter half of this cycle, and this is the hatched region Y. Is appearing as a mountain.
From this, it can be seen that the fuel injected into the passage 66 one cycle before is injected into the combustion chamber with a delay of one cycle in the first half of the mountain.

【0020】燃料噴射弁68の噴射タイミングTf
(Ab )から(Ad )まで進むにつれて領域Yによる山
が大きくなり、この同一サイクル内に燃焼室へ噴射され
る燃料量は増えてゆく。そしてついに山は一つになる。
ここに点火栓96の点火タイミングIは常に一定であ
る。この結果から、噴射タイミングTf の変化により噴
射率のパターンが大きく変化することが解る。一般に負
荷の急変時にはこのタイミングTf を変化させている
が、この時噴射率のパターンが大きく変化するため燃焼
が不安定になるものと考えられる。
As the injection timing T f of the fuel injection valve 68 advances from (A b ) to (A d ), the peak due to the region Y increases, and the amount of fuel injected into the combustion chamber increases during this same cycle. .. And finally the mountains become one.
Here, the ignition timing I of the spark plug 96 is always constant. From this result, it is understood that the pattern of the injection rate greatly changes due to the change of the injection timing T f . Generally, the timing T f is changed when the load suddenly changes, but it is considered that the combustion becomes unstable because the pattern of the injection rate greatly changes at this time.

【0021】これに対し図4の(B)に示す本願発明の
結果によれば、燃料噴射弁68の噴射タイミングTf
(Ba )〜(Bd )のように大幅に変動しても、噴射率
のパターンの変化が少ないことが解る。このことは、噴
射口70の下流側の通路66、64の容積が十分に大き
いため、噴射口70から通路66、64内に噴射された
燃料が壁面流となって次のサイクルの前半に噴射される
量が増えるためと考えられる。すなわち同じサイクル内
に噴射された燃料は、(Ba )〜(Bd )に斜線で示す
領域Yのように非常に少ない。従って1サイクル遅れて
次のサイクルで大部分の燃料が燃焼室に噴射されるもの
と考えられる。
On the other hand, according to the result of the present invention shown in FIG. 4B, even if the injection timing T f of the fuel injection valve 68 fluctuates greatly from (B a ) to (B d ). It can be seen that there is little change in the injection rate pattern. This is because the volume of the passages 66, 64 on the downstream side of the injection port 70 is sufficiently large, so that the fuel injected from the injection port 70 into the passages 66, 64 becomes a wall surface flow and is injected in the first half of the next cycle. It is thought that this is because the amount to be processed increases. That is, the amount of fuel injected in the same cycle is very small, as indicated by the hatched area Y in ( Ba ) to ( Bd ). Therefore, it is considered that most of the fuel is injected into the combustion chamber in the next cycle after being delayed by one cycle.

【0022】このように本発明によれば燃料噴射弁68
の噴射タイミングTf の変動が大きくても噴射率のパタ
ーンの変化が小さく、常に安定した運転が可能になるも
のである。特に前記実施例のように、噴射タイミングT
f が空気弁63の開くタイミングTa と重なる場合に
は、通路66の空気流によって燃料が通路66の内壁に
均等に付着し易くなり、好ましい。
Thus, according to the present invention, the fuel injection valve 68
Even if the variation of the injection timing T f is large, the change of the injection rate pattern is small, and stable operation is always possible. Particularly, as in the above embodiment, the injection timing T
f is the case of overlapping the timing T a of opening of the air valve 63, the fuel tends to uniformly adhere to the inner wall of the passage 66 by the air flow passage 66, which is preferable.

【0023】図5は他の実施例の側断面図である。この
実施例は通路66に空気の流路面積を絞るオリフィス1
00を設け、燃料噴射弁68の噴射口70をこのオリフ
ィス100内に開口させたものである。この実施例によ
ればオリフィス100を通った燃料は通路66の内壁に
一層均質に付着することになり、本発明の効果は一層顕
著になる。
FIG. 5 is a side sectional view of another embodiment. In this embodiment, the orifice 1 for narrowing the flow passage area of air in the passage 66 is used.
00 is provided, and the injection port 70 of the fuel injection valve 68 is opened in the orifice 100. According to this embodiment, the fuel that has passed through the orifice 100 adheres to the inner wall of the passage 66 more uniformly, and the effect of the present invention becomes more remarkable.

【0024】[0024]

【発明の効果】本発明は以上のように、加圧空気の通路
の内壁を指向して燃料噴射弁から燃料を噴射するから、
燃料が壁面に均一に付着して通路内に残留し易くなる。
このため、噴射弁から噴射された燃料の多くが後続のサ
イクルで燃焼室に噴射されることになる。この際燃料は
通路内壁に均一に付着しているから、燃焼室には濃度変
化が少なく均一化された混合気が燃焼室へ入る。
As described above, according to the present invention, the fuel is injected from the fuel injection valve toward the inner wall of the passage of the compressed air.
The fuel is evenly attached to the wall surface and easily remains in the passage.
Therefore, most of the fuel injected from the injection valve will be injected into the combustion chamber in the subsequent cycle. At this time, since the fuel is evenly attached to the inner wall of the passage, a uniform air-fuel mixture with a small concentration change enters the combustion chamber.

【0025】この結果負荷変動に伴って燃料の噴射タイ
ミングTf が急変しても噴射率のパターンの変動が少な
くなり、運転が安定し、失火が発生しにくくなる。
As a result, even if the fuel injection timing T f suddenly changes due to the load change, the change in the injection rate pattern is reduced, the operation is stabilized, and the misfire is less likely to occur.

【0026】[0026]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す側断面図FIG. 1 is a side sectional view showing an embodiment of the present invention.

【図2】これを用いるエンジンの燃料系統図FIG. 2 Fuel system diagram of an engine using this

【図3】各弁の動作と噴射率との関係を示す図FIG. 3 is a diagram showing the relationship between the operation of each valve and the injection rate.

【図4】発明の効果を示す図FIG. 4 is a diagram showing the effect of the invention.

【図5】他の実施例の側断面図FIG. 5 is a side sectional view of another embodiment.

【図6】従来装置の側断面図FIG. 6 is a side sectional view of a conventional device.

【符号の説明】[Explanation of symbols]

52 電磁ソレノイド 58 弁軸 63 空気弁 64、66 加圧空気通路 68 燃料噴射弁 52 Electromagnetic solenoid 58 Valve shaft 63 Air valve 64, 66 Pressurized air passage 68 Fuel injection valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料を加圧空気に混合し、この混合流を
電磁弁を介して燃焼室に噴射する空気・燃料噴射装置に
おいて、前記電磁弁の弁軸に交叉して直線的にのびる加
圧空気通路と、この加圧空気通路の内壁を指向して燃料
を噴射する燃料噴射弁とを備えることを特徴とする空気
・燃料噴射装置。
1. An air / fuel injection device in which fuel is mixed with pressurized air and the mixed flow is injected into a combustion chamber through a solenoid valve, and a linearly extending crossing valve axis of the solenoid valve is provided. An air / fuel injection device comprising: a pressurized air passage; and a fuel injection valve that injects fuel toward an inner wall of the pressurized air passage.
JP23216091A 1991-08-20 1991-08-20 Air fuel injecting device Pending JPH0544613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23216091A JPH0544613A (en) 1991-08-20 1991-08-20 Air fuel injecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23216091A JPH0544613A (en) 1991-08-20 1991-08-20 Air fuel injecting device

Publications (1)

Publication Number Publication Date
JPH0544613A true JPH0544613A (en) 1993-02-23

Family

ID=16934938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23216091A Pending JPH0544613A (en) 1991-08-20 1991-08-20 Air fuel injecting device

Country Status (1)

Country Link
JP (1) JPH0544613A (en)

Similar Documents

Publication Publication Date Title
US5048497A (en) Fuel injection unit
US5409169A (en) Air-assist fuel injection system
KR940004362B1 (en) Control method of fueling rate for internal combustion engines
US5148788A (en) Air-assist fuel injection system
US5062395A (en) Two-stroke internal combustion engine
JPH0264243A (en) Device for controlling fuel injection of two cycle direct injection engine
JPS63500323A (en) Method of injecting liquid fuel into a spark-ignition internal combustion engine having a combustion chamber
JPH0571443A (en) Assist air supply device for cylinder direct injection type injection valve
US4825828A (en) Direct fuel injection
KR20010032631A (en) Method of injection of a fuel-gas mixture to an engine
US5622155A (en) Fuel injected internal combustion engine
US5080060A (en) Prechamber combustion system with forced injection for two-stroke gasoline engine
US5095873A (en) Fuel injection system and method for engine
JP2761421B2 (en) Fuel injection engine
JPH0544613A (en) Air fuel injecting device
US4018196A (en) Internal combustion engine
JPH0567782B2 (en)
JPH05288136A (en) Assist air type fuel injection equipment
JP2602710B2 (en) Fuel injection device for internal combustion engine
JP2596828Y2 (en) Two-fluid injection device
JP2004340031A (en) Air-fuel mixture injection device for internal combustion engine
JPH068286Y2 (en) Fuel injection device for two-cycle internal combustion engine
JPH01271658A (en) Fuel injection device for engine
JP2518294Y2 (en) Fuel injection device for internal combustion engine
JP2625848B2 (en) Engine fuel injection device