JPH0542288B2 - - Google Patents

Info

Publication number
JPH0542288B2
JPH0542288B2 JP62228193A JP22819387A JPH0542288B2 JP H0542288 B2 JPH0542288 B2 JP H0542288B2 JP 62228193 A JP62228193 A JP 62228193A JP 22819387 A JP22819387 A JP 22819387A JP H0542288 B2 JPH0542288 B2 JP H0542288B2
Authority
JP
Japan
Prior art keywords
aqueous solution
water vapor
dehydrating
concentrating
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62228193A
Other languages
Japanese (ja)
Other versions
JPS63267415A (en
Inventor
Kanji Nakagawa
Yoshio Asakura
Shigeru Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62228193A priority Critical patent/JPS63267415A/en
Publication of JPS63267415A publication Critical patent/JPS63267415A/en
Priority to US07/384,878 priority patent/US4978430A/en
Publication of JPH0542288B2 publication Critical patent/JPH0542288B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、有機物水溶液を気相で脱水濃縮する
方法に関する。 [発明の背景] 従来、有機物水溶液の脱水方法としては、蒸留
法が一般的に採用されており、通常の蒸留では分
離不能な共沸混合物や沸点の接近している有機物
混合液の場合には共沸蒸留法や抽出蒸留法が用い
られていた。 例えば、バイオマスからのエタノール製造は次
のような方法が採られている。バイオマスから製
造されるエタノール濃度は10重量%以下であるた
め、まず蒸留法により第一の蒸留塔で共沸組成で
ある95.6重量%まで濃縮し、次いでこれに水と共
沸混合物を構成し該共沸混合物がエタノールより
も低い沸点を持つベンゼンなどの第三成分(エン
トレーナー)を添加し、第二の蒸留塔で共沸蒸留
を行ない純エタノールを製造している。しかし、
第二の共沸蒸留塔では水−エタノール共沸組成か
ら微量の水を除去するのに多量のエネルギーを必
要とするという欠点がある。 近年、蒸留法の欠点を改良した省エネルギータ
イプの有機物水溶液の脱水法のひとつに、パーベ
ーパレイシヨン法が提案されている。これは、気
体分離膜を用い、該膜一方に有機物水溶液を液体
のまま供給し他方を減圧に保つかまたはキヤリヤ
ーガスを供給するかして水蒸気を選択的に透過さ
せるものである。しかし、パーベーパレイシヨン
法は、気体分離膜が直接に有機物水溶液と接触す
るので該膜が膨潤し、選択透過性が低下したり、
長期耐久性が失われたりする欠点がある。 他の方法として、気体分離膜を用い、該膜の一
方に有機物水溶液を気化させた有機物蒸気と水蒸
気とを含む気体混合物を供給し他方を減圧に保つ
かまたは不活性ガスをキヤリヤーガスとして供給
するかして水蒸気を選択的に透過させて脱水する
気相脱水法も提案されている。例えば、セラミツ
ク多孔質中空糸膜を用いる方法[膜、10(5)、297
(1985)]、ポリアミド、セルロース、酢酸セルロ
ースなどから成る膜を用いる方法[特開昭60−
99314号公報]が報告されている。 セラミツク多孔質中空糸膜を用いる方法では、
中空糸膜が無機質膜であるから膨潤することはな
いものの、セラミツクの特質として材質がもろい
ために中空糸膜が折れたり破損しやすいという欠
点がある。さらに、無機質膜では細い中空糸膜を
製造するのが困難であるため、モジユールとして
充填する場合に有効膜面積が小になり、実用上不
利である。 ポリアミド、セルロース、酢酸セルロースなど
から成る膜を用いる方法は、有機質膜を用いる方
法である。有機物蒸気と水蒸気とを含む気体混合
物から脱水するためには、該有機物水溶液の沸点
よりも高い温度で操作する必要があるので、この
方法に使用される気体分離膜には高い耐熱性と耐
有機溶剤性とが要求される。しかしポリアミド、
セルロース、酢酸セルロースなどの有機質膜は、
耐熱性と耐有機溶剤性とが不充分であり、特に長
期連続使用における分離透過性能の安定性に欠け
るという欠点がある。さらにポリアミド、セルロ
ース、酢酸セルロースなどの有機質膜は、水蒸気
透過速度および有機物気体に対する水蒸気の選択
透過性において充分とはいえない。 [発明の目的] 本発明は、有機物を含む水溶液を気化させて有
機物蒸気と水蒸気とを含む気体混合物を生成さ
せ、次いでこの気体混合物から気体分離膜を用い
て水蒸気を選択的に透過除去し、これにより水蒸
気量が減少した有機物蒸気含有気体混合物を得る
ことからなる有機物水溶液の脱水濃縮方法におけ
る改良方法を提供することを目的とする。 [発明の要旨] 本発明は、有機物を含む水溶液を気化させて有
機物蒸気と水蒸気とを含む気体混合物を生成さ
せ、次いでこの気体混合物を70℃以上の温度にて
気体分離膜の一方の側に接触させた状態で、膜の
他方の側を減圧に保つか、また他方の側の膜表面
にキヤリアーガスを供給するかなどの方法を利用
して上記水蒸気を選択的に透過除去し、これによ
り水蒸気量が減少した有機物蒸気含有気体混合物
を得ることからなる有機物水溶液の脱水濃縮方法
であつて、気体分離膜として芳香族ポリイミド製
気体分離膜を用いることを特徴とする有機物水溶
液の脱水濃縮方法にある。 [発明の詳細な記述] 本発明の有機物水溶液の脱水濃縮方法を適用し
得る有機物は、沸点200℃以下、好ましくは沸点
150℃以下のものであり、特に好ましくは常温
(25℃)で液体の有機物である。このような有機
物としては、メタノール、エタノール、n−プロ
パノール、イソプロパノール、n−ブタノール、
sec−ブタノール、tert−ブタノール、エチレン
グリコールなどの脂肪族アルコール、シクロヘキ
サノールなどの脂環式アルコール、ベンジルアル
コールなどの芳香族アルコール、ギ酸、酢酸、プ
ロピオン酸、酪酸などの有機カルボン酸、酢酸ブ
チル、酢酸エチルなどのエステル類、アセトン、
メチルエチルケトンなどのケトン類、テトラヒド
ロフラン、ジオキサンなどの環状エーテル及びジ
ブチルアミン、アニリンなどの有機アミン類を挙
げることができる。 本発明は、上記の有機物のうちさらに、アルコ
ールを含有する水溶液の脱水に好ましく利用で
き、特にエタノールまたはイソプロパノールを含
有する水溶液の脱水に好ましく利用できる。 また、脱水濃縮処理対象の有機物水溶液の有機
物濃度に特に制限はないが、本発明は、有機物濃
度が50重量%以上、特に90重量%以上の有機物含
有水溶液の脱水濃縮処理に有利である。 本発明は、有機物水溶液を気化させた有機物蒸
気と水蒸気とを含む気体混合物を気体分離膜にて
分離する方法において、気体分離膜として芳香族
ポリイミド製気体分離膜を用いることを特徴とす
る。 パーベーパレイシヨン法では、有機物水溶液を
液状で気体分離膜に供給するため膜の一次側(気
体供給側)の系の温度を沸点以下にする必要があ
るが、本発明では有機物水溶液を気化させて気体
分離膜に供給するために膜の一次側の系の温度は
有機物水溶液の沸点以上、一般的には70℃以上で
なくてはならない。特に気体分離膜の両側の両側
の水蒸気分圧差を拡大するために有機物蒸気と水
蒸気とを含む気体混合物を圧縮上昇した場合には
さらに高い温度で操作することになる。 本発明の実施に当たつては、たとえば膜の二次
側(気体透過側)を減圧に保持して気体分離膜の
両側の水蒸気分圧差を確保することによつて、水
蒸気が選択的に分離膜を透過し、これにより一次
側に供給された気体混合物から水蒸気が選択的に
除去される。この減圧度が高いほど透過速度は大
きい。少なくとも膜の二次側に透過した気体混合
物が凝縮しない程度の減圧度が望ましい。必要な
減圧度を確保するために、膜の二次側の系の圧力
を通常100mmHg以下、好ましくは10mmHg以下に
する。 また、膜の二次側を減圧に保つ代わりに、乾燥
状態の気体を二次側表面にキヤリヤーガスとして
流通させることにより、水蒸気を選択的に透過除
去することも可能である。 耐熱性および耐有機溶媒性に優れた気体分離膜
として芳香族ポリイミド製気体分離膜が知られて
いる。芳香族ポリイミド製気体分離膜は、一般に
気体混合物からの二酸化炭素、水素、一酸化炭素
の分離、メタンガス蒸気と水蒸気とを含む気体混
合物からの水蒸気の分離などに使用されている。
しかしながら、常温(25℃)で液体の有機物の蒸
気と水蒸気と含む気体混合物から水蒸気を分離す
るために使用できることは知られていなかつた。 芳香族ポリイミド性気体分離膜は、優れた水蒸
気透過速度と高度な水蒸気選択透過性とを有する
ので、有機物蒸気の透過損失を少なくするととも
に気体分離装置を小型化することが可能になる。
芳香族ポリイミドは、耐熱性と耐有機溶剤性とに
優れているので、有機物水溶液の沸点以上に加熱
したり、気体分離膜の両側の水蒸気分圧差を拡大
するために有機物蒸気と水蒸気とを含む気体混合
物を圧縮上昇したりする場合にも使用可能であ
る。さらに芳香族ポリイミドは、高温域において
も、選択透過性を低下させることなく長期にわた
り連続使用することができる。 本発明に用いる芳香族ポリイミド製気体分離膜
は、水蒸気の透過速度が充分に高いと共に、他の
有機物蒸気成分に対する水蒸気の選択透過性が高
いものである。有機物水溶液から連続的に脱水す
るには水蒸気の透過速度が大きいことが望まし
く、この分離操作を行なう際に水蒸気透過速度
(P′[H2O])が0.5×10-3cm3/cm2・秒・cmHg以上
であることが望ましい。この値を下回る場合に
は、脱水に要する時間が長すぎて工業的に連続し
て脱水された有機物蒸気を得るために著しく不利
になる。また、脱水効率を上げるために、水蒸気
と有機物蒸気の透過速度の比も大きいことが望ま
しく、分離操作を行なう際には、100℃における
水蒸気透過速度(P′[H2O])とエタノール透過速
度(P′[C2H5OH])の比(選択透過性:
P′[H2O]/P′[C2H5OH])で20以上であること
が望ましい。この値を下回る場合には、有機物蒸
気の透過損失が大となり工業的に不利である。 芳香族ポリイミド製気体分離膜は、膜圧が10μ
m以上200μmであることが好ましく、有効膜面
積の大きい中空糸膜を束ねたモジユールの形態に
て用いることが好ましいが、スパイラル膜、平膜
でも使用することができる。 前記の芳香族ポリイミド製気体分離膜としては
芳香族テトラカルボン酸またはその酸二無水物か
らなる酸成分と、芳香族ジアミン成分とを重合
(およびイミド化)して得られた芳香族ポリアミ
ツク酸(または芳香族ポリイミド)の溶液を使用
して、凝固液による湿式製膜法などで形成される
非対称性構造の気体分離膜(均質層と多孔質層と
を一体に有する膜)、あるいは芳香族ポリイミド
溶液などを使用して適当な材質の多孔質膜の表面
に薄い芳香族ポリイミドの均質層を形成して製造
される複合分離膜であり、しかも水蒸気について
前述のような充分な気体分離性能を有する気体分
離膜を挙げることができる。 芳香族ポリイミドの芳香族テトラカルボン酸骨
格としては、3,3′,4,4′−ベンゾフエノンテ
トラカルボン酸、2,3,3′,4′−ベンゾフエノ
ンテトラカルボン酸、ピロメリツト酸、3,3′,
4,4′−ビフエニルテトラカルボン酸および2,
3,3′,4′−ビフエニルテトラカルボン酸、そし
てこれらの芳香族テトラカルボン酸の酸二無水
物、エステル、塩などから誘導されたテトラカル
ボン酸骨格を挙げることができる。これらのうち
3,3′,4,4′−ビフエニルテトラカルボン酸の
酸二無水物、2,3,3′,4′−ビフエニルテトラ
カルボン酸の酸二無水物などにより代表されるビ
フエニルテトラカルボン酸二無水物から誘導され
た酸骨格を主酸骨格とする芳香族ポリイミド製気
体分離膜を使用した場合に、本発明は特に有用で
ある。 芳香族ポリイミドの芳香族ジアミン骨格として
は、p−フエニレンジアミン、m−フエニレンジ
アミン、2,4−ジアミノトルエン、3,5−ジ
アミノ安息香酸、3,4′−ジアミノジフエニルエ
ーテル、4,4′−ジアミノジフエニルエーテル、
4,4′−ジアミノジフエニルメタン、o−トリジ
ン、1,4−ビス(4−アミノフエノキシ)ベン
ゼン、o−トリジンスルホン、ビス(アミノフエ
ノキシ−フエニル)メタンおよびビス(アミノフ
エノキシ−フエニル)スルホンなどを挙げること
ができる。 特に、芳香族ジアミン骨格として、3,4′−ジ
アミノジフエニルエーテル、4,4′−ジアミノジ
フエニルエーテル、およびジアミノジフエニルメ
タンからなる群から選ばれた少なくとも一種のジ
アミンを用いた場合に、前述の優れた水蒸気透過
速度(P′[H2O])および水蒸気エタノールに対す
る選択透過性(P′[H2O]/P′[C2H5OH])が得
られ、さらに耐熱性も向上するので好ましい。 このような好ましい特性は、3,4′−ジアミノ
ジフエニルエーテルおよび4,4′−ジアミノジフ
エニルエーテルをそれぞれ単独で、または組合せ
て、あるいはこれらのジアミノジフエニルエーテ
ルと4,4′−ジアミノジフエニルメタンとを組合
せて用いると特に顕著である。組合せて用いる場
合には、3,4′−ジアミノジフエニルエーテルお
よび/または4,4′−ジアミノジフエニルエーテ
ルが、全ジアミン成分中30モル%以上用いられる
のが好ましく、特に50モル%以上用いられるのが
好ましい。 例えば、この発明で使用する芳香族ポリイミド
製気体分離膜の製造方法としては、前述の芳香族
ジアミン(他の芳香族ジアミンを含有していても
よい)からなる芳香族ジアミン成分と前述のビフ
エニルテトラカルボン酸成分とを略等モル、フエ
ノール系化合物の有機溶媒中約140℃以上の温度
で一段階で重合およびイミド化して芳香族ポリイ
ミドを生成し、その芳香族ポリイミド溶液(濃
度:約3〜30重量%)をドープ液として使用して
約30〜150℃の温度の基材上に塗布または流延あ
るいは中空糸膜状に押出してドープ液の薄膜(平
膜または中空糸)を形成し、次いでその薄膜を凝
固液に浸漬して凝固膜を形成しその凝固膜から溶
媒、凝固液などを洗浄、除去し、最後に熱処理し
て芳香族ポリイミド製の非対称気体分離膜を形成
する製膜法を挙げることができる。 次に本発明の実施例を示す。 実施例 1 3,3′,4,4′−ビフエニルテトラカルボン酸
二無水物100モル%のテトラカルボン酸成分と、
4,4′−ジアミノジフエニルエーテル60モル%、
3,5−ジアミノ安息香酸30モル%および4,
4′−ジアミノジフエニルメタン10モル%からなる
ジアミン成分とを重合して得られた芳香族ポリイ
ミドを用いて製膜した中空糸膜(外径337μm、
内径198μm)を準備した。 この中空糸膜を16本束ねて中空糸膜の一方の端
を封止し、有効長さ5.9cm、有効膜面積9.99cm2
糸束(気体分離膜モジユール)を作成した。 65重量%のエタノール水溶液を大気圧下に蒸発
器で気化させてエタノール蒸気と水蒸気とを含む
気体混合物を得た。この気体混合物を気体分離膜
モジユールに導入し、中空糸膜の外側表面に接触
させた。中空糸膜に接触させる気体混合物の温度
は、ヒーターで加熱することにより順次昇温し
て、87、112、および125℃とした。一方、中空糸
膜内は減圧(4mmHg)に維持した。 上記の条件による運転により中空糸膜内部に透
過した蒸気をドライアイス−エタノールトラツプ
で凝縮捕集した。他方、中空糸膜未透過の気体混
合物は、蒸発器に戻し循環運転した。 上記のトラツプで捕集した凝縮物の成分のう
ち、エタノール濃度はガスクロマトグラフ法によ
り分析し、水分は全量からエタノール分を差し引
いた値とした。このようにして得た各成分の濃度
から、水蒸気の透過速度とエタノールに対する水
蒸気の選択透過性とを算出し、気体分離性能を評
価した。その結果を第1表に示す。 実施例 2 3,3′,4,4′−ビフエニルテトラカルボン酸
二無水物100モル%のテトラカルボン酸成分と、
o−トリジンスルホン90モル%および4,4′−ジ
アミノジフエニルメタン10モル%のジアミン成分
とを重合して得られた芳香族ポリイミドを用いて
製膜した中空糸膜(外径439μm、内径243μm)
を準備した。 この中空糸膜を10本束ねて中空糸膜の一方の端
を封止し、有効長さ4.7cm、有効膜面積7.44cm2
糸束(気体分離膜モジユール)を作成した。 50重量%のエタノール水溶液を用い、中空糸膜
に接触させる気体混合物の温度を順次昇温して、
103、111、および125℃とした以外は実施例1と
同様にして、気体分離性能を評価した。その結果
を第1表に示す。
[Industrial Field of Application] The present invention relates to a method for dehydrating and concentrating an aqueous solution of an organic substance in a gas phase. [Background of the Invention] Conventionally, distillation has been generally adopted as a method for dehydrating aqueous solutions of organic substances. Azeotropic distillation and extractive distillation methods were used. For example, the following methods are used to produce ethanol from biomass. Since the concentration of ethanol produced from biomass is less than 10% by weight, it is first concentrated to an azeotropic composition of 95.6% by weight in the first distillation column using a distillation method, and then this is mixed with water to form an azeotropic mixture. A third component (entrainer) such as benzene, which has a boiling point lower than that of ethanol, is added to the azeotropic mixture, and azeotropic distillation is performed in a second distillation column to produce pure ethanol. but,
The second azeotropic distillation column has the disadvantage that it requires a large amount of energy to remove trace amounts of water from the water-ethanol azeotropic composition. In recent years, a pervaporation method has been proposed as an energy-saving method for dehydrating organic matter aqueous solutions that improves the drawbacks of the distillation method. This uses a gas separation membrane, and one of the membranes is supplied with an organic aqueous solution as a liquid, and the other membrane is maintained at a reduced pressure or a carrier gas is supplied to selectively allow water vapor to pass therethrough. However, in the pervaporation method, the gas separation membrane comes into direct contact with the organic aqueous solution, which causes the membrane to swell, resulting in a decrease in permselectivity.
The disadvantage is that long-term durability may be lost. Another method is to use a gas separation membrane, supply one side of the membrane with a gas mixture containing organic vapor and water vapor obtained by vaporizing an organic aqueous solution, and maintain the other side at reduced pressure, or supply an inert gas as a carrier gas. A gas-phase dehydration method has also been proposed, in which water vapor is selectively permeated through the dehydration process. For example, a method using a ceramic porous hollow fiber membrane [Membrane, 10(5), 297
(1985)], a method using a membrane made of polyamide, cellulose, cellulose acetate, etc.
99314] has been reported. In the method using ceramic porous hollow fiber membrane,
Since the hollow fiber membrane is an inorganic membrane, it will not swell; however, due to the brittle nature of ceramic, the hollow fiber membrane has the drawback of being easily broken or damaged. Furthermore, since it is difficult to manufacture thin hollow fiber membranes using inorganic membranes, the effective membrane area becomes small when packed as a module, which is disadvantageous in practice. A method using a membrane made of polyamide, cellulose, cellulose acetate, etc. is a method using an organic membrane. In order to dehydrate a gas mixture containing organic vapor and water vapor, it is necessary to operate at a temperature higher than the boiling point of the organic aqueous solution, so the gas separation membrane used in this method has high heat resistance and organic resistance. Solvent property is required. But polyamide,
Organic membranes such as cellulose and cellulose acetate are
It has the drawback that it has insufficient heat resistance and organic solvent resistance, and particularly lacks stability in separation and permeation performance during long-term continuous use. Furthermore, organic membranes such as polyamide, cellulose, and cellulose acetate are not sufficient in terms of water vapor permeation rate and water vapor selective permeability for organic gases. [Object of the invention] The present invention involves vaporizing an aqueous solution containing an organic substance to generate a gas mixture containing organic substance vapor and water vapor, and then selectively permeating and removing water vapor from this gas mixture using a gas separation membrane. It is an object of the present invention to provide an improved method for dehydrating and concentrating an aqueous solution of organic matter, which comprises obtaining a gas mixture containing organic matter vapor with a reduced amount of water vapor. [Summary of the Invention] The present invention involves vaporizing an aqueous solution containing an organic substance to generate a gas mixture containing organic substance vapor and water vapor, and then applying this gas mixture to one side of a gas separation membrane at a temperature of 70°C or higher. While in contact, the water vapor is selectively permeated and removed by keeping the other side of the membrane under reduced pressure or supplying a carrier gas to the membrane surface on the other side. A method for dehydrating and concentrating an aqueous solution of organic matter, comprising obtaining a gas mixture containing organic matter vapor with a reduced amount of water vapor, the method comprising using a gas separation membrane made of aromatic polyimide as the gas separation membrane. be. [Detailed Description of the Invention] The organic matter to which the method of dehydrating and concentrating an aqueous organic matter solution of the present invention can be applied has a boiling point of 200°C or less, preferably a boiling point of
150°C or less, particularly preferably an organic substance that is liquid at room temperature (25°C). Such organic substances include methanol, ethanol, n-propanol, isopropanol, n-butanol,
Aliphatic alcohols such as sec-butanol, tert-butanol, and ethylene glycol, alicyclic alcohols such as cyclohexanol, aromatic alcohols such as benzyl alcohol, organic carboxylic acids such as formic acid, acetic acid, propionic acid, and butyric acid, butyl acetate, Esters such as ethyl acetate, acetone,
Examples include ketones such as methyl ethyl ketone, cyclic ethers such as tetrahydrofuran and dioxane, and organic amines such as dibutylamine and aniline. The present invention can be preferably used for dehydrating an aqueous solution containing alcohol among the above-mentioned organic substances, and particularly preferably for dehydrating an aqueous solution containing ethanol or isopropanol. Although there is no particular restriction on the organic matter concentration of the organic matter aqueous solution to be dehydrated and concentrated, the present invention is advantageous for dehydrating and concentrating an organic matter-containing aqueous solution having an organic matter concentration of 50% by weight or more, particularly 90% by weight or more. The present invention is a method for separating a gas mixture containing organic vapor obtained by vaporizing an organic aqueous solution and water vapor using a gas separation membrane, and is characterized in that an aromatic polyimide gas separation membrane is used as the gas separation membrane. In the pervaporation method, the temperature of the system on the primary side (gas supply side) of the membrane needs to be below the boiling point in order to supply the organic aqueous solution in liquid form to the gas separation membrane, but in the present invention, the organic aqueous solution is vaporized. In order to supply gas to the gas separation membrane, the temperature of the system on the primary side of the membrane must be higher than the boiling point of the organic aqueous solution, generally 70°C or higher. In particular, when a gas mixture containing organic vapor and water vapor is compressed and raised in order to increase the water vapor partial pressure difference between both sides of the gas separation membrane, the operation will be performed at an even higher temperature. In implementing the present invention, water vapor can be selectively separated by, for example, maintaining the secondary side (gas permeation side) of the membrane at reduced pressure to ensure a water vapor partial pressure difference on both sides of the gas separation membrane. Water vapor is selectively removed from the gas mixture fed to the primary side by passing through the membrane. The higher the degree of pressure reduction, the higher the permeation rate. It is desirable that the degree of vacuum is at least such that the gas mixture that has permeated to the secondary side of the membrane does not condense. In order to ensure the necessary degree of vacuum, the pressure in the system on the secondary side of the membrane is usually 100 mmHg or less, preferably 10 mmHg or less. Furthermore, instead of maintaining the secondary side of the membrane at a reduced pressure, it is also possible to selectively permeate and remove water vapor by flowing dry gas as a carrier gas over the secondary side surface. Aromatic polyimide gas separation membranes are known as gas separation membranes with excellent heat resistance and organic solvent resistance. Gas separation membranes made of aromatic polyimide are generally used to separate carbon dioxide, hydrogen, and carbon monoxide from gas mixtures, and to separate water vapor from gas mixtures containing methane gas vapor and water vapor.
However, it was not known that it could be used to separate water vapor from a gas mixture containing liquid organic vapor and water vapor at room temperature (25°C). Since the aromatic polyimide gas separation membrane has an excellent water vapor permeation rate and high water vapor selective permselectivity, it is possible to reduce the permeation loss of organic vapor and downsize the gas separation device.
Aromatic polyimide has excellent heat resistance and organic solvent resistance, so it can be heated above the boiling point of the organic matter aqueous solution, and used to contain organic matter vapor and water vapor in order to expand the water vapor partial pressure difference on both sides of the gas separation membrane. It can also be used when compressing and raising gas mixtures. Furthermore, aromatic polyimide can be used continuously for a long period of time without reducing permselectivity even in a high temperature range. The aromatic polyimide gas separation membrane used in the present invention has a sufficiently high water vapor permeation rate and high water vapor selective permeability relative to other organic vapor components. In order to continuously dehydrate an organic aqueous solution, it is desirable that the water vapor permeation rate is high, and when performing this separation operation, the water vapor permeation rate (P' [H 2 O]) should be 0.5 × 10 -3 cm 3 /cm 2・It is desirable that it is higher than seconds/cmHg. If it is less than this value, the time required for dehydration is too long, which is extremely disadvantageous for obtaining continuously dehydrated organic vapor on an industrial scale. In addition, in order to increase dehydration efficiency, it is desirable that the ratio of the permeation rate of water vapor to organic vapor is large, and when performing separation operations, the water vapor permeation rate (P′ [H 2 O]) at 100°C and the ethanol permeation rate should be Ratio of velocity (P′[C 2 H 5 OH]) (permselectivity:
P′[H 2 O]/P′[C 2 H 5 OH]) is preferably 20 or more. If it is less than this value, the permeation loss of organic vapor becomes large, which is industrially disadvantageous. The aromatic polyimide gas separation membrane has a membrane pressure of 10μ.
It is preferable that the diameter is 200 μm or more, and it is preferable to use the module in the form of a bundle of hollow fiber membranes having a large effective membrane area, but spiral membranes and flat membranes can also be used. The aromatic polyimide gas separation membrane described above is made of an aromatic polyamic acid obtained by polymerizing (and imidizing) an acid component consisting of an aromatic tetracarboxylic acid or its acid dianhydride and an aromatic diamine component. Gas separation membranes with an asymmetric structure (membranes that have a homogeneous layer and a porous layer integrated) formed by a wet film forming method using a coagulating liquid, or aromatic polyimide It is a composite separation membrane manufactured by forming a thin homogeneous layer of aromatic polyimide on the surface of a porous membrane made of an appropriate material using a solution, etc., and has sufficient gas separation performance for water vapor as described above. Mention may be made of gas separation membranes. The aromatic tetracarboxylic acid skeleton of the aromatic polyimide includes 3,3',4,4'-benzophenonetetracarboxylic acid, 2,3,3',4'-benzophenonetetracarboxylic acid, pyromellitic acid, 3, 3′,
4,4'-biphenyltetracarboxylic acid and 2,
Examples include 3,3',4'-biphenyltetracarboxylic acid, and tetracarboxylic acid skeletons derived from acid dianhydrides, esters, salts, etc. of these aromatic tetracarboxylic acids. Among these, biphenyltetracarboxylic acid dianhydride, 2,3,3',4'-biphenyltetracarboxylic acid dianhydride, etc. The present invention is particularly useful when using an aromatic polyimide gas separation membrane whose main acid skeleton is an acid skeleton derived from enyltetracarboxylic dianhydride. The aromatic diamine skeleton of the aromatic polyimide includes p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 3,5-diaminobenzoic acid, 3,4'-diaminodiphenyl ether, 4, 4′-diaminodiphenyl ether,
4,4'-diaminodiphenylmethane, o-tolidine, 1,4-bis(4-aminophenoxy)benzene, o-tolidinesulfone, bis(aminophenoxy-phenyl)methane and bis(aminophenoxy-phenyl)sulfone, etc. I can do it. In particular, when at least one diamine selected from the group consisting of 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, and diaminodiphenylmethane is used as the aromatic diamine skeleton, The above-mentioned excellent water vapor permeation rate (P′[H 2 O]) and selective permeability to water vapor ethanol (P′[H 2 O]/P′[C 2 H 5 OH]) are obtained, and furthermore, heat resistance is also achieved. This is preferable because it improves the performance. These favorable properties are due to the combination of 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether, each alone or in combination, or these diaminodiphenyl ethers and 4,4'-diaminodiphenyl ether. This is particularly noticeable when used in combination with enylmethane. When used in combination, 3,4'-diaminodiphenyl ether and/or 4,4'-diaminodiphenyl ether are preferably used in an amount of 30 mol% or more, particularly 50 mol% or more of the total diamine component. Preferably. For example, the method for manufacturing the aromatic polyimide gas separation membrane used in the present invention includes an aromatic diamine component consisting of the above-mentioned aromatic diamine (which may contain other aromatic diamines) and the above-mentioned biphenyl Aromatic polyimide is produced by polymerizing and imidizing approximately equimolar amounts of the phenolic compound with the tetracarboxylic acid component in an organic solvent at a temperature of about 140°C or higher in one step, and the aromatic polyimide solution (concentration: about 3 to 30% by weight) is used as a dope liquid to form a thin film (flat membrane or hollow fiber) of the dope liquid by coating or casting on a substrate at a temperature of about 30 to 150°C or extruding it into a hollow fiber membrane. Next, the thin film is immersed in a coagulation liquid to form a coagulation membrane, and the solvent, coagulation liquid, etc. are washed and removed from the coagulation membrane, and finally heat-treated to form an asymmetric gas separation membrane made of aromatic polyimide. can be mentioned. Next, examples of the present invention will be shown. Example 1 100 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component;
4,4'-diaminodiphenyl ether 60 mol%,
30 mol% 3,5-diaminobenzoic acid and 4,
A hollow fiber membrane (outer diameter 337 μm,
(inner diameter 198 μm) was prepared. Sixteen of these hollow fiber membranes were bundled and one end of the hollow fiber membranes was sealed to create a fiber bundle (gas separation membrane module) with an effective length of 5.9 cm and an effective membrane area of 9.99 cm 2 . A 65% by weight aqueous ethanol solution was vaporized in an evaporator under atmospheric pressure to obtain a gas mixture containing ethanol vapor and water vapor. This gas mixture was introduced into the gas separation membrane module and contacted the outer surface of the hollow fiber membrane. The temperature of the gas mixture brought into contact with the hollow fiber membrane was raised sequentially by heating with a heater to 87, 112, and 125°C. On the other hand, the inside of the hollow fiber membrane was maintained at reduced pressure (4 mmHg). The vapor that permeated inside the hollow fiber membrane during operation under the above conditions was condensed and collected in a dry ice-ethanol trap. On the other hand, the gas mixture that did not pass through the hollow fiber membrane was returned to the evaporator for circulation. Among the components of the condensate collected in the above trap, the ethanol concentration was analyzed by gas chromatography, and the water content was determined by subtracting the ethanol content from the total amount. From the concentration of each component thus obtained, the water vapor permeation rate and the selective permselectivity of water vapor to ethanol were calculated, and the gas separation performance was evaluated. The results are shown in Table 1. Example 2 100 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component;
Hollow fiber membrane (outer diameter 439 μm, inner diameter 243 μm) produced using aromatic polyimide obtained by polymerizing 90 mol% of o-tolidine sulfone and 10 mol% of 4,4'-diaminodiphenylmethane as a diamine component. )
prepared. Ten of these hollow fiber membranes were bundled and one end of the hollow fiber membranes was sealed to create a fiber bundle (gas separation membrane module) with an effective length of 4.7 cm and an effective membrane area of 7.44 cm 2 . Using a 50% by weight aqueous ethanol solution, the temperature of the gas mixture brought into contact with the hollow fiber membrane was raised in sequence,
Gas separation performance was evaluated in the same manner as in Example 1 except that the temperatures were 103, 111, and 125°C. The results are shown in Table 1.

【表】 実施例 3 実施例1と同一組成の芳香族ポリイミド製中空
糸膜(外径1000μm、内径666μm)を準備した。 この中空糸膜を束ねて中空糸膜の一方の端を封
止し、有効長さ150cm、有効膜面積1.0m2の糸束
(気体分離膜モジユール)を作成した。 50重量%のエタノール水溶液を蒸発器で全量気
化させ、エタノール蒸気と水蒸気とを含む気体混
合物を100℃に加熱し0.36Nm3/時の速度で上記
の中空糸膜の外側表面に接触させた。中空糸膜の
内部を減圧側にして200mmHgに維持し、中空糸膜
内部に透過した蒸気をドライアイス−エタノール
トラツプで凝縮捕集した。該凝縮トラツプには
11.7重量%のエタノール水溶液が234.7g/時の
速度で得られた。他方、中空糸膜未透過気体混合
物の出口には、共沸組成を超えて99.5重量%にま
で濃縮されたエタノール蒸気が0.089Nm3/時の
速度で得られた。 実施例 4 50重量%のエタノール水溶液100.0gを大気圧
下に蒸発器で気化させ、エタノール蒸気と水蒸気
とを含む気体混合物を100℃に加熱して実施例1
の糸束(気体分離膜モジユール)に実施例1と同
様にして接触させた。そして、中空糸膜の内部を
減圧側にして4mmHgに維持し、中空糸膜内部に
透過した蒸気をドライアイス−エタノールトラツ
プで凝縮捕集した。他方、中空糸膜未透過の気体
混合物は、蒸発器に戻し循環運転した。 36時間後、蒸発器に残留するエタノール水溶液
は67.9gとなり、一方エタノール濃度は70.5重量
%となつた。また、上記凝縮トラツプにはエタノ
ール濃度3.7%のエタノール水溶液が30.7g捕集
された。 実施例 5 94.3重量%のエタノール水溶液99.8gを大気圧
下に蒸発器で気化させ、エタノール蒸気と水蒸気
とを含む気体混合物を102℃に加熱して実施例1
の糸束(気体分離膜モジユール)に実施例1と同
様にして接触させた。そして中空糸膜の内部を減
圧側にして3mmHgに維持し、中空糸膜内部に透
過した蒸気をドライアイス−エタノールトラツプ
で凝縮捕集した。他方、中空糸膜未透過の気体混
合物は、蒸発器に戻し循環運転した。 31時間後、蒸発器に残留するエタノール水溶液
は92.4gとなり、エタノール濃度共沸組成を超え
て97.9重量%になつていた。上記凝縮トラツプに
はエタノール濃度34.2%のエタノール水溶液が
5.3g捕集された。 実施例 6 65重量%のエタノール水溶液を大気圧下に蒸発
器で気化させ、エタノール蒸気と水蒸気とを含む
気体混合物を100℃に加熱して実施例1の糸束
(気体分離膜モジユール)に実施例1の同様にし
て接触させた。そして、中空糸膜の内部を減圧側
にして4mmHgに維持し、中空糸膜内部に透過し
た蒸気をドライアイス−エタノールトラツプで凝
縮捕集した。他方、中空糸膜未透過の気体混合物
は、蒸発器に戻し循環運転した。 この装置を500時間運転し、この間の水蒸気の
透過速度およびエタノールに対する水蒸気の選択
透過性の経時変化を測定した。その結果を第2表
に示す。
[Table] Example 3 An aromatic polyimide hollow fiber membrane (outer diameter 1000 μm, inner diameter 666 μm) having the same composition as in Example 1 was prepared. This hollow fiber membrane was bundled and one end of the hollow fiber membrane was sealed to create a fiber bundle (gas separation membrane module) with an effective length of 150 cm and an effective membrane area of 1.0 m 2 . The entire amount of the 50% by weight aqueous ethanol solution was vaporized in an evaporator, and the gas mixture containing ethanol vapor and water vapor was heated to 100° C. and brought into contact with the outer surface of the hollow fiber membrane at a rate of 0.36 Nm 3 /hour. The pressure inside the hollow fiber membrane was maintained at 200 mmHg on the reduced pressure side, and the vapor that permeated inside the hollow fiber membrane was condensed and collected in a dry ice-ethanol trap. The condensation trap has
An 11.7% by weight aqueous ethanol solution was obtained at a rate of 234.7 g/hour. On the other hand, at the outlet of the gas mixture that did not permeate through the hollow fiber membrane, ethanol vapor concentrated to 99.5% by weight exceeding the azeotropic composition was obtained at a rate of 0.089 Nm 3 /hour. Example 4 100.0 g of a 50% by weight aqueous ethanol solution was vaporized in an evaporator under atmospheric pressure, and the gas mixture containing ethanol vapor and water vapor was heated to 100°C.
was brought into contact with the yarn bundle (gas separation membrane module) in the same manner as in Example 1. Then, the pressure inside the hollow fiber membrane was maintained at 4 mmHg on the reduced pressure side, and the vapor that permeated inside the hollow fiber membrane was condensed and collected in a dry ice-ethanol trap. On the other hand, the gas mixture that did not pass through the hollow fiber membrane was returned to the evaporator for circulation. After 36 hours, the amount of ethanol aqueous solution remaining in the evaporator was 67.9 g, while the ethanol concentration was 70.5% by weight. Additionally, 30.7 g of an aqueous ethanol solution with an ethanol concentration of 3.7% was collected in the condensation trap. Example 5 99.8 g of a 94.3% by weight aqueous ethanol solution was vaporized in an evaporator under atmospheric pressure, and the gas mixture containing ethanol vapor and water vapor was heated to 102°C.
was brought into contact with the yarn bundle (gas separation membrane module) in the same manner as in Example 1. Then, the pressure inside the hollow fiber membrane was maintained at 3 mmHg on the reduced pressure side, and the vapor that permeated inside the hollow fiber membrane was condensed and collected in a dry ice-ethanol trap. On the other hand, the gas mixture that did not pass through the hollow fiber membrane was returned to the evaporator for circulation. After 31 hours, the ethanol aqueous solution remaining in the evaporator weighed 92.4 g, exceeding the ethanol concentration azeotropic composition and reaching 97.9% by weight. The above condensation trap contains an ethanol aqueous solution with an ethanol concentration of 34.2%.
5.3g was collected. Example 6 A 65% by weight aqueous ethanol solution was vaporized in an evaporator under atmospheric pressure, and the gas mixture containing ethanol vapor and water vapor was heated to 100°C and applied to the yarn bundle (gas separation membrane module) of Example 1. Contact was made in the same manner as in Example 1. Then, the pressure inside the hollow fiber membrane was maintained at 4 mmHg on the reduced pressure side, and the vapor that permeated inside the hollow fiber membrane was condensed and collected in a dry ice-ethanol trap. On the other hand, the gas mixture that did not pass through the hollow fiber membrane was returned to the evaporator for circulation. This device was operated for 500 hours, and changes over time in the water vapor permeation rate and water vapor permselectivity relative to ethanol were measured during this period. The results are shown in Table 2.

【表】【table】

【表】 実施例6の結果から芳香族ポリイミド製気体分
離膜が長期間にわたり安定した性能を維持するこ
とが明らかである。 実施例 7 実施例1で使用した芳香族ポリイミド製中空糸
膜16本(有効膜面積9.82cm2)を束ねて、キヤリヤ
ーガス供給口および排出口、気体混合物供給口お
よび排出口を有する密封容器に内蔵した気体分離
膜モジユールを準備した。 65重量%のエタノール水溶液を大気圧下に蒸発
器で気化させ、エタノール蒸気と水蒸気とを含む
気体混合物を90に加熱して上記気体混合物供給口
から上記の気体分離膜モジユールに供給し中空糸
膜の外側表面に接触させた。次いで、キヤリヤー
ガスを上記供給口から中空糸膜内部に供給して流
通させた。透過した気体混合物を伴つて上記キヤ
リヤーガス排出口から排出されたキヤリヤーガス
をドライアイス−エタノールトラツプに導き、透
過した気体混合物を凝集捕集した。キヤリヤーガ
ス排出口からドライアイス−エタノールトラツプ
までの導管は、45℃に保温して透過した気体混合
物の凝縮を避けた。他方、中空糸膜未透過の気体
混合物は、上記気体混合物排出口から蒸発器に戻
し循環運転した。 凝縮物をガスクロマトグラフ法により分析し、
実施例1と同様にして水蒸気の透過速度とエタノ
ールに対する水蒸気の選択透過性とを算出した。
その結果を第3表に示す。
[Table] From the results of Example 6, it is clear that the aromatic polyimide gas separation membrane maintains stable performance over a long period of time. Example 7 The 16 aromatic polyimide hollow fiber membranes used in Example 1 (effective membrane area 9.82 cm 2 ) were bundled and housed in a sealed container having a carrier gas supply and discharge port, and a gas mixture supply and discharge port. A gas separation membrane module was prepared. A 65% by weight aqueous ethanol solution is vaporized in an evaporator under atmospheric pressure, and a gas mixture containing ethanol vapor and water vapor is heated to 90°C and supplied from the gas mixture supply port to the gas separation membrane module to form a hollow fiber membrane. in contact with the outer surface of the Next, a carrier gas was supplied and circulated inside the hollow fiber membrane from the above-mentioned supply port. The carrier gas discharged from the carrier gas outlet together with the permeated gas mixture was led to a dry ice-ethanol trap, and the permeated gas mixture was coagulated and collected. The conduit from the carrier gas outlet to the dry ice-ethanol trap was kept at 45°C to avoid condensation of the permeated gas mixture. On the other hand, the gas mixture that did not pass through the hollow fiber membrane was returned to the evaporator through the gas mixture outlet and circulated. Analyze the condensate by gas chromatography,
In the same manner as in Example 1, the water vapor permeation rate and the selective permselectivity of water vapor to ethanol were calculated.
The results are shown in Table 3.

【表】 実施例 8 実施例1と同一組成の芳香族ポリイミド製中空
糸膜(外径524μm、内径398μm)を準備した。
この中空糸膜を用い、65重量%のイソプロパノー
ル水溶液を使用し、気体混合物温度を120℃に設
定した以外は、実施例1と同様にして該中空糸膜
の気体分離性能を評価した。 水蒸気透過速度は1.16×10-3cm3/cm2・秒・cm
Hg、イソプロパノールに対する水蒸気の選択透
過性(P′[H2O]/P′[i−C3H7OH])は30900で
あつた。 実施例 9〜14 3,3′,4,4′−ビフエニルテトラカルボン酸
二無水物100モル%のテトラカルボン酸成分と第
4表記載の芳香族ジアミン成分とを重合して得ら
れた芳香族ポリイミドを使用した以外は、実施例
1と同様にして、芳香族ポリイミド中空糸膜を準
備した。この中空糸膜を用い、気体混合物の温度
を100℃に設定した以外は、実施例1と同様にし
て、該中空糸膜の気体分離性能を評価した。その
結果を第4表に示す。 また、未使用の中空糸膜を、150℃の熱水中に
20時間浸漬処理し、その処理前後の中空糸膜をそ
れぞれ溶媒に一定量溶解して対数粘度(測定温
度:30℃、濃度:0.5g−ポリイミド/100ml溶
媒、溶媒:o−クロロフエノール/p−クロロフ
エノール=1/4(重量比))の変化を調べ、該中
空糸膜の耐熱水性を評価した。その結果を第4表
に示す。 対数粘度は、下記の式で表わされる量であつ
て、芳香族ポリイミドの分子量と高い相関がある
量である。 対数粘度=自然対数(溶液粘度/溶媒粘度)/溶液濃
度 すなわち、上記熱水処理前の対数粘度に対して
処理後の対数粘度の保持率が高いポリマーほど、
処理前の分子量を維持しており、耐熱水性が高い
ことを示す。
[Table] Example 8 An aromatic polyimide hollow fiber membrane (outer diameter 524 μm, inner diameter 398 μm) having the same composition as in Example 1 was prepared.
Using this hollow fiber membrane, the gas separation performance of the hollow fiber membrane was evaluated in the same manner as in Example 1, except that a 65% by weight aqueous isopropanol solution was used and the gas mixture temperature was set at 120°C. Water vapor transmission rate is 1.16×10 -3 cm 3 /cm 2・sec・cm
The selective permeability of water vapor (P'[H 2 O]/P'[i-C 3 H 7 OH]) with respect to Hg and isopropanol was 30,900. Examples 9 to 14 Aromatics obtained by polymerizing 100 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component and an aromatic diamine component listed in Table 4 An aromatic polyimide hollow fiber membrane was prepared in the same manner as in Example 1, except that the polyimide group polyimide was used. Using this hollow fiber membrane, the gas separation performance of the hollow fiber membrane was evaluated in the same manner as in Example 1, except that the temperature of the gas mixture was set at 100°C. The results are shown in Table 4. In addition, unused hollow fiber membranes were placed in hot water at 150°C.
After immersion treatment for 20 hours, a certain amount of the hollow fiber membrane before and after the treatment was dissolved in a solvent to determine the logarithmic viscosity (measurement temperature: 30°C, concentration: 0.5g polyimide/100ml solvent, solvent: o-chlorophenol/p- The hot water resistance of the hollow fiber membrane was evaluated by examining the change in chlorophenol=1/4 (weight ratio). The results are shown in Table 4. The logarithmic viscosity is an amount expressed by the following formula, and is an amount that is highly correlated with the molecular weight of the aromatic polyimide. Logarithmic viscosity = natural logarithm (solution viscosity / solvent viscosity) / solution concentration In other words, the higher the retention rate of the logarithmic viscosity after treatment compared to the logarithmic viscosity before the above-mentioned hot water treatment, the more
The molecular weight before treatment is maintained, indicating high hot water resistance.

【表】【table】

【表】 実施例 15 実施例1と同様の方法で製造した中空糸膜を、
エタノールの沸騰蒸気に1週間継続して接触させ
る処理を行ない、耐有機溶剤性を評価したが、外
観上の変化は認められなかつた。 上記と同一の中空糸膜を用い、気体混合物の温
度をまず100℃、次いで120℃に昇温したのち再び
100℃とした以外は、実施例1と同様にして気体
分離性能を評価した。その結果を第5表に示す。 気体混合物の温度を100℃から120℃に昇温した
ことによつて低下した水蒸気透過速度は、気体混
合物の温度を再び100℃に戻したところほぼ元の
性能を回復した。 比較例 1 アセチル化度39.8%、厚さ6μmの酢酸セルロー
スフイルムを、エタノールに室温で20時間浸漬
し、耐有機溶剤性を評価したが、外観上の変化は
認められなかつた。 比較例1で使用した酢酸セルロースフイルム
(有効面積13.8cm2)と同一のフイルムを用いた以
外は、実施例15と同様にして気体分離性能を評価
した。その結果を第5表に示す。 気体混合物の温度を100℃から120℃に昇温した
ことによつて低下した水蒸気透過速度は、気体混
合物の温度を再び100℃に戻しても回復すること
はなかつた。
[Table] Example 15 A hollow fiber membrane produced in the same manner as in Example 1 was
The organic solvent resistance was evaluated by contacting it with boiling ethanol vapor for one week, but no change in appearance was observed. Using the same hollow fiber membrane as above, the temperature of the gas mixture was first raised to 100℃, then to 120℃, and then again.
Gas separation performance was evaluated in the same manner as in Example 1 except that the temperature was 100°C. The results are shown in Table 5. The water vapor transmission rate, which decreased when the temperature of the gas mixture was raised from 100°C to 120°C, recovered to almost its original performance when the temperature of the gas mixture was returned to 100°C. Comparative Example 1 A cellulose acetate film having a degree of acetylation of 39.8% and a thickness of 6 μm was immersed in ethanol at room temperature for 20 hours to evaluate its resistance to organic solvents, but no change in appearance was observed. Gas separation performance was evaluated in the same manner as in Example 15, except that the same cellulose acetate film (effective area 13.8 cm 2 ) used in Comparative Example 1 was used. The results are shown in Table 5. The water vapor transmission rate, which was decreased by raising the temperature of the gas mixture from 100°C to 120°C, did not recover even when the temperature of the gas mixture was returned to 100°C.

【表】【table】

Claims (1)

【特許請求の範囲】 1 有機物を含む水溶液を気化させて有機物蒸気
と水蒸気とを含む気体混合物を生成させ、次いで
この気体混合物を70℃以上の温度にて芳香族ポリ
イミド製気体分離膜の一方の側に接触させた状態
で水蒸気を選択的に透過除去し、これにより水蒸
気含有量が減少した有機物蒸気含有気体混合物を
得ることからなる有機物水溶液の脱水濃縮方法。 2 水蒸気の透過除去を、気体分離膜の他方の側
を減圧に保つことにより行なうことを特徴とする
特許請求の範囲第1項記載の有機物水溶液の脱水
濃縮方法。 3 水蒸気の透過除去を、気体分離膜の他方の側
の膜表面にキヤリアーガスを流通させることによ
り行なうことを特徴とする特許請求の範囲第1項
記載の有機物水溶液の脱水濃縮方法。 4 有機物が、25℃で液体の有機物であることを
特徴とする特許請求の範囲第1項記載の有機物水
溶液の脱水濃縮方法。 5 有機物が、エタノールもしくはイソプロパノ
ールであることを特徴とする特許請求の範囲第1
項記載の有機物水溶液の脱水濃縮方法。 6 芳香族ポリイミドが、芳香族テトラカルボン
酸骨格と芳香族ジアミン骨格とからなることを特
徴とする特許請求の範囲第1項記載の有機物水溶
液の脱水濃縮方法。 7 芳香族ポリイミドが、3,3′,4,4′−ビフ
エニルテトラカルボン酸二無水物および/または
2,3,3′,4′−ビフエニルテトラカルボン酸二
無水物から誘導される芳香族テトラカルボン酸骨
格を含むものであること特徴とする特許請求の範
囲第1項記載の有機物水溶液の脱水濃縮方法。 8 芳香族ポリイミドが、3,4′−ジアミノジフ
エニルエーテル、4,4′−ジアミノジフエニルエ
ーテル、およびジアミノジフエニルメタンからな
る群から選ばれた少なくとも一種のジアミンから
誘導される芳香族ジアミン骨格を含むものである
ことを特徴とする特許請求の範囲第1項記載の有
機物水溶液の脱水濃縮方法。 9 気体分離膜が、膜厚10μm以上200μm以下で
あることを特徴とする特許請求の範囲第1項記載
の有機物水溶液の脱水濃縮方法。 10 気体分離膜が、中空糸状一体膜であること
を特徴とする特許請求の範囲第1項記載の有機物
水溶液の脱水濃縮方法。
[Claims] 1. Vaporizing an aqueous solution containing organic matter to produce a gas mixture containing organic matter vapor and water vapor, and then applying this gas mixture to one side of an aromatic polyimide gas separation membrane at a temperature of 70°C or higher. 1. A method for dehydrating and concentrating an aqueous solution of organic matter, which comprises selectively permeating and removing water vapor in a state in which the water vapor is in contact with the sides, thereby obtaining an organic vapor-containing gas mixture with a reduced water vapor content. 2. The method for dehydrating and concentrating an aqueous solution of organic matter according to claim 1, wherein the permeation and removal of water vapor is carried out by maintaining the other side of the gas separation membrane at reduced pressure. 3. The method for dehydrating and concentrating an aqueous solution of organic matter according to claim 1, wherein the permeation and removal of water vapor is carried out by passing a carrier gas through the membrane surface on the other side of the gas separation membrane. 4. The method for dehydrating and concentrating an aqueous solution of an organic substance according to claim 1, wherein the organic substance is an organic substance that is liquid at 25°C. 5 Claim 1, wherein the organic substance is ethanol or isopropanol
A method for dehydrating and concentrating an aqueous solution of organic matter as described in Section 1. 6. The method for dehydrating and concentrating an aqueous solution of an organic substance according to claim 1, wherein the aromatic polyimide comprises an aromatic tetracarboxylic acid skeleton and an aromatic diamine skeleton. 7 Aromatic polyimide derived from 3,3',4,4'-biphenyltetracarboxylic dianhydride and/or 2,3,3',4'-biphenyltetracarboxylic dianhydride The method for dehydrating and concentrating an aqueous solution of an organic substance according to claim 1, characterized in that the aqueous solution contains a group tetracarboxylic acid skeleton. 8. An aromatic diamine skeleton in which the aromatic polyimide is derived from at least one diamine selected from the group consisting of 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, and diaminodiphenylmethane. A method for dehydrating and concentrating an aqueous solution of an organic substance according to claim 1, characterized in that the method comprises: 9. The method for dehydrating and concentrating an aqueous solution of organic matter according to claim 1, wherein the gas separation membrane has a thickness of 10 μm or more and 200 μm or less. 10. The method for dehydrating and concentrating an aqueous solution of organic matter according to claim 1, wherein the gas separation membrane is a hollow fiber integral membrane.
JP62228193A 1986-12-06 1987-09-11 Dehydrating concentration method for water solution containing organic substance Granted JPS63267415A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62228193A JPS63267415A (en) 1986-12-06 1987-09-11 Dehydrating concentration method for water solution containing organic substance
US07/384,878 US4978430A (en) 1986-12-06 1989-07-24 Method for dehydration and concentration of aqueous solution containing organic compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61-290832 1986-12-06
JP29083286 1986-12-06
JP62228193A JPS63267415A (en) 1986-12-06 1987-09-11 Dehydrating concentration method for water solution containing organic substance

Publications (2)

Publication Number Publication Date
JPS63267415A JPS63267415A (en) 1988-11-04
JPH0542288B2 true JPH0542288B2 (en) 1993-06-28

Family

ID=17761060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62228193A Granted JPS63267415A (en) 1986-12-06 1987-09-11 Dehydrating concentration method for water solution containing organic substance

Country Status (1)

Country Link
JP (1) JPS63267415A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841698B2 (en) * 1990-05-08 1998-12-24 宇部興産株式会社 Separation method of lower alcohol
JPH0463110A (en) * 1990-07-03 1992-02-28 Ube Ind Ltd Separation purification method of alcohol-containing reaction liquid
US5178650A (en) * 1990-11-30 1993-01-12 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes and process of using same
JPH0768134A (en) * 1993-06-29 1995-03-14 Ube Ind Ltd Method for removing moisture in oil
JP2009082842A (en) 2007-09-30 2009-04-23 Ube Ind Ltd Hollow fiber element for organic vapor separation
US8394176B2 (en) 2008-02-05 2013-03-12 Ube Industries, Ltd. Polyimide gas separation membrane and gas separation method
JP5077257B2 (en) * 2008-02-05 2012-11-21 宇部興産株式会社 Polyimide gas separation membrane and gas separation method
JP5298901B2 (en) * 2009-02-04 2013-09-25 宇部興産株式会社 High heat resistant polyimide fiber and manufacturing method thereof
JP5359908B2 (en) * 2009-02-04 2013-12-04 宇部興産株式会社 Polyimide gas separation membrane and gas separation method
US9248408B2 (en) 2009-03-31 2016-02-02 Ube Industries, Ltd. Hollow-fiber element for organic-vapor separation
EP2883592B1 (en) 2012-08-10 2020-09-02 UBE Industries, Ltd. Gas-separating membrane module

Also Published As

Publication number Publication date
JPS63267415A (en) 1988-11-04

Similar Documents

Publication Publication Date Title
US7556677B2 (en) Solvent resistant asymmetric integrally skinned membranes
US4978430A (en) Method for dehydration and concentration of aqueous solution containing organic compound
US8394176B2 (en) Polyimide gas separation membrane and gas separation method
US4997462A (en) Pervaporation method of selectively separating water from an organic material aqueous solution through aromatic imide polymer asymmetric membrane
JPH0542288B2 (en)
JP2743346B2 (en) Water-organic solution dehydration method
JPH02222717A (en) Gas separating membrane and separation of gas
JP2841698B2 (en) Separation method of lower alcohol
JPH0761411B2 (en) Concentration method of organic matter aqueous solution
JPH0693986B2 (en) Gas separation membrane and gas separation method
JP5077257B2 (en) Polyimide gas separation membrane and gas separation method
JP7135296B2 (en) gas separation membrane
JP2010202864A (en) New polyimide
JP2782769B2 (en) Pervaporation separation method of organic matter aqueous solution
JPH03284334A (en) Separation of lower alcohol
JP2782770B2 (en) Pervaporation separation method of organic matter aqueous solution
JP2544229B2 (en) Pervaporation separation method of organic compound mixture
JP5120345B2 (en) Polyimide gas separation membrane and gas separation method
JP7120375B2 (en) gas separation membrane
JPH0459004B2 (en)
JPH0636857B2 (en) Pervaporation separation method of organic matter aqueous solution
JP2717992B2 (en) Membrane separation of mixed vapor of organic matter and water
JP5120344B2 (en) Polyimide gas separation membrane and gas separation method
JP2021154279A (en) Gas separation membrane
CA2532573C (en) Solvent resistant asymmetric integrally skinned membranes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees