JPH0542125A - Nuclear magnetic resonance device - Google Patents

Nuclear magnetic resonance device

Info

Publication number
JPH0542125A
JPH0542125A JP3200255A JP20025591A JPH0542125A JP H0542125 A JPH0542125 A JP H0542125A JP 3200255 A JP3200255 A JP 3200255A JP 20025591 A JP20025591 A JP 20025591A JP H0542125 A JPH0542125 A JP H0542125A
Authority
JP
Japan
Prior art keywords
frequency
signals
signal
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3200255A
Other languages
Japanese (ja)
Other versions
JP2555233B2 (en
Inventor
Tetsuhiko Takahashi
哲彦 高橋
Etsuji Yamamoto
悦治 山本
Yoshikuni Matsunaga
良国 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP3200255A priority Critical patent/JP2555233B2/en
Priority to US07/793,456 priority patent/US5280246A/en
Publication of JPH0542125A publication Critical patent/JPH0542125A/en
Application granted granted Critical
Publication of JP2555233B2 publication Critical patent/JP2555233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To offer the MRI device which can photograph an MR image of wide visual field by synthesizing plural pieces of high frequency MR signals in high S/N, in the MRI device. CONSTITUTION:Plural pieces of living body high frequency signals 1-1-1-3 from a high frequency probe having plural pieces of output terminals are amplified by plural pieces of amplifiers 2-1-2-3 corresponding to each output, respectively, each of them is converted to a signal of plural frequency bands in which signal frequency bands are not superposed substantially to each other by frequency converters 3-1-3-3, and subsequently, the respective signals are subjected to filtering by band pass filter 4-1-4-3, respectively, and thereafter, these plural pieces of signals are synthesized by a synthesizer 6. In such a way, the MRI device which can photograph an MR image of a wide visual field in high S/N can be offered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検体中の水素や燐等
からの核磁気共鳴(以下、「NMR」という)信号を測
定し、核の密度分布や緩和時間分布等を映像化する核磁
気共鳴装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures nuclear magnetic resonance (hereinafter referred to as "NMR") signals from hydrogen, phosphorus, etc. in an object to visualize nuclear density distribution and relaxation time distribution. The present invention relates to a nuclear magnetic resonance apparatus.

【0002】[0002]

【従来の技術】従来、核磁気共鳴装置(以下MR装置と
呼ぶ)においては、被検体(例えば、人)の関心部位を
取り巻く各種の頭部用コイルや腹部用コイル、心臓等の
動きの影響を受けにくい表面コイル等を用い被検体の検
査、撮像が行われてきた。
2. Description of the Related Art Conventionally, in a nuclear magnetic resonance apparatus (hereinafter referred to as an MR apparatus), various head coils or abdominal coils surrounding the region of interest of a subject (for example, a person), the influence of movement of the heart, etc. Examination and imaging of a subject have been performed by using a surface coil or the like that is hard to receive.

【0003】上記表面コイルは、上記頭部用コイルや上
記腹部用コイルに比べ高感度であるが、視野が制限され
てしまい、脊椎等広範囲を検査する際には、上記表面コ
イルを移動させ、数回撮像せねばならず時間がかかると
いう問題が発生していた。
Although the surface coil has higher sensitivity than the head coil and the abdominal coil, the field of view is limited, and the surface coil is moved when a wide area such as the spine is inspected. There has been a problem that it takes time to capture images several times.

【0004】これに対して、複数個の表面コイルを各表
面コイルが隣接する表面コイルと相互結合しないよう適
度にオ−バラップさせて配列し、上記各表面コイルで受
信されたNMR信号を合成することにより実質的に視野
を広くする方法がある。この方法の原理については、特
表平2−500175、特公平2−13432号、ある
いはマグネティックレゾナンスインメディスン(mag
neticresonance in medicin
e)16巻192頁から225頁(1990年)に記載
してある。
On the other hand, a plurality of surface coils are arranged so as to be appropriately overlapped so that each surface coil does not mutually couple with an adjacent surface coil, and the NMR signals received by the surface coils are synthesized. Therefore, there is a method of substantially widening the field of view. The principle of this method is described in Japanese Patent Publication No. 2-500175, Japanese Patent Publication No. 2-3432, or Magnetic Resonance in Medicine (mag).
network resonance in medicin
e) 16 volumes 192 to 225 (1990).

【0005】[0005]

【発明が解決しようとする課題】上記、従来の技術にお
いて、プローブ出力を単に合成して検出すると信号雑音
比(S/N)が向上しないことから、S/Nを上げるた
めに図1に示した従来例のごとく複数個のプローブ出力
をそれぞれ独自に検出しなければならなかった。そのた
め複数個の信号処理系が必要となり装置が複雑、かつ大
型、高額になるという問題があった。またプローブ出力
を時系列的に分割して1つの信号処理系で処理した場合
にはこれらの問題は解決できるものの撮像時間が長くな
るという問題が生じる。本発明はこのように複数個のプ
ローブ出力信号から画像を合成するMR装置において、
S/Nが向上する信号合成方式を提案し、これを用いた
構成の簡単なMR装置を提供することを目的とするもの
である。
In the above-mentioned conventional technique, the signal-noise ratio (S / N) cannot be improved by simply combining and detecting the probe outputs. Moreover, as in the conventional example, it is necessary to independently detect a plurality of probe outputs. Therefore, a plurality of signal processing systems are required, and there is a problem that the device is complicated, large in size, and expensive. Further, when the probe output is divided in time series and processed by one signal processing system, although these problems can be solved, there is a problem that the imaging time becomes long. According to the present invention, in the MR device for synthesizing an image from a plurality of probe output signals as described above,
An object of the present invention is to propose a signal synthesizing method with improved S / N and to provide a simple MR device having the configuration using the signal synthesizing method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する基本
的な特徴は、MR装置において、複数個の出力端を有す
る高周波プローブからの複数個の生体高周波信号を、各
々の出力に対応した複数個の増幅器で各々増幅後、該増
幅信号のそれぞれを周波数変換器により、互いに信号周
波数帯域が実質的に重ならない複数の周波数帯域の信号
に変換し、次に該それぞれの信号をそれぞれ帯域通過フ
ィルタによりフィルタリングし、その後該複数個の信号
を合成する手段を有することにある。
The basic feature for achieving the above object is that in an MR apparatus, a plurality of biological high frequency signals from a high frequency probe having a plurality of output terminals are provided in a plurality of units corresponding to respective outputs. After being amplified by each of the amplifiers, each of the amplified signals is converted by the frequency converter into a signal of a plurality of frequency bands in which the signal frequency bands do not substantially overlap with each other, and then the respective signals are respectively band-pass filtered. And then combine the plurality of signals.

【0007】[0007]

【作用】互いに信号周波数帯域が実質的に重ならない複
数の周波数帯域の信号に変換したのち、該それぞれの信
号をそれぞれ帯域通過フィルタによりフィルタリング
し、その後該複数個の信号を合成する手段を有するので
信号とノイズの分離が確実に行え、信号合成後のS/N
が劣化しない。
The present invention has means for converting signals into a plurality of frequency bands whose signal frequency bands do not substantially overlap with each other, filtering the respective signals with a bandpass filter, and then synthesizing the plurality of signals. Signal and noise can be reliably separated, and S / N after signal synthesis
Does not deteriorate.

【0008】[0008]

【実施例】以下、本発明を図1に示した実施例を用いて
詳細に説明する。本実施例は、複数個の出力端を有する
高周波プローブからの第1の周波数帯域群にある生体の
高周波信号を、各々の出力に対応した複数個の増幅器で
増幅後、それぞれを周波数変換する第1の複数個の周波
数変換器により第2の周波数帯域群にそれぞれの信号周
波数帯域が互いに実質的に重ならないように下げ、次に
複数の帯域通過フィルタにより該第2の周波数帯域群の
信号のそれぞれをフィルタリングし、その後該複数個の
信号を合成する手段を設けている。また該第2の周波数
帯域群の複数個の信号のそれぞれの中心周波数の相互の
隔たりが、該第1の周波数帯域群の複数個の信号のそれ
ぞれの中心周波数の相互の隔たりに比べ大きくなるよう
に設定している。
The present invention will be described in detail below with reference to the embodiment shown in FIG. In the present embodiment, a high frequency signal of a living body in a first frequency band group from a high frequency probe having a plurality of output terminals is amplified by a plurality of amplifiers corresponding to respective outputs, and then frequency conversion is performed on each of them. A plurality of frequency converters to lower the signal frequency bands to the second frequency band group so that they do not substantially overlap each other, and then use a plurality of band pass filters to convert the signals of the second frequency band group. Means are provided for filtering each and then combining the plurality of signals. Further, the distance between the center frequencies of the plurality of signals in the second frequency band group is greater than the distance between the center frequencies of the plurality of signals in the first frequency band group. Is set to.

【0009】図1は高周波プローブからの3個の出力信
号1−1〜1−3を同時に検出し合成する回路を示して
いる。MR装置の高周波プローブを構成するコイル15
−1〜15−3の出力信号1−1〜1−3は第1の信号
周波数をもち、これは生体原子核のラーモア周波数に正
確に一致する。ラーモア周波数はMR装置の磁場強度と
生体中の注目している原子核で決まる。図2を用いてこ
れを説明する。垂直磁場方式のMR装置を例にとると、
磁場強度は図示した静磁場(z方向とする)の強度H0
と、静磁場と直交する方向xに強度分布をもつz方向磁
場を発生する傾斜磁場強度Hg(x)の合成値である。
この時のラーモア周波数fは、 f=γ(Hg(x)+H0)/2π (1) である。γは原子核固有の磁気回転比でありプロトンで
は267MHz/Tである。Hg(x)は例えば視野中
心を0として傾きは一定であり、この傾きaは例えば
0.1mT/m〜10mT/m(あるいは0.01G/
cm〜1G/cm)程度である。x方向の視野をLとす
れば検出されるMR信号の帯域Δfは、 Δf=γaL/2π (2) である。従って、例えば0.2Tの静磁場強度におい
て、比較的弱い傾斜磁場、例えば磁場強度0.5mT/
mを用いてプロトンを検出する場合、撮像視野を+0.
3m〜−0.3m、計0.6mとすればMR信号の周波
数は8.5MHzを中心として周波数帯域12.75k
Hzとなる。撮像視野を図2に示したようにコイル15
−1〜15−3の3個の表面コイルで等分して撮像する
場合、各コイルからの信号1−1〜1−3の中心周波数
は(1)式よりそれぞれ8.49575MHz、8.5
0000MHz、8.50425MHzである。また各
周波数帯域は(2)式より4.25kHzである。すな
わち複数個のプローブの信号検出空間が異なるときには
対応する傾斜磁場強度がそれぞれ異なり検出する高周波
信号の周波数、第1の周波数、は各コイルで互いに僅か
に異なる。
FIG. 1 shows a circuit for simultaneously detecting and synthesizing three output signals 1-1 to 1-3 from a high frequency probe. Coil 15 that constitutes the high frequency probe of the MR device
The output signals 1-1 to 1-3 of -1 to 15-3 have a first signal frequency, which exactly corresponds to the Larmor frequency of biological nuclei. The Larmor frequency is determined by the magnetic field strength of the MR device and the nucleus of interest in the living body. This will be described with reference to FIG. Taking a vertical magnetic field type MR device as an example,
The magnetic field strength is the strength H0 of the illustrated static magnetic field (in the z direction).
And a gradient magnetic field strength Hg (x) that generates a z-direction magnetic field having a strength distribution in a direction x orthogonal to the static magnetic field.
The Larmor frequency f at this time is f = γ (Hg (x) + H0) / 2π (1). γ is the gyromagnetic ratio peculiar to the nucleus, and is 267 MHz / T for protons. For example, Hg (x) has a constant inclination with the center of the field of view as 0, and this inclination a is, for example, 0.1 mT / m to 10 mT / m (or 0.01 G / m).
cm to 1 G / cm). If the visual field in the x direction is L, the band Δf of the MR signal detected is Δf = γaL / 2π (2). Therefore, for example, at a static magnetic field strength of 0.2 T, a relatively weak gradient magnetic field, for example, a magnetic field strength of 0.5 mT /
m to detect protons, the imaging field of view is +0.
If the total length is 3 m to -0.3 m, and the total is 0.6 m, the frequency of the MR signal is 12.75 k with a frequency band centering on 8.5 MHz.
It becomes Hz. As shown in FIG. 2, the field of view of the coil 15
When the image is equally divided by the three surface coils -1 to 15-3, the center frequencies of the signals 1-1 to 1-3 from the coils are 8.49575 MHz and 8.5, respectively, according to the equation (1).
0000 MHz and 8.50425 MHz. Further, each frequency band is 4.25 kHz according to the equation (2). That is, when the signal detection spaces of the plurality of probes are different, the corresponding gradient magnetic field strengths are different, and the frequency of the high-frequency signal to be detected and the first frequency are slightly different in each coil.

【0010】以上では垂直磁場方式について説明した
が、水平磁場方式の場合についても検出信号の周波数に
ついて同様の説明ができることはいうまでもない。
Although the vertical magnetic field method has been described above, it goes without saying that the same can be applied to the frequency of the detection signal in the case of the horizontal magnetic field method.

【0011】図1に戻って、出力信号1−1〜1−3は
それぞれ増幅器2−1〜2−3で増幅される。典型的に
は増幅器のゲインは20dBから50dB程度である。
増幅器の出力信号7−1〜7−3はそれぞれ第1の周波
数変換器3−1から3−3で第2の信号周波数の信号8
−1〜8−3に変換される。この第2の信号周波数は後
段の帯域通過フィルタの帯域と密接な関係を有し、本発
明ではこの周波数を、後述する該フィルタ帯域が容易に
取り扱える帯域になるように低い周波数にする。一例と
して高周波発生器14の出力12−1、12−2、12
−3の周波数をそれぞれ7.40000MHz、7.3
0000MHz、7.20000MHzとしこれらを周
波数変換器3−1から3−3の参照信号として入力する
とそれぞれ1.09575MHz、1.20000MH
z、1.30425MHzの低周波信号が得られる。こ
の時に発生する約16MHzの高調波は1MHzとは大
きく周波数が異なるので必要に応じて、良く知られたよ
うに低域通過フィルタ(図示していない)を用いて簡単
に除去できる。出力9−1から9−3の周波数帯域は、
信号1−1〜1−3の帯域に等しく(2)式より得られ
たように4.25kHzである。しかしそれらの中心周
波数の差は第1の複数個の信号のそれぞれの中心周波数
の相互の隔たり(4.25kHz)に比べ104.25
kHzと大きい。従ってそれぞれの信号に対して信号周
波数帯域以外の雑音を帯域通過フィルタ4−1から4−
3を用いて容易に除去できる。ここで雑音の除去は互い
に他の信号が存在する周波数帯域で除去できれば良いの
で、ゆるやかな特性の帯域フィルタ(1MHzにたいし
て100kHzの分離でよい)を用いることが出来る。
帯域通過フィルタのQ値は一般にf/Δfで示される。
ここでfは中心周波数、Δfは周波数帯域である。本実
施例では、 Q=1MHz/104.25kHz=10 (3) であり、例えば図3に示した帯域通過フィルタ回路のよ
うに一般に知られている技術で容易に作成できる。本実
施例では先に述べたように第2の周波数でのそれぞれの
信号の中心周波数の差が第1の複数個の信号のそれぞれ
の中心周波数の相互の隔たりに比べ十分大きいので、そ
れぞれの信号に対して信号周波数帯域以外の雑音を帯域
通過フィルタを用いて容易に除去できる。それぞれの中
心周波数の相互の隔たりが十分大きいので、(3)式で
与えられるQ値が実現容易な値になっている。
Returning to FIG. 1, the output signals 1-1 to 1-3 are amplified by the amplifiers 2-1 to 2-3, respectively. The gain of the amplifier is typically about 20 dB to 50 dB.
The output signals 7-1 to 7-3 of the amplifier are respectively output from the first frequency converters 3-1 to 3-3 by the signal 8 of the second signal frequency.
Converted to -1 to 8-3. This second signal frequency has a close relationship with the band of the band pass filter in the subsequent stage, and in the present invention, this frequency is set to a low frequency so that the filter band described later can be easily handled. As an example, the outputs 12-1, 12-2, 12 of the high frequency generator 14
-3 frequencies of 7.40000 MHz and 7.3, respectively.
If 0000 MHz and 7.20000 MHz are set and these are input as the reference signals of the frequency converters 3-1 to 3-3, they are 1.09575 MHz and 1.20000 MH, respectively.
A low frequency signal of z, 1.30425 MHz is obtained. Since the harmonics of about 16 MHz generated at this time have a frequency greatly different from 1 MHz, they can be easily removed as necessary by using a low-pass filter (not shown) as well known. The frequency bands of outputs 9-1 to 9-3 are
It is equal to the bands of the signals 1-1 to 1-3 and is 4.25 kHz as obtained from the equation (2). However, the difference in their center frequencies is 104.25 compared to the mutual separation (4.25 kHz) of the respective center frequencies of the first plurality of signals.
It is as large as kHz. Therefore, noise other than the signal frequency band is applied to each signal by the bandpass filters 4-1 to 4-
3 can be easily removed. Here, since it is sufficient to remove noise in a frequency band in which other signals exist, it is possible to use a band-pass filter having a gentle characteristic (separation of 100 kHz is sufficient for 1 MHz).
The Q value of the bandpass filter is generally represented by f / Δf.
Here, f is the center frequency, and Δf is the frequency band. In this embodiment, Q = 1 MHz / 104.25 kHz = 10 (3), which can be easily created by a generally known technique such as the bandpass filter circuit shown in FIG. In the present embodiment, as described above, the difference between the center frequencies of the respective signals at the second frequency is sufficiently larger than the distance between the respective center frequencies of the first plurality of signals, so that the respective signals On the other hand, noise outside the signal frequency band can be easily removed by using a bandpass filter. Since the respective center frequencies are sufficiently separated from each other, the Q value given by the equation (3) is a value that is easy to realize.

【0012】以上の説明で第2の周波数は約1MHzで
あったが、これは本発明の趣旨の範囲で変更でき、例え
ば20kHz程度まで下げることも可能である。この時
のフィルタはよりゆるやかなフィルタ特性で良く実現が
容易である。
In the above description, the second frequency is about 1 MHz, but this can be changed within the scope of the present invention, and it can be lowered to about 20 kHz, for example. The filter at this time has a gentler filter characteristic and is easy to realize.

【0013】再び図1に戻って説明する。帯域通過フィ
ルタ4−1から4−3によりフィルタリングされた第2
の周波数の信号9−1から9−3は、合成器6で合成さ
れる。この結果合成された信号11は周波数帯域が約1
MHzから1.3MHzの信号となる。合成信号の周波
数あたりのノイズは十分に小さく信号合成によるノイズ
の増大は無い。これは合成される信号群9−1から9−
3が、既に帯域通過フィルタ群4−1から4−3により
おのおの不要領域のノイズ除去がされているためであ
る。
Returning to FIG. 1, the description will be continued. Second filtered by band pass filter 4-1 to 4-3
The signals 9-1 to 9-3 having the frequencies of are combined by the combiner 6. As a result, the synthesized signal 11 has a frequency band of about 1
Signals from MHz to 1.3 MHz are obtained. The noise per frequency of the combined signal is sufficiently small and there is no increase in noise due to the signal combination. This is the combined signal group 9-1 to 9-
3 is because the noises in the unnecessary regions have already been removed by the bandpass filter groups 4-1 to 4-3.

【0014】すなわち、例えば、合成をアナログ的に行
っても信号のS/N比は良好である。従って、図には示
していないが、合成後の信号は1つのA/D変換器でア
ナログ/デジタル変換出来、そのデジタル信号は各種デ
ジタル信号処理されることが可能である。この場合、A
/D変換器の数を従来例に比べて著しく削減でき装置が
小型化、低価格化できる。
That is, for example, the S / N ratio of the signal is good even if the synthesis is performed in an analog manner. Therefore, although not shown in the figure, the combined signal can be analog / digital converted by one A / D converter, and the digital signal can be processed by various digital signals. In this case, A
The number of D / D converters can be significantly reduced compared to the conventional example, and the device can be downsized and the cost can be reduced.

【0015】即ち、本実施例においてA/D変換器の個
数はコイル出力端の個数をnとしたとき通常の検出でn
個未満でよい。また1つの出力にたいして実部と虚部に
それぞれ1個づつのA/D変換器が必要な直交位相検波
方式に本実施例の構成を用いた場合、A/D変換器の個
数は2n個未満でよい。
That is, in the present embodiment, the number of A / D converters is n in the normal detection when the number of coil output terminals is n.
It may be less than the number. Further, when the configuration of the present embodiment is used for the quadrature phase detection method that requires one A / D converter for each real part and one imaginary part for one output, the number of A / D converters is less than 2n. Good.

【0016】また該増幅後の信号を直ちにアナログデジ
タル変換すれば第1のフィルタリングにデジタルフィル
タの技術を利用できる。
If the signal after the amplification is immediately converted into an analog signal, the digital filtering technique can be used for the first filtering.

【0017】さらに該フィルタリングの後の該信号合成
のあと、合成された信号を更にフィルタリングする第2
のフィルタリング手段を有することにより信号成分を任
意に重み付けすることが出来、画像信号の合成の自由度
が増し均一な画像を得られる。この第2のフィルタリン
グ手段としてデジタルフィルタを用いることができる。
A second step of further filtering the combined signal after the signal combining after the filtering
With the above filtering means, the signal components can be arbitrarily weighted, the degree of freedom in combining the image signals is increased, and a uniform image can be obtained. A digital filter can be used as the second filtering means.

【0018】次にMR装置の構造のブロック図、図4、
を用いて高周波発生器と帯域通過フィルタの制御方法を
説明する。被写体16は静磁場発生部23で動作される
磁石19の作る静磁場中に配置される。また傾斜磁場コ
イル18は傾斜磁場発生部24により、励起高周波コイ
ル17は励起高周波パルス発生部21によりそれぞれ傾
斜磁場、高周波磁場を発生し、被写体に作用する。複数
個のコイルからなるコイル部15は被写体からの高周波
磁場信号(MR信号)を受信する。この信号は図2の1
から14でなる高周波信号処理合成部20で処理合成さ
れその後信号処理部22で画像処理や信号補正され表示
部25でMR画像(MRIやMRS、MRISなど)が
表示される。静磁場発生部23、傾斜磁場発生部24、
励起高周波パルス発生部21、高周波信号処理合成部2
0、信号処理部22、表示部25は制御部26で制御さ
れる。とくに制御部26では傾斜磁場強度と高周波信号
処理時のパラメータを前述のように相互に最適化し制御
する。すなわち一般に傾斜磁場強度は本発明のフィルタ
以外の要因、例えば撮像シーケンスや撮像速度、視野に
より決定されるので、選択された傾斜磁場強度と視野に
したがって本発明で述べた高周波信号処理部のパラメー
タ、例えば帯域通過フィルタの帯域幅や中心周波数、高
周波発生器の信号周波数などを任意に設定することが可
能である。この場合フィルタには可変帯域のフィルタを
用いたり、フィルタを各チャンネルごとに複数個設けて
適宜切り替えても良い。
Next, a block diagram of the structure of the MR device, FIG.
A method of controlling the high frequency generator and the bandpass filter will be described using. The subject 16 is placed in the static magnetic field created by the magnet 19 operated by the static magnetic field generator 23. Further, the gradient magnetic field coil 18 generates a gradient magnetic field and the excitation high frequency pulse generator 21 generates a gradient magnetic field and a high frequency magnetic field, respectively, which act on the subject. The coil unit 15 including a plurality of coils receives a high frequency magnetic field signal (MR signal) from a subject. This signal is 1 in FIG.
1 to 14 are processed and synthesized by the high frequency signal processing and synthesizing unit 20 and then image processing and signal correction are performed by the signal processing unit 22 and an MR image (MRI, MRS, MRIS, etc.) is displayed on the display unit 25. Static magnetic field generation unit 23, gradient magnetic field generation unit 24,
Excitation high-frequency pulse generator 21, high-frequency signal processing synthesizer 2
0, the signal processing unit 22, and the display unit 25 are controlled by the control unit 26. In particular, the control unit 26 mutually optimizes and controls the gradient magnetic field strength and the parameter at the time of high frequency signal processing. That is, in general, the gradient magnetic field strength is determined by factors other than the filter of the present invention, for example, the imaging sequence, the imaging speed, and the field of view, so the parameters of the high-frequency signal processing unit described in the present invention according to the selected gradient magnetic field strength and the field of view, For example, it is possible to arbitrarily set the band width and center frequency of the band pass filter, the signal frequency of the high frequency generator, and the like. In this case, a variable band filter may be used as the filter, or a plurality of filters may be provided for each channel and switched appropriately.

【0019】本実施例で使われるコイルは例えばフェイ
ズドアレイコイルを用いることができる。また鞍型コイ
ル、バードケージコイル、スロッテドチューブレゾネー
タコイルなどに適用可能である。
As the coil used in this embodiment, for example, a phased array coil can be used. It is also applicable to saddle type coils, birdcage coils, slotted tube resonator coils and the like.

【0020】以上の説明では垂直磁場方式を例に採り、
説明したが水平磁場方式でも本発明が適用されることは
明らかである。また0.2Tの磁場強度で説明したが本
発明は他の磁場強度でも適用できる。傾斜磁場強度につ
いても実施例で記載した以外の強度についても適用でき
る。更にMR装置の構成図は一実施例であり他の構成で
も本発明が適用できる。
In the above description, the vertical magnetic field system is taken as an example,
Although described, it is clear that the present invention can be applied to the horizontal magnetic field method. Further, although the magnetic field strength of 0.2T has been described, the present invention can be applied to other magnetic field strengths. The gradient magnetic field strength can also be applied to strengths other than those described in the examples. Furthermore, the configuration diagram of the MR device is an example, and the present invention can be applied to other configurations.

【0021】本実施例の効果は、低周波信号のそれぞれ
を複数の帯域通過フィルタによりフィルタリング処理す
る際、該複数個の信号のそれぞれの中心周波数の相互の
隔たりが大きいのでフィルタの特性が最適でなくとも信
号とノイズの分離が確実に行え、信号加算後のS/Nが
劣化しないことである。
The effect of this embodiment is that when the low-frequency signals are filtered by a plurality of band-pass filters, the center frequencies of the plurality of signals are largely separated from each other, so that the filter characteristics are optimal. It is necessary to surely separate the signal and the noise, and the S / N after the signal addition is not deteriorated.

【0022】次に第2の実施例を開示する。図5は本発
明をクォードラチャデテクション(QD)プローブの信
号合成に適用した一例である。
Next, a second embodiment will be disclosed. FIG. 5 is an example in which the present invention is applied to signal synthesis of a quadrature detection (QD) probe.

【0023】QDプローブのAポート及びBポートから
の出力は互いにほぼ90度ずれている。これらの出力信
号はそれぞれ前置増幅器2−A、2−Bで増幅されたあ
と、位相シフタ5−Aと位相シフタ5−Bで相互の位相
が適当にずれるように微調整される。ここでAとBの出
力の周波数帯域は、MRI画像の視野と傾斜磁場強度か
ら決まりともに等しい。これらの等しい周波数帯域の信
号のうち片方の出力、ここではBの出力をシンセサイザ
と混合器及び帯域フィルタからなる周波数変換器3を用
いて周波数変換する。Aポートの出力と周波数変換され
たBポートの出力を、それぞれ信号帯域以外のノイズを
除去する目的で帯域フィルタ4−A、4−Bにそれぞれ
通し、加算器56で信号合成する。合成は例えば抵抗合
成のような固定された重み付け合成で良い。合成後の信
号はAD変換器によりサンプリング58とAD変換60
の処理を受け、フーリエ変換器62でフーリエ変換され
る。AポートとBポートの信号はフーリエ変換後のデー
タでは異なる周波数帯域に現れるので容易に分離でき
る。ポートごとに分離されたデータ64と66ははそれ
ぞれの重み付け手段68と70により関数Ga(kz)
とGb(kz)で重み付けされる。更に合成器72で
は、Bデータについて位相シフトによりAデータと同一
の周波数帯域に移動し、Aデータと合成して画像データ
74を得る。本方式では両ポートの信号が合成されたあ
とにAD変換が行われるので検出系が単純でその規模も
小さい。また直交位相検波の適用も容易であるなどの特
徴を持つ。この方式のQDプローブは従来方式のQDプ
ローブと異なりそれぞれのポートの信号をAD変換後も
周波数的に分離した状態で有するため、ローデータ、ま
たは画像データ上での任意の重み付けや位相補正を個別
に行った後加算できる。従って均一な画像を容易に得る
ことが出きる。
The outputs from the A and B ports of the QD probe are offset from each other by approximately 90 degrees. These output signals are amplified by the preamplifiers 2-A and 2-B, respectively, and then finely adjusted by the phase shifter 5-A and the phase shifter 5-B so that their mutual phases are appropriately shifted. Here, the frequency bands of the outputs of A and B are determined from the field of view of the MRI image and the gradient magnetic field strength and are equal. One of the outputs of these signals in the same frequency band, that is, the output of B, is frequency-converted using the frequency converter 3 including a synthesizer, a mixer, and a bandpass filter. The output of the A port and the frequency-converted output of the B port are respectively passed through bandpass filters 4-A and 4-B for the purpose of removing noise other than the signal band, and the adder 56 synthesizes the signals. The combination may be a fixed weighted combination such as resistance combination. The combined signal is sampled 58 and AD converted 60 by an AD converter.
And the Fourier transform is performed by the Fourier transformer 62. The signals of the A port and the B port appear in different frequency bands in the data after the Fourier transform, so they can be easily separated. The data 64 and 66 separated for each port are given a function Ga (kz) by weighting means 68 and 70, respectively.
And Gb (kz). Further, in the combiner 72, the B data is moved to the same frequency band as the A data by the phase shift, and is combined with the A data to obtain the image data 74. In this method, since the AD conversion is performed after the signals of both ports are combined, the detection system is simple and its scale is small. In addition, it is easy to apply quadrature detection. Unlike the conventional QD probe, this type of QD probe has the signals of each port in a frequency separated state even after AD conversion. Therefore, arbitrary weighting or phase correction on raw data or image data can be performed individually. You can add after going to. Therefore, a uniform image can be easily obtained.

【0024】[0024]

【発明の効果】本発明に依れば、複数個の出力端を有す
る高周波プローブからの複数個の生体高周波信号を用い
てMR画像を得る核磁気共鳴装置において、該信号を互
いに信号周波数帯域が実質的に重ならない複数の周波数
帯域の信号に変換したにち、該それぞれの信号をそれぞ
れ帯域通過フィルタによりフィルタリングし、その後該
複数個の信号を合成する手段を有するので信号とノイズ
の分離が確実に行え、信号合成後のS/Nが劣化しな
い。
According to the present invention, in a nuclear magnetic resonance apparatus for obtaining an MR image using a plurality of biological high-frequency signals from a high-frequency probe having a plurality of output ends, the signals are provided in a signal frequency band of each other. After the signals are converted into signals in a plurality of frequency bands that do not substantially overlap, each of the signals is filtered by a band pass filter, and then the plurality of signals are combined, so that separation of the signal and the noise is ensured. Therefore, the S / N after signal combination does not deteriorate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の主要部を示すブロック図。FIG. 1 is a block diagram showing a main part of one embodiment of the present invention.

【図2】実施例の各コイル出力の周波数を示す概念図。FIG. 2 is a conceptual diagram showing the frequency of each coil output of the embodiment.

【図3】実施例の帯域通過フィルタの回路図。FIG. 3 is a circuit diagram of a bandpass filter according to an embodiment.

【図4】実施例の装置全体構成を示すブロック図。FIG. 4 is a block diagram showing the overall configuration of the apparatus of the embodiment.

【図5】本発明の別の実施例を示すブロック図。FIG. 5 is a block diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1−1〜1−3…高周波プローブの出力、2−1〜2−
3…増幅機、3−1〜3−3…周波数変換器、4−1〜
4−3…帯域通過フィルタ、6…合成器
1-1 to 1-3 ... Output of high frequency probe, 2-1 to 2-
3 ... Amplifier, 3-1 to 3-3 ... Frequency converter, 4-1 to
4-3 ... band pass filter, 6 ... combiner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松永 良国 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryokuni Matsunaga 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】複数個の出力端を有する高周波プローブか
らの複数個の生体高周波信号を各々の出力に対応した複
数個の増幅器で各々増幅後、増幅信号のそれぞれを周波
数変換器により互いに信号周波数帯域が実質的に重なら
ない複数の周波数帯域の信号に変換し、次にそれぞれの
信号をそれぞれ帯域通過フィルタによりフィルタリング
し、その後該複数個の信号を合成する信号合成手段を有
する核磁気共鳴装置。
1. A plurality of biological high-frequency signals from a high-frequency probe having a plurality of output terminals are respectively amplified by a plurality of amplifiers corresponding to respective outputs, and then the amplified signals are frequency-converted by a frequency converter. A nuclear magnetic resonance apparatus having signal synthesizing means for converting signals into a plurality of frequency bands whose bands do not substantially overlap each other, filtering the respective signals with a bandpass filter, and then synthesizing the plurality of signals.
【請求項2】前記信号合成手段は信号をアナログ的に処
理するものであり、れ且つ、該信号合成手段の合成出力
をアナログデジタル変換するアナログデジタル変換器を
有することを特徴とする請求項1の核磁気共鳴装置。
2. The signal synthesizing means processes a signal in an analog manner, and has an analog-digital converter for analog-digital converting the synthesized output of the signal synthesizing means. Nuclear magnetic resonance apparatus.
【請求項3】請求項2の核磁気共鳴装置において、前記
高周波プローブの出力端の個数をnとしたとき前記アナ
ログデジタル変換器の個数がn未満であることを特徴と
する核磁気共鳴装置。
3. The nuclear magnetic resonance apparatus according to claim 2, wherein the number of the analog-digital converters is less than n when the number of output terminals of the high frequency probe is n.
【請求項4】請求項2の核磁気共鳴装置において、該コ
イルの出力端の個数をnとしたとき前記アナログデジタ
ル変換器の個数が2n未満である直交位相検波方式の高
周波検出系を有する核磁気共鳴装置。
4. The nuclear magnetic resonance apparatus according to claim 2, which has a quadrature phase detection type high frequency detection system in which the number of the analog-digital converters is less than 2n, where n is the number of output terminals of the coil. Magnetic resonance device.
【請求項5】複数個の出力端を有する高周波プローブか
らの第1の周波数帯域群にある生体の高周波信号を、各
々の出力に対応した複数個の増幅器で増幅後、それぞれ
を周波数変換する第1の複数個の周波数変換器により第
2の周波数帯域群にそれぞれの信号周波数帯域が互いに
実質的に重ならないように下げ、次に複数の帯域通過フ
ィルタにより該第2の周波数帯域群の信号のそれぞれを
フィルタリングし、その後該複数個の信号を合成する信
号合成手段を有することを特徴とする核磁気共鳴装置。
5. A high-frequency signal of a living body in a first frequency band group from a high-frequency probe having a plurality of output terminals is amplified by a plurality of amplifiers corresponding to respective outputs and then frequency-converted. A plurality of frequency converters to lower the signal frequency bands to the second frequency band group so that they do not substantially overlap each other, and then use a plurality of band pass filters to convert the signals of the second frequency band group. A nuclear magnetic resonance apparatus comprising a signal synthesizing means for filtering each of them and then synthesizing the plurality of signals.
【請求項6】前記第2の周波数帯域群の複数個の信号の
それぞれの中心周波数の相互の隔たりが、該第1の周波
数帯域群の複数個の信号のそれぞれの中心周波数の相互
の隔たりに比べ大きいことを特徴とする請求項5の核磁
気共鳴装置。
6. The distance between the center frequencies of the plurality of signals in the second frequency band group is the distance between the center frequencies of the plurality of signals in the first frequency band group. The nuclear magnetic resonance apparatus according to claim 5, wherein the nuclear magnetic resonance apparatus is large in comparison.
【請求項7】請求項5の核磁気共鳴装置において、前記
信号合成手段の合成出力信号を更にフィルタリングする
フィルタリング手段を有することを特徴とする核磁気共
鳴装置。
7. The nuclear magnetic resonance apparatus according to claim 5, further comprising filtering means for further filtering the combined output signal of the signal combining means.
【請求項8】請求項7の核磁気共鳴装置において、前記
複数の帯域通過フィルタもしくは前記合成出力信号を更
にフィルタリングするフィルタリング手段としてデジタ
ルフィルタを用いることを特徴とする核磁気共鳴装置。
8. The nuclear magnetic resonance apparatus according to claim 7, wherein a digital filter is used as a filtering means for further filtering the plurality of band pass filters or the combined output signal.
【請求項9】z方向に静磁場が存在しているx、y、z
空間内におかれた被検体に、高周波磁場を照射し、該被
検体の核磁気共鳴信号を発生させ、これをx方向とy方
向の直線高周波磁場検出コイルを組み合わせてx、y平
面上の回転高周波磁場を検出する核磁気共鳴装置におい
て、該x方向とy方向の直線高周波磁場検出コイルの受
信信号をそれぞれ増幅器により増幅し、x方向若しくは
y方向の増幅後の出力を周波数変換し互いに異なる周波
数帯域の信号としたのちに合成し、アナログデジタル変
換し、これらの異なる周波数帯域の信号をそれぞれ任意
の重み付け関数で重み付けした後、さらにx方向若しく
はy方向の信号を再び周波数変換し互いに同一の周波数
帯域の信号として合成する手段を有する核磁気共鳴装
置。
9. An x, y, z in which a static magnetic field exists in the z direction.
A high frequency magnetic field is applied to a subject placed in a space to generate a nuclear magnetic resonance signal of the subject, which is combined with linear high frequency magnetic field detection coils in the x direction and the y direction on the x, y plane. In a nuclear magnetic resonance apparatus that detects a rotating high-frequency magnetic field, the received signals of the linear high-frequency magnetic field detecting coils in the x-direction and the y-direction are respectively amplified by an amplifier, and the outputs after the amplification in the x-direction or the y-direction are frequency-converted to be different from each other. After the signals in the frequency band are combined, the signals are analog-to-digital converted, the signals in these different frequency bands are weighted by arbitrary weighting functions, and then the signals in the x-direction or y-direction are frequency-converted again to make them identical to each other. A nuclear magnetic resonance apparatus having means for synthesizing as a signal in a frequency band.
JP3200255A 1990-11-16 1991-08-09 Nuclear magnetic resonance equipment Expired - Fee Related JP2555233B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3200255A JP2555233B2 (en) 1991-08-09 1991-08-09 Nuclear magnetic resonance equipment
US07/793,456 US5280246A (en) 1990-11-16 1991-11-18 Nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200255A JP2555233B2 (en) 1991-08-09 1991-08-09 Nuclear magnetic resonance equipment

Publications (2)

Publication Number Publication Date
JPH0542125A true JPH0542125A (en) 1993-02-23
JP2555233B2 JP2555233B2 (en) 1996-11-20

Family

ID=16421334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200255A Expired - Fee Related JP2555233B2 (en) 1990-11-16 1991-08-09 Nuclear magnetic resonance equipment

Country Status (1)

Country Link
JP (1) JP2555233B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143122A (en) * 2000-11-09 2002-05-21 Toshiba Corp Magnetic resonance imaging equipment and method for collecting and processing mr signal
JP2008522651A (en) * 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for connecting receive coils in a magnetic resonance imaging scanner
US7400148B2 (en) 2005-03-23 2008-07-15 Kabushiki Kaisha Toshiba MRI apparatus, signal selection method in MRI apparatus, and MRI method in magnetic resonance imaging apparatus
CN102200569A (en) * 2010-03-23 2011-09-28 西门子公司 Transmission method for magnetic resonance signal with dual frequency conversion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143122A (en) * 2000-11-09 2002-05-21 Toshiba Corp Magnetic resonance imaging equipment and method for collecting and processing mr signal
JP2008522651A (en) * 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for connecting receive coils in a magnetic resonance imaging scanner
US7400148B2 (en) 2005-03-23 2008-07-15 Kabushiki Kaisha Toshiba MRI apparatus, signal selection method in MRI apparatus, and MRI method in magnetic resonance imaging apparatus
CN102200569A (en) * 2010-03-23 2011-09-28 西门子公司 Transmission method for magnetic resonance signal with dual frequency conversion

Also Published As

Publication number Publication date
JP2555233B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JP3399981B2 (en) Magnetic resonance imaging equipment
US5280246A (en) Nuclear magnetic resonance apparatus
Carlson et al. Imaging time reduction through multiple receiver coil data acquisition and image reconstruction
JP3825685B2 (en) Magnetic resonance imaging equipment using high frequency coils
US7319324B2 (en) MRI method and apparatus using PPA image reconstruction
US6876199B2 (en) Method and system for accelerated imaging using parallel MRI
JP4381378B2 (en) Magnetic resonance imaging system
JP2003079595A (en) Magnetic resonance imaging device and rf receiving coil therefor
JP4035219B2 (en) Nuclear magnetic resonance system
JPH05269111A (en) Magnetic resonance device and signal connecting device
JPH0392136A (en) Steady free precession magnetic resonance imaging method
JP2002272705A5 (en)
JP2004504870A (en) MR imaging method with parallel multi-channel detection
JPH05269108A (en) Magnetic resonance video device
JP2680235B2 (en) Nuclear magnetic resonance probe
US5572130A (en) Method and apparatus for the production of an NMR tomography image using an array of surface coils and multiplexers
JP4202855B2 (en) Magnetic resonance imaging system
US6853193B2 (en) Simultaneous MR data acquisition with multiple mutually desensitized RF coils
JP2555233B2 (en) Nuclear magnetic resonance equipment
JP2002248089A (en) Apparatus and method for magnetic resonance imaging
JP3197262B2 (en) Magnetic resonance imaging
JP2503821B2 (en) NMR signal processing method and apparatus
JPH06105824A (en) Apparatus and method for processing magnetic resonance signal
JP2564428B2 (en) Nuclear magnetic resonance equipment
JP3111045B2 (en) RF probe for magnetic resonance imaging

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees