JPH0542201B2 - - Google Patents

Info

Publication number
JPH0542201B2
JPH0542201B2 JP59088293A JP8829384A JPH0542201B2 JP H0542201 B2 JPH0542201 B2 JP H0542201B2 JP 59088293 A JP59088293 A JP 59088293A JP 8829384 A JP8829384 A JP 8829384A JP H0542201 B2 JPH0542201 B2 JP H0542201B2
Authority
JP
Japan
Prior art keywords
chopper
field
armature
current
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59088293A
Other languages
Japanese (ja)
Other versions
JPS60234403A (en
Inventor
Takashi Tsuboi
Tsutomu Ozawa
Eiji Takatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59088293A priority Critical patent/JPS60234403A/en
Publication of JPS60234403A publication Critical patent/JPS60234403A/en
Publication of JPH0542201B2 publication Critical patent/JPH0542201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電気車制御装置に係り、特に直流電動
機の界磁をチヨツパ制御することにより、力行お
よび電気ブレーキ制御を行なう電気車に好適な制
御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an electric vehicle control device, and in particular to a control device suitable for an electric vehicle that performs power running and electric brake control by controlling the field of a DC motor in a choppy manner. Regarding.

〔発明の背景〕[Background of the invention]

チヨツパを用いた電気車制御方式として、特開
昭59−63902号公報に述べられているように、電
機子チヨツパと界磁チヨツパを並設するものが知
られている。
As an electric vehicle control method using a chopper, there is a known method in which an armature chopper and a field chopper are installed side by side, as described in Japanese Patent Laid-Open No. 59-63902.

ところで、電気車の前後進に亘つて、力行およ
び回生制動を、主回路の切換えなしに実行するた
めには、スイツチング素子により、界磁の励磁方
向を切換えることが望ましい。
By the way, in order to perform power running and regenerative braking while the electric vehicle moves forward and backward without switching the main circuit, it is desirable to switch the excitation direction of the field using a switching element.

このため、界磁チヨツパとして、橋絡部に界磁
を接続した4組のスイツチング素子から成るブリ
ツジ回路を構成することが考えられる。
For this reason, it is conceivable to configure a bridge circuit as a field chopper consisting of four sets of switching elements each having a field connected to a bridge portion.

しかし、この場合、スイツチング素子が誤点弧
すると電源短絡を生じ、大事故を誘発する危険が
ある。
However, in this case, if the switching element is ignited incorrectly, a short circuit may occur in the power supply, which may lead to a serious accident.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、界磁チヨツパ及び電機子チヨ
ツパを備えた電気車において、逆転器などにより
主回路を切換えることなく前後進の力行および回
生を夫々連続的に制御でき、かつ界磁チヨツパの
スイツチング素子の誤点弧が生じても大事故の危
険を防止することのできる電気車制御装置を提供
するにある。
An object of the present invention is to enable continuous control of forward and backward power running and regeneration, respectively, without switching the main circuit using a reversing device, etc., in an electric vehicle equipped with a field chopper and an armature chopper, and to control switching of the field chopper. An object of the present invention is to provide an electric vehicle control device that can prevent the risk of a major accident even if an element erroneously fires.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、減流抵抗器が並
列接続された遮断器と、この遮断器に直列接続さ
れた直流電動機の電機子と、この電機子に流れる
電流を制御する電機子チヨツパ装置と、直列接続
された2つのスイツチング手段2組を互いに並列
接続し、夫々の直列接続点間に前記直流電動機の
界磁を接続した回路構成を有する界磁チヨツパと
を備えた電気車制御装置において、前記界磁チヨ
ツパを前記減流抵抗器の中間タツプに接続したも
のである。これにより、電気車の前進および後進
時に、力行と回生の制御が、ほぼ無接点で実行で
き、界磁チヨツパを構成するスイツチング素子の
誤点弧が生じても大事故を誘発する惧れをなくす
ことができる。
The present invention is characterized by a circuit breaker in which current reducing resistors are connected in parallel, an armature of a DC motor connected in series with this circuit breaker, and an armature chopper device that controls the current flowing through this armature. and a field chopper having a circuit configuration in which two sets of switching means connected in series are connected in parallel to each other, and the field of the DC motor is connected between the respective series connection points. , the field chopper is connected to the intermediate tap of the current reducing resistor. As a result, power running and regeneration control can be performed almost without contact when the electric vehicle moves forward or backward, eliminating the risk of causing a major accident even if the switching elements that make up the field chopper accidentally fire. be able to.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の望ましい実施例
を説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

第1図は、電機子チヨツパ1と界磁チヨツパ2
をもち、直流電動機の電機子3の電圧を主(電機
子)チヨツパ1で制御し、界磁4の電流を界磁チ
ヨツパ2で制御することにより、電気車の力行制
御および回生ブレーキ制御を行なうものである。
Figure 1 shows armature chopper 1 and field chopper 2.
The voltage of the armature 3 of the DC motor is controlled by the main (armature) chopper 1, and the current of the field 4 is controlled by the field chopper 2, thereby performing power running control and regenerative braking control of the electric vehicle. It is something.

力行時は、パンタグラフ5、断流器6、フイル
タリアクトル7、高速度しや断器8を通じて、フ
イルタコンデンサ9が加圧され、フイルタコンデ
ンサ9を電源として、断流器10、電機子3、主
チヨツパ1の径路で電機子電流IMが流れる。主チ
ヨツパ1のオフ期間には、フリーホイールダイオ
ード11を通じて、電機子電流IMが還流する。
During power running, the filter capacitor 9 is pressurized through the pantograph 5, current interrupter 6, filter reactor 7, and high-speed shield interrupter 8. Using the filter capacitor 9 as a power source, the current interrupter 10, armature 3, and main Armature current I M flows in the path of chopper 1. During the off period of the main chopper 1, the armature current I M circulates through the freewheel diode 11.

一方、界磁回路は、例えば前進力行の場合には
フイルタコンデンサ9から減流抵抗器12を介し
て、界磁チヨツパ2の第1のスイツチング素子2
1、界磁4、界磁チヨツパ2の第2のスイツチン
グ素子22の径路で界磁電流IFが流れる。これら
のスイツチング素子21,22は、そのいずれか
が自己消弧機能を持つ必要があり、望ましくはい
ずれもGTOを用いる。さて、これらをオフした
時には、界磁電流IFは、フリーホイールダイオー
ド241,231及び抵抗12を介し、電源とな
つているフイルタコンデンサ9へ帰還される。な
お、スイツチング素子(チヨツパ単位)21は常
時導通状態に保ち、スイツチング素子(チヨツパ
単位)22のみをチヨツピング制御しても界磁制
御は可能である。この場合は、界磁電流はフリー
ホイールダイオード231、スイツチング素子2
1を通つて還流する。
On the other hand, in the case of forward power running, for example, the field circuit connects the filter capacitor 9 to the first switching element 2 of the field chopper 2 via the current reducing resistor 12.
1. A field current I F flows through the path of the field 4 and the second switching element 22 of the field chopper 2. Either of these switching elements 21, 22 must have a self-extinguishing function, and preferably GTOs are used for both. Now, when these are turned off, the field current I F is fed back via the freewheeling diodes 241, 231 and the resistor 12 to the filter capacitor 9 serving as the power source. Note that field control is possible even if the switching element (chipper unit) 21 is always kept in a conductive state and only the switching element (chhopper unit) 22 is subjected to chopping control. In this case, the field current flows through the freewheel diode 231 and the switching element 2.
Reflux through 1.

回生ブレーキ時は、電機子回路の断流器10を
開いておき、界磁チヨツパ2のスイツチング素子
23,24を制御することにより、界磁4を逆極
性に励磁する。界磁4が逆極性に励磁されるの
で、電機子電流IMは主チヨツパ1がオンの期間
に、チヨツパ1、高速度しや断器13、ダイオー
ド11を通つて流れ、オフの期間に、電機子3の
内部インダクタンスの作用によつて、フリーホイ
ールダイオード14を通じて、電源であるフイル
タコンデンサ9に電流が流れる。このフイルタコ
ンデンサ9からさらにパンタグラフ5を介して、
架線15に回生電流が流れ、電気車には回生ブレ
ーキが作用する。
During regenerative braking, the current interrupter 10 of the armature circuit is kept open, and the switching elements 23 and 24 of the field chopper 2 are controlled to excite the field 4 to the opposite polarity. Since the field 4 is excited with opposite polarity, the armature current I M flows through the chopper 1, the high speed shunt breaker 13, and the diode 11 during the period when the main chopper 1 is on, and during the period when the main chopper 1 is off, Due to the action of the internal inductance of the armature 3, current flows through the freewheel diode 14 to the filter capacitor 9, which is the power source. From this filter capacitor 9, further via the pantograph 5,
A regenerative current flows through the overhead wire 15, and a regenerative brake is applied to the electric vehicle.

もし、架線15側に回生電力を吸収する他の力
行車が居ない場合には、回生電流が架線側へ流れ
得ず、フイルタコンデンサ9が過充電されて過電
圧となる。フイルタコンデンサ9の電圧VCFは、
電圧検出器16によつて検出され、比較器17に
おいて制限電圧信号Vlと比較される。もし、コ
ンデンサ電圧信号VCFが制限電圧信号Vlを越える
と、比較器17は、過電圧抑制サイリスタ18を
点弧するので、抵抗器19により過電圧を吸収す
る。
If there is no other power running vehicle on the overhead wire 15 side that absorbs the regenerated power, the regenerative current cannot flow to the overhead wire side, and the filter capacitor 9 is overcharged, resulting in an overvoltage. The voltage V CF of the filter capacitor 9 is
It is detected by voltage detector 16 and compared with limit voltage signal Vl in comparator 17. If the capacitor voltage signal VCF exceeds the limit voltage signal Vl, the comparator 17 fires the overvoltage suppression thyristor 18, so that the resistor 19 absorbs the overvoltage.

以上は、前進力行および前進回生時の動作であ
るが、後進力行時は、界磁チヨツパ2内のスイツ
チング素子(チヨツパ単位)23,24を制御
し、また、後進回生時には、界磁チヨツパ2内の
スイツチング素子21,22を制御すれば、主チ
ヨツパ1に制御と相まつて、連続的な制御が可能
である。
The above is the operation during forward power running and forward regeneration. During reverse power running, the switching elements (chopper unit) 23 and 24 in the field chopper 2 are controlled, and during reverse regeneration, the switching elements in the field chopper 2 are controlled. By controlling the switching elements 21 and 22, it is possible to control the main chopper 1 continuously.

これらの制御のために、電機子チヨツパ制御装
置30、界磁チヨツパ制御装置31が設けられ、
これらは、該当チヨツパであるスイツチング素子
(チヨツパ単位)をオンさせるとき論理信号
“1”、オフさせるとき論理信号“0”となるオン
オフ指令信号a、f1〜f4を発生する。ゲートドラ
イブ回路32,331〜334は、前記論理信号
“1”のとき点弧信号を、“0”のとき消弧信号
を、例えばGTOで構成されるチヨツパ1、チヨ
ツパ2のスイツチング素子(チヨツパ単位)21
〜24へ与える。
For these controls, an armature chopper control device 30 and a field chopper control device 31 are provided.
These generate on/off command signals a, f 1 to f 4 which become a logic signal “1” when turning on the switching element (chopper unit) that is the corresponding chopper, and a logic signal “0” when turning it off. The gate drive circuits 32, 331 to 334 output an ignition signal when the logic signal is "1" and an extinguishing signal when the logic signal is "0" to the switching elements of chopper 1 and chopper 2 (chopper unit), which are configured by, for example, GTO. )21
~Give to 24.

この方式は、従来一般に実用されている直流直
巻電動機を用いたチヨツパ制御装置に比べて、電
気車の前後進切換えおよび力行、ブレーキの切換
えのための電機子または界磁の機械的接点による
極性切換装置が不要となり、大幅な無接点化が実
現出来るという大きな特徴がある。
This method uses mechanical contacts of the armature or field to control the polarity of the electric vehicle for forward/reverse switching, power running, and braking, compared to the chopper control device that uses a DC series-wound motor that has been generally used in the past. A major feature is that a switching device is not required, and a large number of contact points can be realized.

さて、減流抵抗12は、負荷時の接地等の過電
流故障に際し、高速度しや断器8を開き、過電流
をいつたん減流して、断流器6で最終的にしや断
するために設けられている抵抗器であつて、電気
車の保護機器として一般に用いられるものであ
る。
Now, the current reducing resistor 12 is used to open the high-speed circuit breaker 8 in the event of an overcurrent failure such as grounding during a load, to reduce the overcurrent once and for all, and to finally disconnect it at the current circuit breaker 6. This is a resistor installed in the electric car and is generally used as a protection device for electric cars.

減流抵抗12は、通常時は高速度しや断器8に
よりその両端が短絡されているが、界磁チヨツパ
2に対しては、直列に接続されているので、界磁
チヨツパ2の短絡が生じても、短絡電流の抑制効
果がある。減流抵抗12は、通常数オーム程度の
抵抗値であり、界磁チヨツパ2の保護用に必要な
抵抗値も同様に数オームのオーダであるから、両
者を共用することが可能である。
The current reducing resistor 12 is normally short-circuited at both ends by the high-speed shield breaker 8, but since it is connected in series to the field chopper 2, short-circuiting of the field chopper 2 is prevented. Even if it occurs, it has the effect of suppressing short circuit current. The current reducing resistor 12 usually has a resistance value of about several ohms, and the resistance value necessary for protecting the field chopper 2 is also of the order of several ohms, so it is possible to use both.

中間タツプQは必ずしも減流抵抗12の抵抗値
を2分する点に設ける必要はなく、中間点よりず
らせることにより、界磁チヨツパ2の保護に好適
な抵抗値を設定することができる。
The intermediate tap Q does not necessarily need to be provided at a point that divides the resistance value of the current reducing resistor 12 into two; by shifting it from the intermediate point, a resistance value suitable for protecting the field chopper 2 can be set.

一例を示せば、減流抵抗12として5オームが
必要であり、通常時、界磁チヨツパ2による電源
短絡を保護し、高速度しや断器8により100ミリ
秒程度の間にピーク電流を1500アンペア程度に抑
えるためには、約0.38オームが必要である。この
場合、中間タツプQを、抵抗値0.42オームと4.50
オームに分割する点に設ければ、これらの分割抵
抗の並列体により、界磁チヨツパ2と直列の抵抗
値約0.38オームを得ることができる。但し、減流
抵抗12は4.92オームである。
For example, a resistance of 5 ohms is required as the current reducing resistor 12. Under normal conditions, the field chopper 2 protects the power supply from short-circuiting, and the high-speed shield breaker 8 reduces the peak current to 1500 ohms in about 100 milliseconds. Approximately 0.38 ohm is required to keep it to about ampere. In this case, the intermediate tap Q has a resistance value of 0.42 ohm and 4.50 ohm.
If provided at the ohm dividing point, a resistance value of about 0.38 ohm in series with the field chopper 2 can be obtained by the parallel arrangement of these dividing resistors. However, the current reducing resistance 12 is 4.92 ohm.

あるいは、減流抵抗12のみでは抵抗値が不足
する場合には、界磁チヨツパ2の受電端子Pと減
流抵抗12の中間タツプQとの間に不足分の抵抗
要素を入れることも出来る。このようにしても、
大部分の抵抗値は減流抵抗12を利用出来るの
で、実質的に抵抗器を大形化する必要はない。
Alternatively, if the resistance value is insufficient with only the current reducing resistor 12, a resistance element can be inserted between the power receiving terminal P of the field chopper 2 and the intermediate tap Q of the current reducing resistor 12. Even if you do this,
Since the current reducing resistor 12 can be used for most of the resistance values, there is no need to substantially increase the size of the resistor.

第2図は本発明の他の実施例である。この実施
例では第1図の従来例で用いられていた過電圧抑
制用のサイリスタ18と抵抗19の直列体が省略
されており、過電圧抑制抵抗191が端子P〜Q
間に挿入されている。もちろん、減流抵抗12を
含む合成抵抗が過電圧抑制のために必要な抵抗値
となる様に、抵抗191が設定されている。
FIG. 2 shows another embodiment of the invention. In this embodiment, the series body of the overvoltage suppressing thyristor 18 and the resistor 19 used in the conventional example shown in FIG. 1 is omitted, and the overvoltage suppressing resistor 191 is connected to the terminals P to Q.
inserted in between. Of course, the resistor 191 is set so that the combined resistance including the current reducing resistor 12 has a resistance value necessary for suppressing overvoltage.

この実施例においても、通常の制御時には、前
述の実施例と同様に、電機子チヨツパ1と界磁チ
ヨツパ2内のスイツチング素子(チヨツパ単位)
21〜24が制御される。
Also in this embodiment, during normal control, the switching elements (in chopper units) in the armature chopper 1 and the field chopper 2 are
21 to 24 are controlled.

しかし、フイルタコンデンサ9の電圧VCFすな
わち電気車の受電端の電圧が、制限電圧Vlを越
えた場合には、比較器17の“1”出力により、
オアゲート341〜344を介して、ゲートドラ
イブ回路331〜334に“1”信号が与えら
れ、すべての単位チヨツパ21〜24がオンされ
る。従つて、フイルタコンデンサ9、減流抵抗1
2、過電圧吸収用の付加抵抗191および界磁チ
ヨツパ2を通して、フイルタコンデンサ9の電圧
が放電され、過電圧を吸収する。その後、高速度
しや断器8、断流器6により主回路を開放する。
However, if the voltage VCF of the filter capacitor 9, that is, the voltage at the receiving end of the electric vehicle, exceeds the limit voltage Vl, the "1" output of the comparator 17 causes
A "1" signal is applied to gate drive circuits 331-334 via OR gates 341-344, and all unit choppers 21-24 are turned on. Therefore, filter capacitor 9, current reducing resistor 1
2. The voltage of the filter capacitor 9 is discharged through the additional resistor 191 for overvoltage absorption and the field chopper 2, and the overvoltage is absorbed. Thereafter, the main circuit is opened by the high-speed shield breaker 8 and the current breaker 6.

このようにして、過電圧抑制サイリスタを省略
でき、その機能を界磁チヨツパ2に持たせること
ができる。
In this way, the overvoltage suppression thyristor can be omitted, and the field chopper 2 can have this function.

もちろん、過電圧時には、直列関係にあるスイ
ツチング素子(チヨツパ単位)21と24あるい
は23と22のいずれかのみをオンしてもよい。
Of course, at the time of overvoltage, only one of the switching elements (chopper unit) 21 and 24 or 23 and 22 connected in series may be turned on.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電気車の前進、後進ともに力
行および回生の制御を無接点的に制御でき、かつ
界磁チヨツパを構成するスイツチング素子の誤点
弧が生じても、装置を大型化することなく、しか
も、電機子電流に何ら制限を加えることなしに大
事故を誘発する惧れをなくすことができる。
According to the present invention, power running and regeneration can be controlled in a non-contact manner for both forward and reverse movement of an electric vehicle, and even if a switching element constituting a field chopper is ignited incorrectly, the device can be made larger. Furthermore, the risk of causing a major accident can be eliminated without imposing any restrictions on the armature current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例、第2図は本発明の
別の実施例を示す電気車制御装置の回路図であ
る。 1……電機子チヨツパ、2……界磁チヨツパ、
21〜24……単位チヨツパ(スイツチング素
子)、3……直流電動機の電機子、4……同界磁、
8……高速度遮断器、12……減流抵抗器、16
……受電端電圧検出器、17……電圧比較器、3
31〜334……ゲートドライブ回路、341〜
344……オアゲート。
FIG. 1 is a circuit diagram of an electric vehicle control device showing one embodiment of the present invention, and FIG. 2 is a circuit diagram of an electric vehicle control device showing another embodiment of the present invention. 1...Armature tippa, 2...Field tippa,
21-24... Unit chopper (switching element), 3... Armature of DC motor, 4... Same field,
8... High speed circuit breaker, 12... Current reducing resistor, 16
...Receiving end voltage detector, 17...Voltage comparator, 3
31-334...gate drive circuit, 341-
344...Orgate.

Claims (1)

【特許請求の範囲】[Claims] 1 減流抵抗器が並列接続された遮断器と、この
遮断器に直列接続された直流電動機の電機子と、
この電機子に流れる電流を制御する電機子チヨツ
パ装置と、直列接続された2つのスイツチング手
段2組を互いに並列接続し、夫々の直列接続点間
に前記直流電動機の界磁を接続した回路構成を有
する界磁チヨツパとを備えた電気車制御装置にお
いて、前記界磁チヨツパを前記減流抵抗器の中間
タツプに接続した電気車制御装置。
1 A circuit breaker with a current reducing resistor connected in parallel, an armature of a DC motor connected in series with this circuit breaker,
An armature chopper device for controlling the current flowing through the armature and two sets of switching means connected in series are connected in parallel to each other, and the field of the DC motor is connected between the respective series connection points. An electric vehicle control device comprising a field chopper having the field chopper connected to an intermediate tap of the current reducing resistor.
JP59088293A 1984-05-04 1984-05-04 Controller for electric railcar Granted JPS60234403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59088293A JPS60234403A (en) 1984-05-04 1984-05-04 Controller for electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088293A JPS60234403A (en) 1984-05-04 1984-05-04 Controller for electric railcar

Publications (2)

Publication Number Publication Date
JPS60234403A JPS60234403A (en) 1985-11-21
JPH0542201B2 true JPH0542201B2 (en) 1993-06-25

Family

ID=13938863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088293A Granted JPS60234403A (en) 1984-05-04 1984-05-04 Controller for electric railcar

Country Status (1)

Country Link
JP (1) JPS60234403A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus
US4926791A (en) 1987-04-27 1990-05-22 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma apparatus employing helmholtz coils and ioffe bars
KR930011413B1 (en) 1990-09-25 1993-12-06 가부시키가이샤 한도오따이 에네루기 겐큐쇼 Plasma cvd method for using pulsed waveform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147977A (en) * 1979-05-08 1980-11-18 Toshiba Corp Commutation failure detector for chopper
JPS57166804A (en) * 1981-04-01 1982-10-14 Mitsubishi Electric Corp Control device for electric motor vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147977A (en) * 1979-05-08 1980-11-18 Toshiba Corp Commutation failure detector for chopper
JPS57166804A (en) * 1981-04-01 1982-10-14 Mitsubishi Electric Corp Control device for electric motor vehicle

Also Published As

Publication number Publication date
JPS60234403A (en) 1985-11-21

Similar Documents

Publication Publication Date Title
US5436540A (en) Protection circuit for a gate turn-off device in an electrical braking system for an electric traction motor vehicle
JPH0219681B2 (en)
US7505236B2 (en) Arc suppression circuit
JPH0917294A (en) Two-way dc circuit breaker
JPH0542201B2 (en)
US3670225A (en) System for braking electric motor vehicles
JPS5829716B2 (en) DC electric car drive circuit
JPS6032586A (en) Controller for chopper
JP2635549B2 (en) Electric car control device
JPH11275872A (en) Overvoltage protective device for capacitor of power conversion circuit
JPS61227602A (en) Controller for electric railcar
JPS6166501A (en) Controller for electric rolling stock
JPS5936081Y2 (en) Electric car control device
JPS5918922B2 (en) electric car protection device
JPS5829682B2 (en) electric car control device
JPH0223041Y2 (en)
JPH0458245B2 (en)
JPH0470850B2 (en)
JPS6325841Y2 (en)
JPS633523B2 (en)
JPS591041B2 (en) Regeneration control device for DC electric cars
JPH0124002B2 (en)
JPH03243101A (en) Controller for electric rolling stock
JPS6212301A (en) Controller for dc electric railcar
JPS5952602B2 (en) Electric car chip protection system