JPH0543251B2 - - Google Patents

Info

Publication number
JPH0543251B2
JPH0543251B2 JP61282298A JP28229886A JPH0543251B2 JP H0543251 B2 JPH0543251 B2 JP H0543251B2 JP 61282298 A JP61282298 A JP 61282298A JP 28229886 A JP28229886 A JP 28229886A JP H0543251 B2 JPH0543251 B2 JP H0543251B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
fuel rod
board surface
light
straightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61282298A
Other languages
Japanese (ja)
Other versions
JPS63134906A (en
Inventor
Yoshinori Shinohara
Koki Kawashima
Kazutoshi Ooba
Masafumi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP61282298A priority Critical patent/JPS63134906A/en
Publication of JPS63134906A publication Critical patent/JPS63134906A/en
Publication of JPH0543251B2 publication Critical patent/JPH0543251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、定盤に核燃料棒を載置し両者の間
隔から核燃料棒の真直度を検査する核燃料棒の真
直度検査装置に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to a nuclear fuel rod straightness inspection device that places a nuclear fuel rod on a surface plate and inspects the straightness of the nuclear fuel rod from the distance between the two. .

「従来の技術」 一般に、原子炉に装荷されている燃料集合体1
0は、第8図に示されるように構成されている。
"Prior art" Generally, a fuel assembly 1 loaded in a nuclear reactor
0 is configured as shown in FIG.

すなわち、この燃料集合体10は、図中上下に
離間して平行に配設された上部ノズル11および
下部ノズル12と、これらの間に所定の間隔をお
いて配設された複数の支持格子13と、第9図に
示されるようにこれら支持格子13に形成された
多数の格子空間14のうちの所定の格子空間15
を挿通して前記上部ノズル11および下部ノズル
12にそれぞれの上下端部が連結されて燃料集合
体の骨組みを構成する制御棒案内管16と、前記
支持格子13の所定の格子空間17内に挿通され
た複数の核燃料棒18とから構成されている。
That is, this fuel assembly 10 includes an upper nozzle 11 and a lower nozzle 12 that are vertically spaced apart and arranged in parallel in the figure, and a plurality of support grids 13 that are arranged at predetermined intervals between them. and, as shown in FIG.
are inserted into the control rod guide tube 16 whose upper and lower ends are connected to the upper nozzle 11 and the lower nozzle 12 to form the frame of the fuel assembly, and into a predetermined lattice space 17 of the support lattice 13. It is composed of a plurality of nuclear fuel rods 18.

ところで、前記核燃料棒18にあつては、その
真直度が非常に重要である。すなわち、前記核燃
料棒が曲がつていると、隣接する核燃料棒との間
隔が狭い部分が生じ、この部分の冷却効率が低下
する。また、核燃料棒の集合体である核燃料集合
体にも曲がりが生じ、隣接する核燃料集合体と接
触の可能性が生ずる。
By the way, the straightness of the nuclear fuel rod 18 is very important. That is, if the nuclear fuel rod is bent, there will be a portion where the distance between adjacent nuclear fuel rods is narrow, and the cooling efficiency of this portion will be reduced. Moreover, a nuclear fuel assembly, which is an assembly of nuclear fuel rods, also becomes bent, and there is a possibility that it will come into contact with an adjacent nuclear fuel assembly.

そこで、核燃料棒の製造工程では、核燃料棒の
真直度の検査を行うようにしている。
Therefore, in the manufacturing process of nuclear fuel rods, the straightness of the nuclear fuel rods is inspected.

従来、この核燃料棒の真直度検査方法として
は、第10図に示すような方法が知られている。
この方法は、まず、定盤19の盤面20上に核燃
料棒18を載置する。次に、前記核燃料棒18を
前記盤面20上で転がしながら、前記盤面20と
前記核燃料棒18との間隔を目視で測定する。次
いで、目視によつて前記間隔が一定量以上である
と判断したものについては、フイラーゲージを用
いて前記間隔を測定する。そして、その結果、前
記測定された間隔が一定量以上あり仕様に合致し
ないものは、不良品として除外するようにしてい
る。
Conventionally, as a method for inspecting the straightness of nuclear fuel rods, a method as shown in FIG. 10 is known.
In this method, first, the nuclear fuel rods 18 are placed on the plate surface 20 of the surface plate 19. Next, while rolling the nuclear fuel rod 18 on the board 20, the distance between the board 20 and the nuclear fuel rod 18 is visually measured. Next, if the distance is determined to be a certain amount or more by visual inspection, the distance is measured using a filler gauge. As a result, if the measured distance is a certain amount or more and does not meet the specifications, it is excluded as a defective product.

「発明が解決しようとする問題点」 ところで、上記の核燃料棒の真直度検査方法に
あつては、盤面20と核燃料棒18との間隔を目
視で測定しているため、測定に時間がかかるとと
もに、測定者の個人差によつて判断に差が生じ判
定が不正確になるという問題点があつた。また、
その後の測定もフイラーゲージを用いておこなつ
ているため、作業性が悪く、測定に時間がかかる
という問題点があつた。
"Problems to be Solved by the Invention" By the way, in the above method for inspecting the straightness of nuclear fuel rods, since the distance between the board surface 20 and the nuclear fuel rods 18 is visually measured, it takes time to measure and However, there was a problem in that judgments were inaccurate due to individual differences among the measurers. Also,
Subsequent measurements were also carried out using a filler gauge, which had the problem of poor workability and time-consuming measurements.

「問題点を解決するための手段」 この発明は、上記の問題点を解決するためにな
されたもので、傾斜した盤面上を核燃料棒が転動
する定盤と、レーザー光を投光する投光装置と、
前記盤面の高位置側に設けられかつ前記投光装置
から投光されたレーザー光を前記盤面に沿つて前
記盤面の低位置側に向つて反射するとともに前記
盤面に沿つて高速で首振り運動させるガルバノメ
ータと、前記盤面の低位置側に複数個設けられ前
記ガルバノメータで反射されたレーザー光のうち
前記盤面と前記核燃料棒との間〓を通過したレー
ザー光を受光する受光装置と、この受光装置によ
つて受光されたレーザー光の受光量を測定する受
光量測定装置と、この受光量測定装置によつて測
定された受光量から前記盤面と前記核燃料棒との
間〓を算出する間〓算出装置と、この間〓算出装
置によつて算出された間〓から前記核燃料棒の真
直度を判定する真直度判定装置とを備えた構成と
されている。
"Means for Solving the Problems" This invention was made to solve the above problems, and includes a surface plate on which nuclear fuel rods roll on an inclined plate surface, and a projection device that emits laser light. an optical device;
A laser beam provided on a high position side of the board surface and projected from the light projecting device is reflected along the board surface toward a low position side of the board surface, and the laser beam is caused to oscillate at high speed along the board surface. a galvanometer; a plurality of light receiving devices provided on the lower side of the panel surface for receiving laser light that has passed between the panel surface and the nuclear fuel rod among the laser beams reflected by the galvanometer; and the light receiving device; a light receiving amount measuring device for measuring the amount of laser light received by the laser beam; and a calculating device for calculating the distance between the board surface and the nuclear fuel rod from the received light amount measured by the received light amount measuring device. and a straightness determination device that determines the straightness of the nuclear fuel rod from the distance calculated by the calculation device.

「実施例」 以下、この発明の一実施例について第1図ない
し第7図を参照して説明する。
"Embodiment" An embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

第1図は、この発明に係る核燃料棒の真直度検
査装置31を示す図である。この核燃料棒の真直
度検査装置31は、基台(定盤)32を備えてい
る。この基台32は、その上部に後方から前方に
向かうにしたがい低くなる方向に傾斜した盤面3
3を有している。この盤面33は、その上で核燃
料棒Fを転動させることによつて核燃料棒の真直
度を測定するためのものであつて、直平面状にな
されている。
FIG. 1 is a diagram showing a nuclear fuel rod straightness inspection device 31 according to the present invention. This nuclear fuel rod straightness inspection device 31 includes a base (surface plate) 32. This base 32 has a board surface 3 on the top thereof which is inclined to become lower from the rear to the front.
It has 3. This plate surface 33 is used to measure the straightness of the nuclear fuel rod by rolling the nuclear fuel rod F thereon, and has a rectangular shape.

前記盤面33の後方には、供給装置34が設け
られている。この供給装置34は、核燃料棒Fを
前記盤面33に供給するためのものであつて、第
2図に示すように、鋸刃状に形勢された固定刃3
5と、同じく鋸刃状に形成され上下動する上下動
刃36とを備えている。この供給装置34は、前
記上下動刃36を上下動させることによつて、固
定刃の凹部35aに載置された核燃料棒Fを上下
動刃の傾斜部36aで押しあげ、第2図aから第
2図dに示すように、多数の核燃料棒F…を同時
に1ピツチずつ前方に搬送するようになつてい
る。
A supply device 34 is provided behind the board surface 33. This supply device 34 is for supplying the nuclear fuel rods F to the board 33, and as shown in FIG.
5, and a vertically movable blade 36 which is also formed in the shape of a saw blade and moves up and down. This supply device 34 moves the vertically movable blade 36 up and down to push up the nuclear fuel rod F placed in the recess 35a of the fixed blade with the inclined part 36a of the vertically movable blade. As shown in FIG. 2d, a large number of nuclear fuel rods F... are simultaneously transported forward one pitch at a time.

前記盤面33の前方には、搬送歯車37が設け
られている。この搬送歯車37は、その外周に凹
部37aが多数設けられており、この凹部37a
に核燃料棒Fを係止して搬送するようになつてい
る。そして、この搬送歯車37は、前記盤面33
上を転がつてきた核燃料棒Fを前記凹部37aに
係止し、その後回転して前記核燃料棒Fを後述す
る合格品搬送装置に載置するようになつている。
前記搬送歯車37の下部には、合格品搬送装置3
8が設けられている。この合格品搬送装置38
は、ベルトコンベア状になされており、前記搬送
歯車37によつて載置された核燃料棒Fを所定の
位置に搬送するようになつている。
A conveyance gear 37 is provided in front of the board surface 33. This conveyance gear 37 is provided with a large number of recesses 37a on its outer periphery, and these recesses 37a
The nuclear fuel rods F are secured to and transported. This conveyance gear 37 is connected to the board surface 33.
The nuclear fuel rod F that has rolled over is locked in the recess 37a, and then rotated to place the nuclear fuel rod F on a passing product transfer device that will be described later.
At the bottom of the conveying gear 37, there is a passing product conveying device 3.
8 is provided. This approved product conveyance device 38
is shaped like a belt conveyor, and the nuclear fuel rods F placed thereon are transported to a predetermined position by the transport gear 37.

また、前記盤面33の前端上方には、ピツクア
ツプ装置39が設けられている。このピツクアツ
プ装置39は、上下2位置にベルト車40,40
が配設されており、この2つのベルト車40,4
0間にはベルト41が巻回されている。このベル
ト41の外周面には、鉤状の係合フツク42が多
数設けられている。そして、前記ベルト車40を
回動させることによつて前記盤面33上を転がり
落ちて来た核燃料棒Fをピツクアツプするととも
に、ピツクアツプした核燃料棒を後述する不合格
品搬送装置に搬送するようになつている。前記ピ
ツクアツプ装置39の上部には、不合格品搬送装
置43が設けられている。この不合格品搬送装置
43は、ベルトコンベア状になされており、前記
ピツクアツプ装置39によつて搬送された核燃料
棒Fを所定の位置に搬送するようになつている。
Further, a pickup device 39 is provided above the front end of the board surface 33. This pick-up device 39 has belt wheels 40, 40 at two positions, upper and lower.
is arranged, and these two belt pulleys 40, 4
A belt 41 is wound between the two ends. A large number of hook-shaped engagement hooks 42 are provided on the outer peripheral surface of the belt 41. Then, by rotating the belt pulley 40, the nuclear fuel rods F that have rolled down on the board surface 33 are picked up, and the picked up nuclear fuel rods are transported to a rejected product conveying device to be described later. ing. A rejected product conveying device 43 is provided above the pickup device 39. This rejected product transport device 43 is shaped like a belt conveyor, and is adapted to transport the nuclear fuel rods F transported by the pick-up device 39 to a predetermined position.

一方、前記盤面33の前方上方には、投光装置
51が設けられている。この投光装置51は、第
3図に示すように、前記盤面33の前方の2箇所
に設けられている。そして、これらレーザー光投
光装置51は、第1図に示すように、前記供給装
置34の上方に向つて上下方向に幅広のレーザー
光を投光するようになつている。前記供給装置3
4の上方には、ガルバノメータ52が設けられて
いる。このガルバノメータ52は、第3図に示す
ように、盤面33の後方の2箇所に設けられてい
る。このガルバノメータ52は、高速で振動する
反射鏡を備えており、前記投光装置51から投光
されたレーザー光を反射し、反射したレーザー光
を前記盤面33に沿つて前記盤面33の前方に向
つて反射するとともに前記盤面33に沿つて高速
で振り運動させるようになつている。このガルバ
ノメータによつて反射されたレーザー光は、第4
図および第5図に示すように、盤面33上を転動
する核燃料棒Fに照射される。ここで、前記核燃
料棒Fが曲がつていると前記核燃料棒Fと前記盤
面33との間に間〓Sが生ずるが、前記核燃料棒
Fに照射されたレーザー光は、前記間〓Sを通過
して盤面33の前方へ向かうことになる。これに
対して、前記記盤面33の前方には、受光装置5
3が設けられている。この受光装置53は、第3
図に示すように、前記盤面の前方に複数個設けら
れており、前記間〓Sを通過してきたレーザー光
を受光するようになつている。
On the other hand, above the front of the board surface 33, a light projecting device 51 is provided. The light projecting device 51 is provided at two locations in front of the board surface 33, as shown in FIG. As shown in FIG. 1, these laser beam projecting devices 51 project a wide laser beam in the vertical direction toward the upper side of the supply device 34. The supply device 3
A galvanometer 52 is provided above 4. The galvanometers 52 are provided at two locations behind the board surface 33, as shown in FIG. This galvanometer 52 is equipped with a reflecting mirror that vibrates at high speed, and reflects the laser light projected from the light projecting device 51, and directs the reflected laser light along the board surface 33 in front of the board surface 33. The ball is reflected by the ball and is swung at high speed along the board surface 33. The laser beam reflected by this galvanometer is
As shown in the figure and FIG. 5, the nuclear fuel rods F rolling on the board surface 33 are irradiated. Here, if the nuclear fuel rod F is bent, a gap 〓S occurs between the nuclear fuel rod F and the board surface 33, but the laser beam irradiated to the nuclear fuel rod F passes through the gap 〓S. Then, the user will move towards the front of the board 33. On the other hand, in front of the recording surface 33, there is a light receiving device 5.
3 is provided. This light receiving device 53
As shown in the figure, a plurality of laser beams are provided in front of the board surface, and are designed to receive laser light that has passed through the space S.

前記受光装置53には、受光されたレーザー光
の光量を測定する受光量測定装置54が接続され
ており、この受光量測定装置54には、測定され
た受光量から前記間〓Sを算出する間〓算出装置
55が接続されている。この間〓算出装置55に
は、前記測定された間〓Sから核燃料棒の真直度
が仕様値に合致するか否かを判定する真直度判定
装置56が接続されている。この真直度判定装置
56には、制御装置57が接続されている。この
制御装置57は、前記真直度判定装置56の判定
にしたがつて、前記ピツクアツプ装置39および
前記搬送歯車37を作動させ、前記核燃料棒Fを
合格品と不合格品とに仕分けする制御を行うもの
である。そして、この制御装置57は、前記盤面
33を転がり落ちる核燃料棒Fが不合格品の場合
には、前記ピツクアツプ装置39を作動させ、核
燃料棒Fを前記不合格品搬送装置43に搬送す
る。また、核燃料棒Fが不合格品の場合には、前
記ピツクアツプ装置39を作動させず、前記搬送
歯車37を作動させ、合格した核燃料棒Fを合格
品搬送装置38に搬送するようになつている。
A received light amount measuring device 54 that measures the amount of received laser light is connected to the light receiving device 53, and the received light amount measuring device 54 calculates the interval 〓S from the measured received light amount. A time calculation device 55 is connected. A straightness determining device 56 is connected to the time calculation device 55 for determining whether the straightness of the nuclear fuel rod matches the specification value based on the measured time S. A control device 57 is connected to this straightness determining device 56 . This control device 57 operates the pick-up device 39 and the conveyance gear 37 according to the determination by the straightness determining device 56, and performs control to sort the nuclear fuel rods F into acceptable products and rejected products. It is something. If the nuclear fuel rod F that rolls down the board 33 is a reject, the control device 57 operates the pick-up device 39 to transport the nuclear fuel rod F to the reject transport device 43. Further, if the nuclear fuel rod F is a rejected product, the pick-up device 39 is not operated, the transfer gear 37 is operated, and the nuclear fuel rod F that has passed is transferred to the acceptable product transfer device 38. .

次に、上記のような核燃料棒の真直度検査装置
31の作用および動作について説明する。
Next, the function and operation of the nuclear fuel rod straightness inspection device 31 as described above will be explained.

まず、供給装置34を作動させ、傾斜した盤面
33に核燃料棒Fを送り出す。送りだされた核燃
料棒Fが盤面33の後半に設定された測定領域A
に入ると、投光装置51を作動させ、レーザー光
をガルバノメータ52に向つて投光するととも
に、ガルバノメータ52を作動させその鏡面を高
速で首振り運動させる。すると、投光装置51か
ら投光されたレーザー光は、ガルバノメータ52
で反射され、前記盤面33に沿つて前記盤面33
の前方に向つて進むとともに前記盤面33に沿つ
て高速で首振り運動する。そして、このレーザー
光は、前記盤面33上を転がり落ちる核燃料棒F
に照射される。このとき、第4図に示すように、
前記核燃料棒Fが曲がつていると、直平面になさ
れた盤面33との間に間〓Sが生ずる。そして、
この間〓Sを通過した前記レーザー光は前記受光
装置53で受光され、前記受光量測定装置54、
間〓算出装置55によつて間〓Sが測定される。
First, the supply device 34 is activated to feed the nuclear fuel rods F onto the inclined board surface 33. Measurement area A where the delivered nuclear fuel rod F is set in the latter half of the board 33
Once inside, the light projecting device 51 is activated to project a laser beam toward the galvanometer 52, and the galvanometer 52 is activated to swing its mirror surface at high speed. Then, the laser beam projected from the light projecting device 51 is transmitted to the galvanometer 52.
and reflected along the board surface 33.
As it advances forward, it swings at high speed along the board surface 33. Then, this laser beam is transmitted to the nuclear fuel rod F that rolls down on the board surface 33.
is irradiated. At this time, as shown in Figure 4,
If the nuclear fuel rod F is bent, a gap 〓S will occur between it and the board surface 33 which is a straight plane. and,
During this time, the laser beam that has passed through S is received by the light receiving device 53, and the received light amount measuring device 54,
The interval S is measured by the interval calculation device 55.

また、前記ガルバノメータ52で反射されたレ
ーザー光は、前記盤面33に沿つて高速で首振り
運動を行い、前記核燃料棒Fの長手方向にわたる
間〓Sを測定する。
Further, the laser beam reflected by the galvanometer 52 swings at high speed along the disk surface 33, and measures the distance 〓S over the longitudinal direction of the nuclear fuel rod F.

ここで、上記の原理を第6図を例にして説明す
る。この図において、盤面後方には、1つのガル
バノメータ61が設けられ、前記盤面前方には、
第1の受光装置62および第2の受光装置63が
設けられている。前記ガルバノメータ61で反射
されたレーザー光は、前記受光装置62,63の
方向に向つて高速で首振り運動を行いながら照射
される。この首振り運動の速度は、核燃料棒Fが
前記ガルバノメータ61から前記受光装置62,
63に向つて盤面上を通過する間に、レーザー光
が前記2つの受光装置62,63の間を多数回往
復できるように設定されている。このような構成
において、首振り運動を行うレーザー光が、第1
の受光装置62、第2の受光装置63、第1の受
光装置62…に交互に受光される時の核燃料棒の
位置をF1,F2…F9とすると、前記核燃料棒
は順次M1,M2…,M9の位置で核燃料棒と盤
面との間〓を測定されることになる。実際には、
レーザー光の首振り速度は核燃料棒の転がり落ち
る速度に比してはるかに速いから、前記間〓を測
定される位置の数は第6図の例よりはるかに多く
なる。したがつて、核燃料棒が盤面上を転がり落
ちる間に、核燃料棒と盤面との間〓を核燃料棒の
長手方向にわたつて高密度に測定することができ
る。
Here, the above principle will be explained using FIG. 6 as an example. In this figure, one galvanometer 61 is provided at the rear of the board, and one galvanometer 61 is provided at the front of the board.
A first light receiving device 62 and a second light receiving device 63 are provided. The laser beam reflected by the galvanometer 61 is irradiated toward the light receiving devices 62 and 63 while swinging at high speed. The speed of this swinging motion is such that the nuclear fuel rod F is moved from the galvanometer 61 to the light receiving device 62,
The laser beam is set so that it can reciprocate between the two light receiving devices 62 and 63 many times while passing over the board surface toward the light receiving device 63. In such a configuration, the laser beam that performs the swinging motion is
If the positions of the nuclear fuel rods are F1, F2...F9 when the light is alternately received by the light receiving device 62, the second light receiving device 63, the first light receiving device 62..., the nuclear fuel rods are sequentially M1, M2..., The distance between the nuclear fuel rod and the board surface will be measured at the M9 position. in fact,
Since the swinging speed of the laser beam is much faster than the rolling speed of the nuclear fuel rod, the number of positions where the distance is measured is much larger than in the example of FIG. Therefore, while the nuclear fuel rod is rolling down on the disk surface, the distance between the nuclear fuel rod and the disk surface can be measured with high density over the longitudinal direction of the nuclear fuel rod.

これに対して本実施例の核燃料棒の真直度検査
装置31においては、第3図に示すように、2つ
の投光装置51,51、2つのガルバノメータ5
2,52と、1個のガルバノメータ52あたり4
個の受光装置53…を配設しているから、前記間
〓Sを前記核燃料棒Fの長手方向にわたつて、上
記第6図の例の場合よりさらに高密度に測定する
ことができる。
On the other hand, in the nuclear fuel rod straightness inspection device 31 of this embodiment, as shown in FIG.
2,52 and 4 per galvanometer 52
Since the light receiving devices 53 are provided, the distance S can be measured over the longitudinal direction of the nuclear fuel rod F with higher density than in the example shown in FIG. 6 above.

次に、受光装置53では、受光したレーザー光
を電気信号に変換し次の受光量測定装置54に送
る。
Next, the light receiving device 53 converts the received laser light into an electrical signal and sends it to the next received light amount measuring device 54 .

前記受光量測定装置54では前記電気信号をも
とに受光量を測定する。
The received light amount measuring device 54 measures the amount of received light based on the electrical signal.

次いで、間〓算出装置55で前記受光量から核
燃料棒Fと盤面33との間〓Sを算出する。
Next, the distance calculation device 55 calculates the distance S between the nuclear fuel rod F and the panel surface 33 from the amount of received light.

次に、真直度判定装置56では、この算出され
た間〓Sから、核燃料棒の真直度が仕様に対して
合格であるか不合格であるかを判定する。そし
て、その結果を次の制御装置57に送る。
Next, the straightness determining device 56 determines from this calculated distance 〓S whether the straightness of the nuclear fuel rod passes or fails the specifications. Then, the result is sent to the next control device 57.

この制御装置57では、測定した核燃料棒Fが
合格、不合格に応じて次のような制御を行う。ま
ず不合格の場合には、前記ピツクアツプ装置39
を作動させ、盤面33を転動してきた核燃料棒F
を拾いあげ、前記不合格品搬送装置43へ搬送す
る。そして、不合格となつた核燃料棒Fは、前記
不合格品搬送装置43によつて所定の位置へ搬送
される。また、測定した核燃料棒Fが合格の場合
には、前記搬送歯車37を作動させ、盤面33を
転動してきた核燃料棒Fをその外周の凹部37a
に係合し、前記合格品搬送装置38に搬送する。
そして、合格となつた核燃料棒Fは、前記合格品
搬送装置38によつて、所定の位置へ搬送され
る。
This control device 57 performs the following control depending on whether the measured nuclear fuel rod F passes or fails. First, in case of failure, the pick-up device 39
The nuclear fuel rods F are activated and roll on the board 33.
is picked up and transported to the rejected product transport device 43. Then, the rejected nuclear fuel rods F are transported to a predetermined position by the rejected product transport device 43. In addition, if the measured nuclear fuel rod F passes the test, the conveying gear 37 is activated, and the nuclear fuel rod F that has rolled on the board surface 33 is transferred to the recess 37a on the outer periphery of the nuclear fuel rod F.
and is transported to the accepted product transport device 38.
The passed nuclear fuel rods F are then transported to a predetermined position by the passed product transport device 38.

また、前記制御装置57では、核燃料棒Fがピ
ツクアツプ装置39または搬送歯車37によつて
搬送されしだい、供給装置34を作動させ、次の
核燃料棒Fの検査を開始する。
Further, in the control device 57, as soon as the nuclear fuel rod F is transported by the pick-up device 39 or the conveyance gear 37, the supply device 34 is operated to start the inspection of the next nuclear fuel rod F.

なお、上記の核燃料棒の真直度検査装置31に
ついて、その動作順序の概略を第7図に示す。
Note that FIG. 7 shows an outline of the operating sequence of the nuclear fuel rod straightness inspection device 31 described above.

以上のように、上記核燃料棒の真直度検査装置
31にあつては、核燃料棒Fが転動する傾斜した
盤面33と、レーザー光を投光する投光装置51
と、レーザー光を前記盤面33の前方に向つて前
記盤面33に沿つて反射するとともに前記盤面3
3に沿つて高速で首振り運動させるガルバノメー
タ52と、前記盤面33の前方に複数個設けられ
前記ガルバノメータ52で反射されたレーザー光
のうち前記盤面33と前記核燃料棒Fとの間〓を
通過したレーザー光を受光する受光装置53と、
この受光装置53に受光されたレーザー光の受光
量を測定する受光量測定装置54と、この受光量
測定装置54によつて測定された受光量から前記
盤面33と前記核燃料棒Fとの間〓Sを算出する
間〓算出装置55と、この間〓算出装置55によ
つて算出された間〓Sから前記核燃料棒Fの真直
度を判定する真直度判定装置56と、核燃料棒F
の合否に応じて供給装置34、ピツクアツプ装置
39、搬送歯車37等を制御する制御装置57を
備えているから、核燃料棒の真直度の検査を正確
かつ短時間で自動的に行うことができ、したがつ
て検査の効率化をはかることができる。
As described above, the nuclear fuel rod straightness inspection device 31 includes the inclined plate surface 33 on which the nuclear fuel rods F roll, and the light projecting device 51 that projects laser light.
Then, the laser beam is reflected along the board surface 33 toward the front of the board surface 33, and the laser beam is reflected along the board surface 33.
A galvanometer 52 is provided with a plurality of galvanometers 52 which are oscillated at high speed along the direction 3, and a plurality of laser beams are provided in front of the panel surface 33, and the laser beams reflected by the galvanometers 52 pass between the panel surface 33 and the nuclear fuel rod F. a light receiving device 53 that receives laser light;
A received light amount measuring device 54 that measures the amount of laser light received by this light receiving device 53, and a distance between the board surface 33 and the nuclear fuel rod F based on the received light amount measured by the received light amount measuring device 54. During the calculation of S, a calculation device 55; during this period, a straightness determination device 56, which determines the straightness of the nuclear fuel rod F from S;
Since it is equipped with a control device 57 that controls the supply device 34, pick-up device 39, conveyance gear 37, etc. depending on whether the Therefore, it is possible to improve the efficiency of inspection.

なお、上記実施例においては、投光装置51お
よびガルバノメータ52をそれぞれ2個設けてい
るが、これに限る必要はなく、1個ないしは3個
以上設けてもよい。
In the above embodiment, two light projecting devices 51 and two galvanometers 52 are each provided, but there is no need to limit the number to this, and one or three or more may be provided.

また、上記実施例においては、1つのガルバノ
メータ52あたり4個の受光装置53を配設して
いるが、これに限る必要はなく、1つのガルバノ
メータ52あたり2個以上であれば、何個受光装
置を設けてもよい。
Further, in the above embodiment, four light receiving devices 53 are arranged per one galvanometer 52, but there is no need to limit it to this, and as long as there are two or more light receiving devices per one galvanometer 52. may be provided.

「発明の効果」 以上に説明したように、この発明によれば、傾
斜した盤面上の核燃料棒が転動する定盤と、レー
ザー光を投光する投光装置と、前記盤面の高位置
側に設けられかつ前記投光装置から投光されたレ
ーザー光を前記盤面に沿つて前記盤面の低位置側
に向つて反射するとともに前記盤面に沿つて高速
で首振り運動させるガルバノメータと、前記盤面
の低位置側に複数個設けられ前記ガルバノメータ
で反射されたレーザー光のうち前記盤面と前記核
燃料棒との間〓を通過したレーザー光を受光する
受光装置と、この受光装置によつて受光されたレ
ーザー光の受光量を測定する受光量測定装置と、
この受光量測定装置によつて測定された受光量か
ら前記盤面と前記核燃料棒との間〓を算出する間
〓算出装置と、この間〓算出装置によつて算出さ
れた間〓から前記核燃料棒の真直度を判定する真
直度判定装置とを備えているから、核燃料棒の真
直度の測定を正確かつ短時間で行うことができ、
したがつて検査効率を向上させることができると
いう効果が得られる。
"Effects of the Invention" As explained above, according to the present invention, there is provided a surface plate on which nuclear fuel rods roll on an inclined board surface, a light projecting device that projects a laser beam, and a surface plate on a high position side of the board surface. a galvanometer that is provided in the board and reflects the laser beam projected from the light projecting device toward a lower position side of the board surface along the board surface, and causes the swing motion at high speed along the board surface; a plurality of light receiving devices provided on a lower position side to receive laser light that has passed between the panel surface and the nuclear fuel rod among the laser light reflected by the galvanometer; and a laser beam received by the light receiving device. a received light amount measuring device that measures the amount of received light;
The distance between the board surface and the nuclear fuel rod is calculated from the amount of received light measured by the amount of received light measuring device; Since it is equipped with a straightness determination device that determines straightness, it is possible to measure the straightness of nuclear fuel rods accurately and in a short time.
Therefore, the effect that inspection efficiency can be improved is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第7図は本発明の一実施例を示す
図であつて、第1図はその側面図、第2図は供給
装置の動作を順を追つて説明した側面図、第3図
は第1図中矢印方向の矢視図、第4図は第1図
中−線に沿う矢視断面図、第5図は第4図中
−線に沿う矢視断面図、第6図は核燃料棒の
長手方向に沿つて核燃料棒と盤面との間〓を高密
度に測定する方法についてその原理を説明するた
めの図、第7図は本実施例の動作の概略を示す
図、第8図は核燃料集合体の一例を示す図、第9
図は第8図中−線に沿う矢視断面図、第10
図は従来の核燃料棒の真直度の検査方法を示す図
である。 31……核燃料棒の真直度検査装置、32……
基台(定盤)、33……盤面、51……投光装置、
52……ガルバノメータ、53……受光装置、5
4……受光量測定装置、55……間〓算出装置、
56……真直度判定装置、F……核燃料棒。
1 to 7 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a side view thereof, FIG. 2 is a side view explaining the operation of the supply device step by step, and FIG. 3 is a side view showing an embodiment of the present invention. is a sectional view taken in the direction of the arrow in FIG. 1, FIG. 4 is a sectional view taken along the line - in FIG. 1, FIG. Figure 7 is a diagram illustrating the principle of a method for measuring the distance between a nuclear fuel rod and a plate surface at high density along the longitudinal direction of the nuclear fuel rod, and Figure 7 is a diagram showing an outline of the operation of this embodiment. Figure 9 shows an example of a nuclear fuel assembly.
The figure is a sectional view taken along the line - in Figure 8, and Figure 10.
The figure shows a conventional method for inspecting the straightness of nuclear fuel rods. 31...Nuclear fuel rod straightness inspection device, 32...
Base (surface plate), 33... Board surface, 51... Light projecting device,
52... Galvanometer, 53... Light receiving device, 5
4... Received light amount measuring device, 55... Interval calculation device,
56...Straightness determination device, F...Nuclear fuel rod.

Claims (1)

【特許請求の範囲】[Claims] 1 傾斜した盤面上を核燃料棒が転動する定盤
と、レーザー光を投光する投光装置と、前記盤面
の高位置側に設けられかつ前記投光装置から投光
されたレーザー光を前記盤面に沿つて前記盤面の
低位置側に向つて反射するとともに前記盤面に沿
つて高速で首振り運動させるガルバノメータと、
前記盤面の低位置側に複数個設けられ前記ガルバ
ノメータで反射されたレーザー光のうち前記盤面
と前記核燃料棒との間〓を通過したレーザー光を
受光する受光装置と、この受光装置によつて受光
されたレーザー光の受光量を測定する受光量測定
装置と、この受光量測定装置によつて測定された
受光量から前記盤面と前記核燃料棒との間〓を算
出する間〓算出装置と、この間〓算出装置によつ
て算出された間〓から前記核燃料棒の真直度を判
定する真直度判定装置とを備えた核燃料棒の真直
度検査装置。
1. A surface plate on which nuclear fuel rods roll on an inclined board surface, a light projection device that projects a laser beam, and a light projection device that is installed on a high position side of the board surface and that emits the laser light projected from the light projection device. a galvanometer that reflects along the board surface toward a lower position side of the board surface and swings at high speed along the board surface;
a plurality of light receiving devices provided on a lower position side of the panel surface for receiving laser light that has passed between the panel surface and the nuclear fuel rod among the laser beams reflected by the galvanometer; a light receiving amount measuring device for measuring the amount of received laser light; a calculating device for calculating the distance between the board surface and the nuclear fuel rod from the received light amount measured by the received light amount measuring device; A straightness inspection device for a nuclear fuel rod, comprising: a straightness determination device that determines the straightness of the nuclear fuel rod based on the distance calculated by a calculation device.
JP61282298A 1986-11-27 1986-11-27 Inspecting instrument for straightness of nuclear fuel rod Granted JPS63134906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61282298A JPS63134906A (en) 1986-11-27 1986-11-27 Inspecting instrument for straightness of nuclear fuel rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61282298A JPS63134906A (en) 1986-11-27 1986-11-27 Inspecting instrument for straightness of nuclear fuel rod

Publications (2)

Publication Number Publication Date
JPS63134906A JPS63134906A (en) 1988-06-07
JPH0543251B2 true JPH0543251B2 (en) 1993-07-01

Family

ID=17650600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61282298A Granted JPS63134906A (en) 1986-11-27 1986-11-27 Inspecting instrument for straightness of nuclear fuel rod

Country Status (1)

Country Link
JP (1) JPS63134906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218856A (en) * 1996-02-09 1997-08-19 Nec Corp Portable input/output device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019206619B4 (en) 2019-05-08 2022-03-17 Wafios Aktiengesellschaft Measuring method and measuring device for measuring the straightness of round pieces of material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218856A (en) * 1996-02-09 1997-08-19 Nec Corp Portable input/output device

Also Published As

Publication number Publication date
JPS63134906A (en) 1988-06-07

Similar Documents

Publication Publication Date Title
US6122065A (en) Apparatus and method for detecting surface defects
CA1128164A (en) Scanning of workpieces such as lumber cants
US4124300A (en) Method for automatic fabric inspection
JP3333048B2 (en) Cylindrical inspection equipment
DE19980579B4 (en) Optical device for measuring profiles of wafers
JPH02247506A (en) Method for inspecting good by optical process
JP2001524425A (en) How to monitor that tobacco groups are complete and filled.
JPS61200449A (en) Method and device for detecting presence of defect in transparent article
US4053234A (en) Thickness measurement
US4857749A (en) Apparatus and method for measuring the spacing between the cords of a fabric
US4589082A (en) Nuclear fuel rod straightness measuring system and method
US6188784B1 (en) Split optics arrangement for vision inspection/sorter module
JP4008168B2 (en) Printed circuit board inspection equipment
US3475615A (en) Process and apparatus for the detection of flaws in a transparent material
JPH0543251B2 (en)
JPH07146965A (en) Disk inspecting device
JPS58111708A (en) Flatness measuring device
JP2563390B2 (en) Cutting equipment for food processing
JPH07311163A (en) Instrument and method for measuring x-ray reflectance
JPH08189821A (en) Bending measuring apparatus for long material and method therefor
JPS59188507A (en) Measuring method of amount of curvature of long-sized material
JPS5957106A (en) Apparatus for detecting dimension
JPS61182514A (en) Measuring instrument of bent variable of rod material
GB2245060A (en) Measuring diameter of cylindrical objects.
CN217786117U (en) Pipe bending degree detection device