JPH0543208Y2 - - Google Patents

Info

Publication number
JPH0543208Y2
JPH0543208Y2 JP4651187U JP4651187U JPH0543208Y2 JP H0543208 Y2 JPH0543208 Y2 JP H0543208Y2 JP 4651187 U JP4651187 U JP 4651187U JP 4651187 U JP4651187 U JP 4651187U JP H0543208 Y2 JPH0543208 Y2 JP H0543208Y2
Authority
JP
Japan
Prior art keywords
valve
intake
cylinder
exhaust
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4651187U
Other languages
Japanese (ja)
Other versions
JPS63154708U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4651187U priority Critical patent/JPH0543208Y2/ja
Publication of JPS63154708U publication Critical patent/JPS63154708U/ja
Application granted granted Critical
Publication of JPH0543208Y2 publication Critical patent/JPH0543208Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、多気筒回転弁式エンジンの減筒運転
装置に関し、特に、弁軸の周囲を介してのガス漏
れによる燃焼効率の低下を防止できるとともに、
減筒運転のために弁体を駆動する作動器の能力を
小さくできるようにした多気筒回転弁式エンジン
の減筒運転装置に関するものである。
[Detailed description of the invention] <Industrial field of application> The present invention relates to a cylinder reduction operation device for a multi-cylinder rotary valve type engine, and in particular, to prevent a reduction in combustion efficiency due to gas leakage around the valve shaft. As well as being able to
The present invention relates to a reduced-cylinder operation device for a multi-cylinder rotary valve engine that can reduce the ability of an actuator that drives a valve element for reduced-cylinder operation.

<従来の技術> 一般に、エンジンの吸排気弁を回転弁で構成す
るのは、ポペツト式吸排気弁の性能向上の限界を
打開するためである。
<Prior Art> Generally, the intake and exhaust valves of an engine are constructed with rotary valves in order to overcome the limitations of improving the performance of poppet-type intake and exhaust valves.

即ち、回転式吸排気弁は、ポペツト式吸排気弁
に比べて、弁の開口面積を大きくとることがで
きるから同一ピストン速度に対して体積効率、従
つて、平均有効圧を高くすることができ、かつ、
回転速度の増加に伴い平均有効圧が低下する限界
が延び、この結果、リツトル馬力を増すことがで
き、高速においても弁バネのサージングを起こ
したり、カム圧力が過大になつたりする恐れがな
く作動が確実であり、熱点となる排気弁がな
く、また、燃焼室の形状をよくすることができる
から圧縮比、過給圧力を上げることができ、従つ
て、燃料消費率を限時出力を増すことができ、
ポペツト弁のように弁隙間がないから運転が静粛
である等の利点がある。
In other words, compared to poppet-type intake and exhaust valves, rotary intake and exhaust valves can have a larger opening area, so the volumetric efficiency and therefore the average effective pressure can be increased for the same piston speed. ,and,
As the rotational speed increases, the limit for the average effective pressure to decrease is extended, resulting in increased horsepower and the ability to operate at high speeds without the risk of valve spring surging or excessive cam pressure. Since there is no exhaust valve that becomes a hot spot, and the shape of the combustion chamber can be improved, it is possible to increase the compression ratio and boost pressure, thus increasing the fuel consumption rate and limited output. It is possible,
Unlike poppet valves, there is no valve gap, so there are advantages such as quiet operation.

従来、エンジンの回転式吸排気弁としては、回
転弁がシリンダ中心に対して平行な軸心を中心に
回転するものと、シリンダ中心に直交する軸心を
中心に回転するものがある。弁体の形状は、回転
弁がシリンダ中心に対して平行な軸心を中心に回
転するものにおいては、その回転軸心を中心とす
る円板形、円錐台形等の回転体形に形成され、シ
リンダ中心に直交する軸心を中心に回転するエン
ジンの回転式吸排気弁としては、通常、円筒形に
形成されたものが使用される。
Conventionally, rotary intake and exhaust valves for engines include those in which the rotary valve rotates around an axis parallel to the center of the cylinder, and those in which the rotary valve rotates around an axis perpendicular to the center of the cylinder. In the case where the rotary valve rotates around an axis parallel to the cylinder center, the shape of the valve body is formed into a rotating body shape such as a disc shape or a truncated cone shape around the rotation axis, and 2. Description of the Related Art A rotary intake and exhaust valve for an engine that rotates around an axis perpendicular to the center of the engine is normally formed in a cylindrical shape.

これら従来の回転式吸排気弁を多気筒エンジン
に適用する場合には、構成の簡素化を図る上で、
シリンダ中心に直交する軸心を中心に回転する回
転式吸排気弁を採用する方が有利である。すなわ
ち、このような回転弁では、外径が一様な回転軸
あるいは回転筒からなる弁軸が使用され、この弁
軸に適当な間隔をおいてこれを直径に沿つて貫通
する吸気弁通路及び排気弁通路あるいはこれらの
一方を形成したり、その周壁に適当な間隔をおい
て吸気弁通路又は排気弁通路を形成したりする一
方、この回転軸あるいは中空軸を一端側でクラン
ク軸に連動連結することにより各気筒の吸排気弁
を一斉に調時駆動することができる。
When applying these conventional rotary intake and exhaust valves to a multi-cylinder engine, in order to simplify the configuration,
It is more advantageous to employ rotary intake and exhaust valves that rotate around an axis perpendicular to the center of the cylinder. In other words, such a rotary valve uses a rotating shaft or a valve shaft made of a rotating cylinder with a uniform outer diameter, and an intake valve passage and a valve shaft passing through the valve shaft diametrically at appropriate intervals are used. While forming an exhaust valve passage or one of these, or forming an intake valve passage or an exhaust valve passage at an appropriate interval on the peripheral wall thereof, the rotary shaft or hollow shaft is interlocked and connected to the crankshaft at one end. By doing so, the intake and exhaust valves of each cylinder can be driven at the same time.

ところで、このようなシリンダ中心に直交する
軸心を中心に回転する回転式吸排気弁を採用する
従来の多気筒回転弁エンジンにおいては、通常、
上記弁軸の回転を円滑にさせるために、弁軸の周
囲に僅かな隙間が形成される。従つて、燃焼室か
らその隙間を介してガス漏れが生じ、燃焼効率が
低下したり、その隙間にカーボンが堆積して吸排
気弁のカーボンステイツクが発生したりする虞れ
がある。
By the way, in conventional multi-cylinder rotary valve engines that employ such rotary intake and exhaust valves that rotate around an axis perpendicular to the cylinder center,
In order to ensure smooth rotation of the valve stem, a small gap is formed around the valve stem. Therefore, there is a risk that gas leaks from the combustion chamber through the gap, reducing combustion efficiency, or that carbon accumulates in the gap, causing carbon stains in the intake and exhaust valves.

そこで、従来では、このようなガス漏れを防止
するために弁軸の周囲に形成される隙間をできる
だけ小さくするとともに、その隙間に潤滑油膜を
形成するという手段が構じられている。
Conventionally, in order to prevent such gas leakage, measures have been taken to make the gap formed around the valve shaft as small as possible and to form a lubricating oil film in the gap.

また、このようなシリンダ中心に直交する軸心
を中心に回転する回転式吸排気弁は、多気筒エン
ジンにおいて、エンジンの負荷が所定値を下回る
ときに、全気筒のうち一部分の気筒への空気の供
給を遮断してその気筒の運転を休止させる、いわ
ゆる、減筒運転を実施する上でも有利である。す
なわち、このような多気筒回転弁エンジンの減筒
運転装置としては、上記のような複数の吸気弁通
路及び排気弁通路またはこれらの一方を形成した
弁軸の内部あるいは周囲に、弁軸の軸心方向ある
いは周方向に摺動して所要の弁通路を開閉する休
止弁を設けるとともに、この休止弁を当該弁通路
を開く運転位置とそれを閉じる休止位置とにわた
つて位置切換えさせる位置切換装置を設けたるこ
とにより、構成の簡素化及びコンパクト化を図れ
るようにしたものが提案されている。
In addition, in a multi-cylinder engine, a rotary intake and exhaust valve that rotates around an axis perpendicular to the center of the cylinder is used to supply air to some of all cylinders when the engine load is below a predetermined value. This is also advantageous in carrying out so-called cylinder reduction operation, in which the supply of cylinders is cut off and the operation of the cylinders is stopped. In other words, such a cylinder reduction operation device for a multi-cylinder rotary valve engine has a structure in which a shaft of the valve shaft is installed inside or around the valve shaft forming the plurality of intake valve passages and exhaust valve passages, or one of them. A position switching device that includes a stop valve that opens and closes a required valve passage by sliding in the central or circumferential direction, and that switches the position of the stop valve between an operating position where the valve passage is opened and a rest position where it is closed. A device has been proposed in which the configuration can be simplified and made more compact by providing the following.

(考案が解決しようとする問題点) しかしながら、このような従来の多気筒回転弁
エンジンにおいては、弁軸とその周囲との間に一
定以上の隙間を設ける必要があることから、吸排
気弁と同径の弁軸の周囲の隙間を一定以上に狭く
することはできない。このために、この隙間から
のガス漏れを少なくし、燃焼効率の低下や出力低
下の減少を図る上では不満が残されている。
(Problem to be solved by the invention) However, in such conventional multi-cylinder rotary valve engines, it is necessary to provide a certain amount of clearance between the valve stem and its surroundings, so the intake and exhaust valves The gap around valve stems of the same diameter cannot be made narrower than a certain level. For this reason, there remains dissatisfaction in reducing gas leakage from this gap and reducing reduction in combustion efficiency and output.

また、上記のような多気筒回転弁エンジンの減
筒運転制御装置においては、休止弁を開閉させる
ときに休止弁の重心移動を伴うので、休止弁を駆
動するために比較的強力な駆動力を必要とし、コ
ストダウン及び小型化を図る上で不利になる。
In addition, in the cylinder reduction operation control device for a multi-cylinder rotary valve engine as described above, when opening and closing the rest valve, the center of gravity of the rest valve moves, so a relatively strong driving force is required to drive the rest valve. This is disadvantageous in terms of cost reduction and miniaturization.

更に、吸排気弁と休止弁とが別々に形成される
ので構造が部品点数が多く、構成が複雑になると
いう問題もある。
Furthermore, since the intake and exhaust valves and the stop valve are formed separately, there is a problem that the structure has a large number of parts and becomes complicated.

本考案は、上記の事情を考慮してなされたもの
であつて、多気筒回転弁エンジンのエンジン負荷
が所定値を下回るときに所定の気筒への吸排気路
を遮断して該気筒内での燃焼を休止させる多気筒
回転弁エンジンの減筒運転装置において、弁軸の
周囲の隙間からのガス漏れによる燃焼効率や出力
の低下を減少できるとともに、吸排気弁のカーボ
ンステヘツクの発生を長期間にわたつて防止で
き、また、減筒運転のために弁体を駆動する作動
器の能力を小さくして、減筒運転装置を小型で安
価で、しかも、を部品点数の少ない構成の簡単な
ものにできるようにした、多気筒回転弁式エンジ
ンの減筒運転装置を提供することを目的とするも
のである。
The present invention has been devised in consideration of the above circumstances, and when the engine load of a multi-cylinder rotary valve engine is below a predetermined value, the intake and exhaust passages to a predetermined cylinder are shut off and the air flow within the cylinder is stopped. In a cylinder reduction operation system for a multi-cylinder rotary valve engine that pauses combustion, it is possible to reduce the reduction in combustion efficiency and output due to gas leakage from the gap around the valve shaft, and also to prevent the occurrence of carbon steak in the intake and exhaust valves for a long period of time. In addition, by reducing the ability of the actuator that drives the valve body for cylinder reduction operation, the cylinder reduction operation device is small and inexpensive, and has a simple configuration with a small number of parts. It is an object of the present invention to provide a cylinder reduction operation device for a multi-cylinder rotary valve type engine, which allows the engine to operate with reduced cylinders.

<問題点を解決するための手段> 本考案に係る多気筒回転弁エンジンの減筒運転
装置では、上記の目的を達成するために、例え
ば、第1図ないし第3図、あるいは、第4図及び
第5図に示すように、各吸排気路4,5に介在さ
せた吸排気弁7を球形の回転弁で構成する一方、
各吸排気弁7をこれらよりも小径の弁軸11で互
いに連動連結し、減筒運転時に休止させる気筒2
の吸排気弁7は、その弁通路8,9,24で吸排
気路4,5を開閉する運転位置dと、弁軸11の
軸心まわりに回転する吸排気弁7が吸排気路4,
5を閉じ続ける休止位置eとにわたつて弁軸11
の軸心を含む平面に沿つて切換揺動可能に構成
し、吸排気弁7を気筒数制御操作手段Fで運転位
置dと休止位置eとに位置切換操作可能に構成し
たことを特徴とするものである。
<Means for Solving the Problems> In order to achieve the above object, the cylinder reduction operation device for a multi-cylinder rotary valve engine according to the present invention has the following features, for example, as shown in FIGS. As shown in FIG. 5, the intake and exhaust valves 7 interposed in the intake and exhaust passages 4 and 5 are composed of spherical rotary valves,
A cylinder 2 in which the intake and exhaust valves 7 are interlocked and connected to each other by a valve shaft 11 having a smaller diameter than these, and the cylinders 2 are stopped during cylinder reduction operation.
The intake and exhaust valve 7 has an operating position d in which its valve passages 8, 9, and 24 open and close the intake and exhaust passages 4 and 5, and an operation position d in which the intake and exhaust valve 7, which rotates around the axis of the valve shaft 11, opens and closes the intake and exhaust passages 4 and 5.
5 continues to close the rest position e and the valve stem 11
The intake and exhaust valves 7 are configured to be switchable and swingable along a plane including the axis of the engine, and the intake and exhaust valves 7 are configured to be switchable between an operating position d and a rest position e using the cylinder number control operating means F. It is something.

〔作用〕[Effect]

上記のような構成された多気筒回転弁エンジン
の減筒運転装置では、各回転弁を連動連結する弁
軸が各回転弁よりも小径に形成されているので、
弁軸の周囲に形成される隙間の面積を従来よりも
狭くでき、この隙間を介してのガス漏れを減少さ
せ、あるいは、無くすことができる。
In the cylinder reduction operation device for a multi-cylinder rotary valve engine configured as described above, the valve shaft that interlocks and connects each rotary valve is formed to have a smaller diameter than each rotary valve.
The area of the gap formed around the valve stem can be made smaller than before, and gas leakage through this gap can be reduced or eliminated.

また、吸排気弁が減筒運転時に吸排気ポートを
遮断する休止弁の機能を兼備しており、減筒制御
のためには、この回転弁を重心位置を殆ど移動さ
せずに弁軸の回転軸心と直交する該吸排気弁の1
直径の回りに回転させるだけで済み、弁の重心移
動を必要とする従来の休止弁位置切換装置に比べ
て回転弁位置切換装置の駆動力を小さくすること
ができ、コストダウン及び小型化を図る上で有利
になる。
In addition, the intake and exhaust valves also have the function of a stop valve that shuts off the intake and exhaust ports during cylinder reduction operation, and for cylinder reduction control, this rotary valve can be rotated by rotating the valve shaft without moving the center of gravity. 1 of the intake and exhaust valves perpendicular to the axis
It only needs to be rotated around the diameter, and the driving force of the rotary valve position switching device can be reduced compared to conventional rest valve position switching devices that require movement of the center of gravity of the valve, reducing costs and downsizing. It will be advantageous at the top.

更に、吸排気弁によつて休止気筒への吸気の供
給を遮断できるように成つているので、休止気筒
への吸気の供給を遮断するための休止弁を省略し
て部品点数を減少できるとともに、構成を簡単に
できるのである。
Furthermore, since the supply of intake air to the idle cylinders can be cut off by the intake and exhaust valves, the number of parts can be reduced by omitting the idle valve for cutting off the supply of intake air to the idle cylinders. This allows for easy configuration.

<実施例 1> 以下、本考案の実施例を図面に基づき説明す
る。
<Example 1> Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本考案の一実施例に係る多気筒回転弁
エンジンの減筒運転装置の要部の縦断面図であ
り、第2図は第1図のA−A線縦断面図であり、
第3図は第1図のB−B線横断面図である。
FIG. 1 is a vertical cross-sectional view of a main part of a cylinder reduction operation device for a multi-cylinder rotary valve engine according to an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view taken along the line A-A in FIG.
FIG. 3 is a cross-sectional view taken along the line B--B in FIG. 1.

このエンジン1は複数の気筒2を備え、そのシ
リンダヘツド3には各気筒2の燃焼室19に連通
する吸気ポート4及び排気ポート5が形成されて
いる。
This engine 1 includes a plurality of cylinders 2, and a cylinder head 3 thereof is formed with an intake port 4 and an exhaust port 5 that communicate with a combustion chamber 19 of each cylinder 2.

吸気ポート4と排気ポート5の燃焼室19側の
端部には球形に形成された共通の弁室6が設けら
れ、弁室6にはほぼ球形の吸排気弁7が収納され
ている。各吸排気弁7には、吸気ポート4と気筒
2とを連通させる吸気弁通路8と排気弁通路9と
が形成してある。
A common spherical valve chamber 6 is provided at the ends of the intake port 4 and the exhaust port 5 on the combustion chamber 19 side, and a substantially spherical intake and exhaust valve 7 is accommodated in the valve chamber 6. Each intake and exhaust valve 7 is formed with an intake valve passage 8 and an exhaust valve passage 9 that communicate the intake port 4 and the cylinder 2.

各弁室6は隣接する弁室6、あるいは、シリン
ダヘツド3の横側面と弁室6より小径の挿通孔1
0で連通され、この挿通孔10には各吸排気弁7
を連動連結する弁軸11が挿通されている。
Each valve chamber 6 is connected to an adjacent valve chamber 6 or to a side surface of the cylinder head 3 and an insertion hole 1 having a smaller diameter than the valve chamber 6.
0, and each intake and exhaust valve 7 is connected to this insertion hole 10.
A valve shaft 11 that interlocks and connects the two is inserted through the valve shaft 11.

この弁軸11と挿通孔10との間及び吸排気弁
7と弁室6の周壁との間に形成される隙間23に
は、弁軸11及び吸排気弁7の回転を円滑にする
ために所定圧の潤滑油が充填される。
A gap 23 formed between the valve stem 11 and the insertion hole 10 and between the intake/exhaust valve 7 and the peripheral wall of the valve chamber 6 is provided to ensure smooth rotation of the valve stem 11 and the intake/exhaust valve 7. It is filled with lubricating oil at a predetermined pressure.

弁軸11と常時運転気筒2の吸排気弁7とは、
角穴嵌合により連動連結され、エンジン負荷が所
定値を下回る時に運転が休止される休止気筒2の
吸排気弁7と弁軸11とはキー嵌合されている。
The valve shaft 11 and the intake and exhaust valves 7 of the constantly operating cylinder 2 are as follows:
The intake and exhaust valves 7 and the valve shaft 11 of the deactivated cylinder 2, which are interlocked and connected by square hole fitting and whose operation is stopped when the engine load falls below a predetermined value, are key-fitted.

即ち、休止気筒2の吸排気弁7に連結される弁
軸11の端部には端面が傾斜したキー12が形成
され、休止気筒2の吸排気弁7の周面には、弁軸
11の回転軸心と直交する1対のキー溝13が形
成される。各キー溝13は、吸排気弁7が後述す
る運転位置dと休止位置eとにわたつて回転軸心
と直交する吸排気弁の一直径の回りに揺動すると
きに上記キー12とキー溝13の底面とが干渉を
起こさない形状に形成されている。
That is, a key 12 with an inclined end surface is formed at the end of the valve shaft 11 connected to the intake and exhaust valve 7 of the idle cylinder 2, and a key 12 with an inclined end face is formed on the peripheral surface of the intake and exhaust valve 7 of the idle cylinder 2. A pair of keyways 13 are formed perpendicular to the rotation axis. Each keyway 13 is connected to the key 12 when the intake/exhaust valve 7 swings around one diameter of the intake/exhaust valve orthogonal to the rotation axis between an operating position d and a rest position e, which will be described later. It is formed in a shape that does not cause interference with the bottom surface of 13.

上記運転位置dは、例えば第1図の実線で示す
ように、吸気ポート4及び排気ポート5とがそれ
ぞれ所定のタイミングで吸排気弁7に形成された
吸気弁通路8あるいは排気弁通路9により燃焼室
19の上端の弁孔20に連通される位置であり、
換言すれば、吸気弁通路8の両端の回転軌跡が吸
気ポート4及び弁孔20を横切るとともに、排気
弁通路9の両端の回転軌跡が排気ポート5及び弁
孔20を横切る位置である。また、上記休止位置
eは、例えば、第1図の2点鎖線で示すように、
吸気ポート4及び排気ポート5が完全に弁孔20
から遮断される位置であり、換言すれば、吸気弁
通路8の一端の回転軌跡が吸気ポート4及び弁孔
20から離れ、吸気弁通路9の他端の回転軌跡が
排気ポート5及び弁孔20から離れる位置(ある
いは、吸気弁通路8の他端の回転軌跡が弁孔20
から離れ、排気弁通路9の一端の回転軌跡が排気
ポート5から離れる位置)である。
In the above operating position d, for example, as shown by the solid line in FIG. It is a position communicating with the valve hole 20 at the upper end of the chamber 19,
In other words, this is the position where the rotation locus of both ends of the intake valve passage 8 crosses the intake port 4 and the valve hole 20, and the rotation locus of both ends of the exhaust valve passage 9 crosses the exhaust port 5 and the valve hole 20. Further, the above-mentioned rest position e is, for example, as shown by the two-dot chain line in FIG.
The intake port 4 and exhaust port 5 are completely connected to the valve hole 20.
In other words, the rotation trajectory of one end of the intake valve passage 8 is away from the intake port 4 and the valve hole 20, and the rotation trajectory of the other end of the intake valve passage 9 is separated from the exhaust port 5 and the valve hole 20. (or the rotation locus of the other end of the intake valve passage 8 is away from the valve hole 20
(a position where the rotation locus of one end of the exhaust valve passage 9 is away from the exhaust port 5).

吸排気弁7を運転位置dと休止位置eとにわた
つて位置切換する気筒数制御手段Fは、ロツド1
4、係合孔15、スライド16、戻しバネ17及
びソレノイド18からなる。
The cylinder number control means F for switching the positions of the intake and exhaust valves 7 between the operating position d and the rest position e is controlled by the rod 1.
4, an engagement hole 15, a slide 16, a return spring 17, and a solenoid 18.

上記ロツド14は、上記休止気筒2に連結され
る1対の弁軸11の内の一方(第1図及び第3図
において左方の弁軸11)の軸心から偏心した位
置に挿通されている。このロツド14の一端はT
字形状に形成され、対応するキー溝13の両側に
形成された長孔状の係合孔15に係合される。こ
のロツド14の他端は、磁性体からなるスライド
16に結合される。このスライド16は、戻しバ
ネ17によつて図示の非作動位置に付勢され、図
示しない制御回路の減筒運転指令に基づいて作動
するソレノイド18により戻しバネ17に抗して
弁軸11の軸心方向に作動位置に引き出されるよ
うになつている。
The rod 14 is inserted at a position offset from the axis of one of the pair of valve shafts 11 (the left valve shaft 11 in Figs. 1 and 3) connected to the deactivated cylinder 2. One end of the rod 14 is
The rod 14 is formed in a U-shape and engages with an elongated engagement hole 15 formed on both sides of the corresponding key groove 13. The other end of the rod 14 is connected to a slide 16 made of a magnetic material. The slide 16 is biased to a non-operating position shown in the figure by a return spring 17, and is pulled to an operating position in the axial direction of the valve shaft 11 against the return spring 17 by a solenoid 18 which operates based on a cylinder reduction operation command from a control circuit not shown.

尚、戻しバネ17とスライド16との間には、
戻しバネ17の座屈を防止するとともにスライド
17の移動量を制限するためのバネ受座21と、
スライド17が弁軸11に連動して自由に回転で
きるようにするためのスリツプリング22とが挿
入される。
In addition, between the return spring 17 and the slide 16,
a spring seat 21 for preventing buckling of the return spring 17 and limiting the amount of movement of the slide 17;
A slip ring 22 is inserted to allow the slide 17 to rotate freely in conjunction with the valve stem 11.

上記の構成において、吸排気弁7は図示しない
クランク軸の4回転に1回転の割合で第2図の矢
印で示す方向に回転させられる。そして、エンジ
ン1の負荷が所定値以上の場合には、吸気行程に
おいては第1図ないし第3図に示すように吸気ポ
ート4が吸気弁通路8を介して燃焼室19に連通
され、圧縮行程及び爆発行程では吸気ポート4及
び排気ポート5が吸排気弁7によつて燃焼室19
から遮断され、排気行程では燃焼室19が排気弁
通路9を介して排気ポート5に連通される。
In the above configuration, the intake and exhaust valves 7 are rotated in the direction indicated by the arrow in FIG. 2 at a rate of one revolution for every four revolutions of a crankshaft (not shown). When the load of the engine 1 is equal to or higher than a predetermined value, the intake port 4 is communicated with the combustion chamber 19 via the intake valve passage 8 during the intake stroke, as shown in FIGS. During the explosion stroke, the intake port 4 and the exhaust port 5 are connected to the combustion chamber 19 by the intake and exhaust valves 7.
During the exhaust stroke, the combustion chamber 19 is communicated with the exhaust port 5 via the exhaust valve passage 9.

爆発行程において、燃焼室19から吸排気弁7
及び弁軸11の周囲の隙間23を介してガス漏れ
が発生するおそれがあるが、弁軸11の直径が吸
排気弁7よりも小さく形成されており、その周囲
に形成される隙間23の面積が小さい上に、この
隙間23には潤滑油が充填されているので、その
ようなガス漏れが減少される。その結果、このよ
うなガス漏れによる燃焼室19の圧力上昇の低下
が減少されて燃焼効率や出力の低下が減少される
とともに、このようなガス漏れに伴うカーボンの
隙間23への進入及び堆積が減少され、長期間に
わたつて吸排気弁7のカーボンステイツクの発生
を防止できることになる。
During the explosion stroke, the intake and exhaust valves 7 from the combustion chamber 19
There is a risk that gas leakage may occur through the gap 23 around the valve stem 11, but the diameter of the valve stem 11 is smaller than that of the intake/exhaust valve 7, and the area of the gap 23 formed around it. Since the gap 23 is small and the gap 23 is filled with lubricating oil, such gas leakage is reduced. As a result, the decrease in the pressure rise in the combustion chamber 19 due to such gas leakage is reduced, reducing the decrease in combustion efficiency and output, and the intrusion and accumulation of carbon into the gap 23 due to such gas leakage is prevented. As a result, the occurrence of carbon stains on the intake and exhaust valves 7 can be prevented for a long period of time.

エンジン1の負荷が所定値を下回る場合には、
図示しない制御装置の減筒運転指令に基づきソレ
ノイド18が作動してスライダ16及びロツド1
4を戻しバネ17に抗して作動位置に引き出し、
休止気筒2の吸排気弁7の中心から偏心した箇所
をソレノイド18側に引き寄せることによつて吸
排気弁7を重心移動させることなく運転位置dか
ら休止位置eに回転させる。これにより、吸気弁
通路8の一端の移動軌跡が吸気ポート4および弁
孔20から離されて吸気ポート4が燃焼室19か
ら遮断される一方、排気弁通路9の他端の移動軌
跡が排気ポート5及び弁孔20から離れて燃焼室
19が排気ポート5から遮断されることになる。
If the load on engine 1 is below a predetermined value,
The solenoid 18 is actuated based on a cylinder reduction operation command from a control device (not shown), and the slider 16 and rod 1 are
4 to the operating position against the return spring 17,
By drawing a portion eccentric from the center of the intake/exhaust valve 7 of the idle cylinder 2 toward the solenoid 18 side, the intake/exhaust valve 7 is rotated from the operating position d to the idle position e without moving the center of gravity. As a result, the locus of movement of one end of the intake valve passage 8 is moved away from the intake port 4 and the valve hole 20, and the intake port 4 is isolated from the combustion chamber 19, while the locus of movement of the other end of the exhaust valve passage 9 is moved away from the intake port 4 and the valve hole 20. 5 and the valve hole 20, the combustion chamber 19 is isolated from the exhaust port 5.

減筒運転が解除されると、ソレノイド18の作
動が解除され、戻しバネ17がスライダ16及び
ロツド14を非作動位置に押し戻す。これによ
り、上記吸排気弁7の中心から偏心した箇所がソ
レノイド18と反対側に押し戻されて吸排気弁7
が重心移動させることなく休止位置eから運転位
置dに回転させて復帰することになる。
When the cylinder reduction operation is canceled, the solenoid 18 is deactivated and the return spring 17 pushes the slider 16 and rod 14 back to the non-operating position. As a result, the portion eccentric from the center of the intake/exhaust valve 7 is pushed back to the side opposite to the solenoid 18, and the intake/exhaust valve 7
is rotated and returned from the rest position e to the operating position d without moving the center of gravity.

このように、吸排気弁7を重心移動させること
なく回転させることにより、重心移動を伴う従来
の休止弁の駆動に比べて吸排気弁7を駆動するソ
レノイド18の駆動力を小さくすることができ、
小能力で小型のソレノイド18を使用することが
できる。その結果、減筒運転制御装置を小型に、
かつ、安価にすることができる。
In this way, by rotating the intake and exhaust valves 7 without moving the center of gravity, the driving force of the solenoid 18 that drives the intake and exhaust valves 7 can be made smaller than when driving a conventional idle valve that involves movement of the center of gravity. ,
A small solenoid 18 with low capacity can be used. As a result, the cylinder reduction operation control device has been made smaller.
Moreover, it can be made inexpensive.

更に、吸排気弁7が減筒運転時に休止位置eに
位置して吸排気路4,5を遮断し、休止気筒2へ
の吸気の供給を遮断するように構成されているの
で、減筒運転時に吸排気路4,5を遮断し、休止
気筒2への吸気の供給を遮断する休止弁を省略し
て部品点数を減少できるとともに、構成を簡単に
できるのである。
Furthermore, the intake and exhaust valves 7 are configured to be located at the rest position e during reduced-cylinder operation to block the intake and exhaust passages 4 and 5, thereby cutting off the supply of intake air to the idle cylinders 2. By omitting the stop valve that sometimes cuts off the intake and exhaust passages 4 and 5 and cuts off the supply of intake air to the stopped cylinder 2, the number of parts can be reduced and the configuration can be simplified.

尚、吸排気弁7を運転位置dと休止位置eとに
わたつて駆動する駆動手段は、ここでは吸排気弁
7が戻しバネ17と電気エネルギによつて作動す
るソレノイド18で構成されているが、戻しバネ
17に代えて他のソレノイドを設けてもよく、ま
た、電気エネルギを使用するソレノイド17に代
えて、空気圧あるいは油圧を利用する復動あるい
は単動のシリンダで構成することが可能である。
Note that the driving means for driving the intake and exhaust valves 7 between the operating position d and the rest position e is here composed of a return spring 17 and a solenoid 18 operated by electric energy. In place of the return spring 17, another solenoid may be provided, and in place of the solenoid 17, which uses electrical energy, it is possible to configure it with a double-acting or single-acting cylinder that uses pneumatic pressure or hydraulic pressure. .

また、ここでは、ソレノイド18で駆動される
スライド16をロツド14に直結してあるが、ス
ライド16とロツド14との間にフオークレバー
等の伝動手段を介在させることも可能である。
Although the slide 16 driven by the solenoid 18 is directly connected to the rod 14 here, it is also possible to interpose a transmission means such as a fork lever between the slide 16 and the rod 14.

<実施例 2> 第4図は本考案の他の実施例の縦断側面図であ
り、第5図は第4図のC−C線断面図である。
<Embodiment 2> FIG. 4 is a longitudinal sectional side view of another embodiment of the present invention, and FIG. 5 is a sectional view taken along the line CC in FIG. 4.

この実施例では、吸排気弁7には吸気弁通路と
排気弁通路とに共用される弁通路24が形成され
る。この吸排気弁7の周面に形成したキー溝25
には、弁軸11の端部に揺動可能に枢支された1
対の揺動キー26が挿入され、これら揺動キー2
6は弁軸11を貫通する1対のロツド27を介し
て戻しバネ17とソレノイド18とによつて非作
動位置と作動位置とに変位させられるようになつ
ている。これら1対のロツド27は弁軸11に枢
支されたシーソーレバー28を介して互いに逆方
向に同じストロークだけ変位するように連動連結
されている。各揺動キー26の先端部はキー溝2
5の底面に当接させてあり、ロツド29の進出に
よりキー溝25の底面を押して吸排気弁7を実線
で示す運転位置dあるいは2点鎖線で示す休止位
置eに回転させるようになつている。
In this embodiment, the intake and exhaust valve 7 is formed with a valve passage 24 that is shared by the intake valve passage and the exhaust valve passage. A key groove 25 formed on the circumferential surface of this intake/exhaust valve 7
1, which is pivotably supported at the end of the valve shaft 11.
A pair of swing keys 26 are inserted, and these swing keys 2
6 is adapted to be displaced between a non-operating position and an operating position by a return spring 17 and a solenoid 18 via a pair of rods 27 passing through the valve stem 11. These pair of rods 27 are interlocked and connected via a seesaw lever 28 pivotally supported on the valve shaft 11 so that they are displaced by the same stroke in opposite directions. The tip of each swing key 26 has a key groove 2.
5, and when the rod 29 advances, it pushes the bottom surface of the keyway 25 and rotates the intake/exhaust valve 7 to the operating position d shown by the solid line or to the rest position e shown by the two-dot chain line. .

その他の構成、作用及び効果は、上記の一実施
例と本質的に同様であるので、重複を避けるため
にその説明を省略する。
Other configurations, operations, and effects are essentially the same as those of the above-described embodiment, so their explanations will be omitted to avoid duplication.

尚、上記の各実施例では、弁室6が吸気ポート
4と排気ポート5にわたつて形成され、吸排気弁
7には吸気弁通路8と排気弁通路9あるいはこれ
らに共用される弁通路24が形成されているが、
吸気ポート4と排気ポート5とに互いに独立した
弁室6を介在させ、各弁室6に吸気弁通路8ある
いは排気弁通路9のみを有する球形の吸気弁ある
いは吸気弁を収納する場合にも本考案を適用する
ことは可能である。
In each of the above embodiments, the valve chamber 6 is formed across the intake port 4 and the exhaust port 5, and the intake and exhaust valve 7 has an intake valve passage 8, an exhaust valve passage 9, or a valve passage 24 shared by these. is formed, but
This invention also applies when a spherical intake valve or an intake valve having only an intake valve passage 8 or an exhaust valve passage 9 is housed in each valve chamber 6 by interposing independent valve chambers 6 between the intake port 4 and the exhaust port 5. It is possible to apply the idea.

<考案の効果> 以上のように、本考案によれば、吸排気弁7を
連動連結する弁軸を吸排気弁よりも小径に形成す
ることによつて弁軸の周囲に形成される隙間を小
面積にしてあるので、この隙間からのガス漏れを
減少させることができ、ガス漏れに伴う出力低下
やその隙間へのカーボンスの堆積、更にはこれに
基づく吸排気弁のカーボンステイツク等を防止す
ることができる。
<Effects of the invention> As described above, according to the invention, by forming the valve shaft that interlocks the intake and exhaust valves 7 to have a smaller diameter than the intake and exhaust valves, the gap formed around the valve shaft can be reduced. Since the area is small, gas leakage from this gap can be reduced, reducing output due to gas leakage, carbon accumulation in the gap, and carbon stays in the intake and exhaust valves due to this. It can be prevented.

また、吸排気弁をこれの重心位置を変動させる
ことなく揺動させて吸気路及び排気路またはこれ
らの一方を燃焼室から遮断できるので、重心移動
を伴う従来の休止弁を駆動する駆動装置よりも小
能力で小型の駆動装置により吸排気弁を運転位置
と休止位置とに変位させることができ、気筒数制
御装置の小型化を図ることがきる。
In addition, since the intake and exhaust valves can be swung to block the intake passage and/or the exhaust passage from the combustion chamber without changing their center of gravity, it is easier to use than a conventional drive device that drives a stop valve that moves the center of gravity. However, the intake and exhaust valves can be moved between the operating position and the rest position using a small drive device with low capacity, and the cylinder number control device can be downsized.

更に、吸排気弁によつて減筒運転時に休止気筒
への吸気の供給が停止させるようになつているの
で、減筒運転時に休止気筒への吸気の供給が停止
させる休止弁を省略して部品点数を減少させると
ともに構成を簡単にできる。
Furthermore, since the intake and exhaust valves are designed to stop the supply of intake air to the idle cylinders during cylinder reduction operation, the stop valve that stops the intake air supply to the idle cylinders during cylinder reduction operation can be omitted and the parts The number of points can be reduced and the configuration can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例に係る多気筒回転弁
エンジンの減筒運転装置の要部の縦断面図、第2
図は第1図のA−A線縦断面図、第3図は第1図
のB−B線横断面図、第4図は本考案の他の実施
例に係る多気筒回転弁エンジンの減筒運転装置の
要部の縦断側面図、第5図は第4図のC−C線断
面図である。 1……エンジン、2……気筒、4……吸気ポー
ト、5……排気ポート、6……弁室、7……吸排
気弁、8……吸気用弁通路、9……排気用弁通
路、11……弁軸、24……弁通路、d……運転
位置、e……休止位置、F……気筒数制御操作手
段。
FIG. 1 is a longitudinal sectional view of the main part of a cylinder reduction operation device for a multi-cylinder rotary valve engine according to an embodiment of the present invention;
The figure is a longitudinal sectional view taken along the line A-A in FIG. 1, FIG. 3 is a cross-sectional view taken along the line B-B in FIG. 1, and FIG. FIG. 5 is a longitudinal sectional side view of the main part of the cylinder operating device, and FIG. 5 is a sectional view taken along the line C--C in FIG. 4. 1...Engine, 2...Cylinder, 4...Intake port, 5...Exhaust port, 6...Valve chamber, 7...Intake and exhaust valve, 8...Intake valve passage, 9...Exhaust valve passage , 11...Valve stem, 24...Valve passage, d...Operating position, e...Destination position, F...Cylinder number control operation means.

Claims (1)

【実用新案登録請求の範囲】 多気筒回転弁エンジン1のエンジン負荷が所定
値を下回るときに該エンジン1の所定の気筒2へ
の吸排気路4,5を遮断して該気筒2内での燃焼
を休止させる多気筒回転弁エンジンの減筒運転装
置において、 各吸排気路4,5に介在させた吸排気弁7を球
形の回転弁で構成する一方、各吸排気弁7をこれ
らよりも小径の弁軸11で互いに連動連結し、減
筒運転時に休止させる気筒2の吸排気弁7は、そ
の弁通路8,9,24で吸排気路4,5を開閉す
る運転位置dと、弁軸11の軸心まわりに回転す
る吸排気弁7が吸排気路4,5を閉じ続ける休止
位置eとにわたつて弁軸11の軸心を含む平面に
沿つて切換揺動可能に構成し、吸排気弁7を気筒
数制御操作手段Fで運転位置dと休止位置eとに
位置切換操作可能に構成したことを特徴とする、
多気筒回転弁エンジンの減筒運転装置。
[Claims for Utility Model Registration] When the engine load of the multi-cylinder rotary valve engine 1 is below a predetermined value, the intake and exhaust passages 4 and 5 to a predetermined cylinder 2 of the engine 1 are shut off, and the air flow within the cylinder 2 is stopped. In a cylinder reduction operation device for a multi-cylinder rotary valve engine that suspends combustion, the intake and exhaust valves 7 interposed in each of the intake and exhaust passages 4 and 5 are composed of spherical rotary valves, while each intake and exhaust valve 7 is constructed from a spherical rotary valve. The intake and exhaust valves 7 of the cylinder 2, which are interlocked and connected to each other by a small-diameter valve shaft 11 and are deactivated during cylinder reduction operation, have an operating position d in which the intake and exhaust passages 4, 5 are opened and closed by their valve passages 8, 9, 24, and a valve position d. The intake/exhaust valve 7 rotating around the axis of the shaft 11 is configured to be able to switch and swing along a plane including the axis of the valve shaft 11 between a rest position e where the intake/exhaust passages 4 and 5 are kept closed, and The intake and exhaust valves 7 are configured to be switchable between an operating position d and a rest position e using the cylinder number control operating means F.
Reduced cylinder operation device for multi-cylinder rotary valve engine.
JP4651187U 1987-03-27 1987-03-27 Expired - Lifetime JPH0543208Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4651187U JPH0543208Y2 (en) 1987-03-27 1987-03-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4651187U JPH0543208Y2 (en) 1987-03-27 1987-03-27

Publications (2)

Publication Number Publication Date
JPS63154708U JPS63154708U (en) 1988-10-11
JPH0543208Y2 true JPH0543208Y2 (en) 1993-10-29

Family

ID=30866238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4651187U Expired - Lifetime JPH0543208Y2 (en) 1987-03-27 1987-03-27

Country Status (1)

Country Link
JP (1) JPH0543208Y2 (en)

Also Published As

Publication number Publication date
JPS63154708U (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JPS5838603B2 (en) Internal combustion engine valve lift device
KR101029350B1 (en) Variable flow reducing valve and gradual control valve distribution system for a compressed air injection engine operating on mono or multi energy and other engines or compressors
JP2762214B2 (en) Valve train for internal combustion engine
US20040237926A1 (en) Semi-rotating valve assembly for use with an internal combustion engine
JPH1193710A (en) Exhaust valve control device of 2-stroke diesel engine with supercharger
JPH0543208Y2 (en)
US6539903B2 (en) Compound movement elliptic valve assembly
JPS6119926A (en) Intake-air device in internal-combustion engine provided with valve resting mechanism
JPH0544410A (en) Rocker arm for variable valve timing lift mechanism
JP4311813B2 (en) Intake system controller for spark ignition internal combustion engine
JP3287610B2 (en) Variable valve timing / lift mechanism
JP3781961B2 (en) Engine operating characteristics variable device
JP3111392B2 (en) Exhaust valve device for two-stroke engine
JPS5910357Y2 (en) Intake air amount control device
JPH0117607Y2 (en)
JPS61129411A (en) Variable change mechanism of valve action in engine
JPH04109010A (en) Variable valve timing device
JPS59115410A (en) Valve operation switching device of internal-combustion engine
KR960013351B1 (en) Suction &amp; exhaust valve variable driving system of a car
JP3387536B2 (en) Intake device for internal combustion engine
JPH039026A (en) Intake and exhaust device for internal combustion engine
JPH05321673A (en) Exhaust device for two-cycle engine
JP2519619B2 (en) Internal combustion engine
JPS61255213A (en) Intake control device for internal-combustion engine
JPH0250282B2 (en)