JPH0539427A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH0539427A
JPH0539427A JP21932091A JP21932091A JPH0539427A JP H0539427 A JPH0539427 A JP H0539427A JP 21932091 A JP21932091 A JP 21932091A JP 21932091 A JP21932091 A JP 21932091A JP H0539427 A JPH0539427 A JP H0539427A
Authority
JP
Japan
Prior art keywords
parts
resin
ultrafine particles
thermoplastic resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21932091A
Other languages
Japanese (ja)
Inventor
Atsushi Shichizawa
淳 七沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP21932091A priority Critical patent/JPH0539427A/en
Publication of JPH0539427A publication Critical patent/JPH0539427A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To impart impact resistance to a thermoplastic resin without using an elastomer. CONSTITUTION:A resin composition obtained by uniformly dispersing crosslinked ultrafine particles having no reactivity and having 5-50nm particle diameter into a thermoplastic resin having an affinity to the fine particles. The objective resin composition having impact resistance is obtained without impairing excellent workability of the thermoplastic resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエラストマーを用いずに
耐衝撃性を付与することを可能にした特定の架橋超微粒
子が均一に分散された樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition in which specific crosslinked ultrafine particles capable of imparting impact resistance without using an elastomer are uniformly dispersed.

【0002】[0002]

【従来の技術】ポリスチレン、ステレン−アクリロニト
リル共重合体、ポリフェニレンエーテルに代表されるス
チレン系樹脂、ポリメチルメタアクリレートに代表され
るアクリル系樹脂は、非晶性の熱可塑性樹脂として、そ
の強度と加工性の優れたバランスから広く工業的に用い
られている。
2. Description of the Related Art Polystyrene, a styrene-acrylonitrile copolymer, a styrene resin represented by polyphenylene ether, and an acrylic resin represented by polymethylmethacrylate are non-crystalline thermoplastic resins, and their strength and processing are Widely used industrially due to its excellent balance.

【0003】これらの樹脂は、外観、成形性、寸法安定
性に優れる反面、それぞれ単独では耐衝撃性に劣るため
エラストマーを配合することにより耐衝撃ポリスチレ
ン、ABS樹脂、強化アクリル樹脂等に変性され、より
広範囲に用いられているが、エラストマーを配合するこ
とにより剛性、耐熱性、またエラストマーの種類によっ
ては透明性といったもともとの樹脂の有する優れた性質
が失われるといった欠点があった。
Although these resins are excellent in appearance, moldability and dimensional stability, they are inferior in impact resistance by themselves, so that they are modified into impact polystyrene, ABS resin, reinforced acrylic resin, etc. by blending an elastomer, Although it is used in a wider range, it has a drawback that the original properties of the original resin such as rigidity, heat resistance, and transparency depending on the type of elastomer are lost by blending the elastomer.

【0004】かかる現状に対し、エラストマー成分の分
散粒子径、分子構造、分散状態を最適化することで、限
りなく少量のエラストマーの配合により十分な耐衝撃性
を付与する試みが継続的になされているが、エラストマ
ー成分を全く用いることなく十分な耐衝撃性が得られた
例は無い。
Contrary to the current situation, attempts have been continuously made to optimize the dispersed particle size, molecular structure, and dispersed state of the elastomer component so as to impart sufficient impact resistance by blending an infinitesimally small amount of elastomer. However, there is no example in which sufficient impact resistance was obtained without using any elastomer component.

【0005】エラストマー以外の成分を樹脂に配合する
ことで、樹脂を強化する試みとして、樹脂中に二重結合
を残した5〜10nmの径を有するポリスチレンマイク
ロゲル存在下にスチレンを重合した例が報告されてい
る。(J.OilCol. Chem. Assoc.,60 438 (1977))。
しかしながらこの技術は、ポリスチレンマイクロゲルを
仲立ちとしたポリスチレンマトリクスの架橋形成により
樹脂を補強するものであり、本来ポリスチレン樹脂の有
する優れた加工性が損なわれるという欠点があった。
An example of polymerizing styrene in the presence of a polystyrene microgel having a diameter of 5 to 10 nm in which a double bond remains in the resin has been attempted in an attempt to strengthen the resin by blending a component other than an elastomer with the resin. It has been reported. (J. OilCol. Chem. Assoc., 60 438 (1977)).
However, this technique reinforces the resin by cross-linking the polystyrene matrix with polystyrene microgel as an intermediary, and has the drawback that the excellent processability inherent in the polystyrene resin is impaired.

【0006】[0006]

【発明が解決しようとする課題】本発明は従来法のよう
にエラストマーを用いる方法ではない、熱可塑性樹脂を
強化する技術を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention is intended to provide a technique for reinforcing a thermoplastic resin, which is not a method using an elastomer as in the conventional method.

【0007】[0007]

【課題を解決するための手段】本発明者は上記課題を解
決するために研究をしていたところ、意外にも反応性を
有しない架橋構造を有する微小粒子を熱可塑性樹脂中に
均一に分散させることにより、剛性を下げることなく耐
衝撃性を付与できること、またそれによって著しい加工
流動性の低下が見られないことを見出した。
Means for Solving the Problems The inventors of the present invention have conducted research to solve the above-mentioned problems, and surprisingly, fine particles having a crosslinked structure having no reactivity are uniformly dispersed in a thermoplastic resin. It has been found that by doing so, it is possible to impart impact resistance without lowering the rigidity, and there is no remarkable decrease in the working fluidity.

【0008】この知見にもとづき、反応性を有しない粒
子径5〜50nmの架橋超微粒子を微粒子と親和力を有
する熱可塑性樹脂中に均一に分散させてなる樹脂組成物
である本発明を完成した。以下、更に詳しく本発明を説
明する。
Based on this finding, the present invention, which is a resin composition obtained by uniformly dispersing crosslinked ultrafine particles having a particle size of 5 to 50 nm and having no reactivity in a thermoplastic resin having an affinity for the fine particles, was completed. Hereinafter, the present invention will be described in more detail.

【0009】本発明の架橋構造を有する超微粒子は、反
応性を有しないことが必要である。通常マイクロゲルと
呼ばれる架橋超微粒子は、複数のビニル基を有する単量
体を共重合することにより得られ、粒子中に未反応のビ
ニル基が残存し、反応性を有する。本発明に用いる超微
粒子作製にあたっては、通常のマイクロゲル製造と同様
の手法により超微粒子を作製した後、更に単一のビニル
基を有する単量体を反応させ、粒子中の二重結合を消費
する必要がある。
It is necessary that the ultrafine particles having a crosslinked structure of the present invention have no reactivity. The crosslinked ultrafine particles, which are usually called microgels, are obtained by copolymerizing a monomer having a plurality of vinyl groups, and unreacted vinyl groups remain in the particles to have reactivity. In producing the ultrafine particles used in the present invention, after producing the ultrafine particles by the same method as the usual microgel production, a monomer having a single vinyl group is further reacted to consume the double bond in the particles. There is a need to.

【0010】この様にして得た微粒子を熱可塑性樹脂に
均一に分散させるためには、微粒子を構成する樹脂成分
と、熱可塑性樹脂の間に化学的な親和力が存在する必要
がある。例えば熱可塑性樹脂としてポリスチレン、ポリ
フェニレンエーテルを用いる場合にはステレンを主成分
とする超微粒子を、アクリロニトリル−スチレン共重合
樹脂を用いる場合には、これに見合うアクリロニトリル
含有率のアクリロニトリル−スチレン共重合超微粒子
を、ポリメチルメタアクリレート樹脂を用いる場合には
アクリル酸エステルを主成分とする超微粒子又はアクリ
ロニトリルを20重量%含むスチレン−アクリロニトリ
ル共重合体超微粒子をそれぞれ用いることで微粒子の均
一分散が達成できる。すなわち、超微粒子を構成するポ
リマーに求められる組成とは、架橋構造を持たない微粒
子を用いた場合に熱可塑性樹脂と相溶系を形成する組成
である。
In order to uniformly disperse the fine particles thus obtained in the thermoplastic resin, it is necessary that a chemical affinity exists between the resin component forming the fine particles and the thermoplastic resin. For example, polystyrene as the thermoplastic resin, when using polyphenylene ether, ultrafine particles containing stellene as a main component, when using acrylonitrile-styrene copolymer resin, acrylonitrile-styrene copolymer ultrafine particles of acrylonitrile content corresponding to this When a polymethylmethacrylate resin is used, uniform dispersion of fine particles can be achieved by using ultrafine particles containing an acrylic ester as a main component or styrene-acrylonitrile copolymer ultrafine particles containing 20% by weight of acrylonitrile. That is, the composition required for the polymer forming the ultrafine particles is a composition which forms a compatible system with the thermoplastic resin when the fine particles having no crosslinked structure are used.

【0011】また、完全な相溶性を持たないまでも水素
結合力が働くような、例えばアミノ基を有する架橋超微
粒子とポリアミド樹脂の組み合わせを用いることもでき
る。すなわち、架橋超微粒子を変成することにより、ポ
リカーボネート樹脂、ポリオレフィン樹脂、ポリフェニ
レンサルファイド樹脂等に対しても本技術を適用するこ
とができる。
It is also possible to use a combination of, for example, crosslinked ultrafine particles having an amino group and a polyamide resin so that hydrogen bonding force works even if they are not completely compatible. That is, the present technology can be applied to polycarbonate resins, polyolefin resins, polyphenylene sulfide resins, etc. by modifying the crosslinked ultrafine particles.

【0012】超微粒子を均一分散させる方法には特に制
限はなく、超微粒子からなるラテックスと別途作成した
熱可塑性樹脂のラテックスを混合し塩折する方法、予め
塩折等の手段により水から単離した超微粒子と熱可塑性
樹脂をバンバリーミキサー、押出機などを用い溶融混合
する方法が例示できる。
There is no particular limitation on the method for uniformly dispersing the ultrafine particles, and a method of mixing the latex composed of the ultrafine particles and the latex of the thermoplastic resin prepared separately and salt-folding, or previously isolating from water by means of salt-folding or the like. Examples of the method include melt-mixing the above ultrafine particles and a thermoplastic resin using a Banbury mixer, an extruder or the like.

【0013】本発明に用いる超微粒子は、架橋構造を有
するとともに、5〜50nmといった極めて微小な粒子
であることが必要である。未架橋粒子を用いる場合には
何ら特異な効果は得られない。また、詳細な理由は明ら
かではないが、50nmを越える大きさの粒子を用いる
場合も同様である。超微粒子と熱可塑性樹脂を混合して
なる樹脂組成物に占める超微粒子の割合は、1〜30重
量%が好適である。1重量%未満では耐衝撃性付与効果
が十分ではなく、30重量%を越えると加工流動性が低
下する。好ましくは樹脂組成物中に3〜20重量%の超
微粒子を含む場合に最も優れた加工流動性と耐衝撃性の
バランスが得られる。
The ultrafine particles used in the present invention must have a crosslinked structure and be extremely fine particles of 5 to 50 nm. When using uncrosslinked particles, no unique effect can be obtained. Although the detailed reason is not clear, the same applies to the case of using particles having a size exceeding 50 nm. The proportion of the ultrafine particles in the resin composition obtained by mixing the ultrafine particles and the thermoplastic resin is preferably 1 to 30% by weight. If it is less than 1% by weight, the impact resistance imparting effect is not sufficient, and if it exceeds 30% by weight, the working fluidity is lowered. Preferably, the best balance of processing fluidity and impact resistance is obtained when the resin composition contains 3 to 20% by weight of ultrafine particles.

【0014】架橋超微粒子の製造方法には、大量の乳化
剤を用いる方法、特殊なレドックス開始材を用いる方
法、重合性アミノ酸を乳化剤として用いる方法、特定の
特殊な乳化剤を用いる方法、スルホン基を有する重合性
乳化剤を用いる方法、特定量のシアン化ビニル化合物と
乳化剤を用いる方法が挙げられる。これらの方法のう
ち、特定量のシアン化ビニル化合物と乳化剤を用いる方
法が簡便である。
The method for producing the crosslinked ultrafine particles has a method using a large amount of an emulsifier, a method using a special redox initiator, a method using a polymerizable amino acid as an emulsifier, a method using a specific special emulsifier, and a sulfone group. Examples include a method using a polymerizable emulsifier and a method using a specific amount of a vinyl cyanide compound and an emulsifier. Among these methods, the method of using a specific amount of a vinyl cyanide compound and an emulsifier is convenient.

【0015】尚、本発明の樹脂組成物中に公知の熱安定
剤、滑剤、離型剤、紫外線吸収剤、帯電防止剤、難燃
剤、着色剤を加えることは任意である。
It is optional to add known heat stabilizers, lubricants, release agents, ultraviolet absorbers, antistatic agents, flame retardants and coloring agents to the resin composition of the present invention.

【0016】[0016]

【実施例】以下、実施例に基づき、本発明を説明する。
尚、以下に用いる部数は重量部である。
EXAMPLES The present invention will be described below based on examples.
The parts used below are parts by weight.

【0017】実施例1 50リットルオートクレーブに以下の物質合計約20k
gを投入し、気相部を窒素置換した後、65℃にて3時
間重合する。 スチレン 30.0部 アクリロニトリル 15.0部 ジビニルベンゼン 5.0部 オドデシルメルカプタン 0.5部 不均化ロジン酸カリウム塩 1.3部 牛脂ケン化石ケン(ノンサール(登録商標)TN−1) 0.7部 過硫酸ソーダ 0.5部 カセイソーダ 0.15部 重炭酸ソーダ 0.5部 脱イオン水 150部
Example 1 In a 50-liter autoclave, the total amount of the following substances was about 20 k:
After g was added and the gas phase was replaced with nitrogen, polymerization was carried out at 65 ° C. for 3 hours. Styrene 30.0 parts Acrylonitrile 15.0 parts Divinylbenzene 5.0 parts Ododecyl mercaptan 0.5 parts Disproportionated rosin acid potassium salt 1.3 parts Beef tallow Ken Fossil Ken (Nonsar (registered trademark) TN-1) 0. 7 parts Sodium persulfate 0.5 parts Caustic soda 0.15 parts Sodium bicarbonate 0.5 parts Deionized water 150 parts

【0018】3時間経過後、更に以下の物質合計約20
kgを投入し2時間反応させる。 スチレン 35.0部 アクリロニトリル 15.0部 過硫酸ソーダ 0.25部 不均化ロジン酸カリウム塩 2.0部 脱イオン水 150部
After the lapse of 3 hours, the total amount of the following substances is about 20.
Add kg and react for 2 hours. Styrene 35.0 parts Acrylonitrile 15.0 parts Sodium persulfate 0.25 parts Disproportionated potassium rosinate 2.0 parts Deionized water 150 parts

【0019】得られるラテックスは、乳白色半透明で、
電子顕微鏡写真による重量平均粒子径は25nmであ
る。本ラテックス固形分100部に対し、4部の硫酸マ
グネシウムを添加し、析出する樹脂を洗浄、脱水、乾燥
し粉末とし、該粉末5部と市販のAS樹脂(スタイラッ
ク(登録商標)AS#783)95部を二軸押出機を用
い混練造粒し樹脂組成物とする。射出成形法により試験
片を作製し、ASTMD256に基づくアイゾット衝撃
値およびJIS K−7210に基づくメルトフローレ
ート(220℃,10kg荷重)を測定し、結果を表1
及び表2に示す。
The latex obtained is milky white translucent,
The weight average particle diameter by an electron micrograph is 25 nm. To 100 parts of this latex solid content, 4 parts of magnesium sulfate was added, and the precipitated resin was washed, dehydrated, and dried to give a powder, and 5 parts of the powder and a commercially available AS resin (Styrac (registered trademark) AS # 783) were used. ) 95 parts are kneaded and granulated using a twin-screw extruder to obtain a resin composition. Test pieces were prepared by injection molding, and the Izod impact value based on ASTM D256 and the melt flow rate (220 ° C., 10 kg load) based on JIS K-7210 were measured, and the results are shown in Table 1.
And shown in Table 2.

【0020】実施例2 実施例1にて作製する架橋超微粒子を含む樹脂粉末15
部と市販のAS樹脂(スタイラック(登録商標)AS#
783)85部を二軸押出機を用い混練造粒し、実施例
1と同様の評価を行ない、結果を表1及び表2に示す。
Example 2 Resin powder 15 containing crosslinked ultrafine particles prepared in Example 1
Parts and commercially available AS resin (Styrac® AS #
783) 85 parts were kneaded and granulated using a twin-screw extruder, the same evaluation as in Example 1 was performed, and the results are shown in Tables 1 and 2.

【0021】比較例1 実施例に用いた市販のAS樹脂を、架橋超微粒子を配合
せずに評価する。結果を表1及び表2に示す。
Comparative Example 1 The commercially available AS resin used in the examples is evaluated without blending the crosslinked ultrafine particles. The results are shown in Tables 1 and 2.

【0022】比較例2 50リットルオートクレーブに以下の物質を合計約40
kgを投入し、気相部を窒素置換した後、65℃にて5
時間重合する。 スチレン 70.0部 アクリロニトリル 30.0部 オドデシルメルカプタン 0.5部 不均化ロジン酸カリウム塩 2.7部 牛脂ケン化石ケン(ノンサール(登録商標)TN−1) 1.3部 過硫酸ソーダ 0.75部 カセイソーダ 0.3部 重炭酸ソーダ 1.0部 脱イオン水 300部 得られるテラックスの粒子径は25nmで、実施例1と
同様の操作によりAS樹脂を配合し、評価する。結果を
表1及び表2に示す。
Comparative Example 2 A total of about 40 of the following substances was added to a 50 liter autoclave.
After introducing kg, and replacing the gas phase with nitrogen,
Polymerize for hours. Styrene 70.0 parts Acrylonitrile 30.0 parts Ododecyl mercaptan 0.5 parts Disproportionated rosin acid potassium salt 2.7 parts Beef tallow Ken Fossil Ken (Nonsar (registered trademark) TN-1) 1.3 parts Sodium persulfate 0 75 parts caustic soda 0.3 parts sodium bicarbonate 1.0 part deionized water 300 parts The particle size of the resulting terax is 25 nm, and the AS resin is blended and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.

【0023】比較例3 50リットルオートクレーブに以下の物質合計約40k
gを投入し、気相部を窒素置換した後、65℃にて3時
間重合する。 スチレン 60.0部 アクリロニトリル 30.0部 ジビニルベンゼン 10.0部 tドデシルメルカプタン 1.0部 不均化ロジン酸カリウム塩 2.7部 牛脂ケン化石ケン(ノンサール(登録商標)TN−1) 1.3部 過硫酸ソーダ 0.75部 カセイソーダ 0.3部 重炭酸ソーダ 1.0部 脱イオン水 300部 得られるテラックスの粒子径は20nmで、実施例1と
同様の操作によりAS樹脂を配合し、評価する。結果を
表1及び表2に示す。
Comparative Example 3 A total of about 40 k of the following substances was added to a 50 liter autoclave.
After g was added and the gas phase was replaced with nitrogen, polymerization was carried out at 65 ° C. for 3 hours. Styrene 60.0 parts Acrylonitrile 30.0 parts Divinylbenzene 10.0 parts t Dodecyl mercaptan 1.0 parts Disproportionated rosin acid potassium salt 2.7 parts Beef tallow Ken Fossil Ken (Nonsar (registered trademark) TN-1) 1. 3 parts Sodium persulfate 0.75 parts Caustic soda 0.3 parts Sodium bicarbonate 1.0 part Deionized water 300 parts The particle size of the resulting terax is 20 nm, and the AS resin is blended by the same operation as in Example 1 and evaluated. .. The results are shown in Tables 1 and 2.

【0024】比較例4 実施例1にて作製する架橋超微粒子を含む樹脂粉末5重
量部と市販のポリスチレン樹脂(スタイロン(登録商
標)#683)95部を二軸押出機を用い混練造粒し、
実施例1と同様の評価を行なう。結果を表1及び表2に
示す。
Comparative Example 4 5 parts by weight of the resin powder containing the crosslinked ultrafine particles prepared in Example 1 and 95 parts of a commercially available polystyrene resin (Stylon (registered trademark) # 683) were kneaded and granulated using a twin-screw extruder. ,
The same evaluation as in Example 1 is performed. The results are shown in Tables 1 and 2.

【0025】比較例5 実施例1と同様の重合を、重合開始時に使用する乳化剤
を不均化ロジン酸カリウム塩0.5部,牛脂ケン化石ケ
ン0.25部,重合後半に単量体、脱イオン水とともに
加える不均化ロジン酸カリウム塩1.0部にて実施し、
重量平均粒子径100nmの乳白色ラテックスを得る。
以下実施例1を同様の操作、評価を行なう。結果を表1
及び表2に示す。表1及び表2中に示した結果より、反
応性を有しない架橋超微粒子は、微粒子を構成する樹脂
と相溶系を形成する熱可塑性樹脂に耐衝撃性を付与しつ
つ、著しい加工性の低下をきたさないことが明らかであ
る。
Comparative Example 5 The same polymerization as in Example 1 was carried out, except that the emulsifier used at the start of the polymerization was 0.5 parts of disproportionated rosin acid potassium salt, 0.25 part of beef tallow saponified fossil, a monomer in the latter half of the polymerization, Performed with 1.0 part of disproportionated rosin acid potassium salt added with deionized water,
A milky white latex having a weight average particle diameter of 100 nm is obtained.
The same operations and evaluations as in Example 1 are performed below. The results are shown in Table 1.
And shown in Table 2. From the results shown in Table 1 and Table 2, the cross-linked ultrafine particles having no reactivity give a shock resistance to the thermoplastic resin forming a compatible system with the resin forming the fine particles, while significantly reducing the workability. It is clear that it does not cause

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明の樹脂組成物には、エラストマー
を用いなくてもその熱可塑性樹脂の持つ優れた加工性を
損なうことなく、優れた耐衝撃性を有するという効果を
有する。
The resin composition of the present invention has the effect of having excellent impact resistance without deteriorating the excellent processability of the thermoplastic resin without using an elastomer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応性を有しない粒子径5〜50nmの
架橋超微粒子を、微粒子と親和力を有する熱可塑性樹脂
中に均一に分散させてなる樹脂組成物。
1. A resin composition obtained by uniformly dispersing cross-linked ultrafine particles having a particle size of 5 to 50 nm and having no reactivity in a thermoplastic resin having an affinity for the fine particles.
【請求項2】 該超微粒子がシアン化ビニル化合物、芳
香族ビニル化合物、(メタ)アクリル酸エステル化合物
の群のうち少なくとも1種以上と複数のビニル基を有す
る化合物の共重合体であって、熱可塑性樹脂が上記した
化合物の群の少なくとも1種以上の化合物の重合物であ
る請求項1記載の樹脂組成物。
2. The ultrafine particles are a copolymer of at least one selected from the group consisting of vinyl cyanide compounds, aromatic vinyl compounds and (meth) acrylic acid ester compounds and a compound having a plurality of vinyl groups. The resin composition according to claim 1, wherein the thermoplastic resin is a polymer of at least one compound selected from the group of compounds described above.
JP21932091A 1991-08-06 1991-08-06 Resin composition Withdrawn JPH0539427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21932091A JPH0539427A (en) 1991-08-06 1991-08-06 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21932091A JPH0539427A (en) 1991-08-06 1991-08-06 Resin composition

Publications (1)

Publication Number Publication Date
JPH0539427A true JPH0539427A (en) 1993-02-19

Family

ID=16733631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21932091A Withdrawn JPH0539427A (en) 1991-08-06 1991-08-06 Resin composition

Country Status (1)

Country Link
JP (1) JPH0539427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201266A (en) * 1995-01-30 1996-08-09 Minoru Takeuchi Pore distribution measuring instrument and constant-quantity injector
JPH08247920A (en) * 1995-03-07 1996-09-27 Minoru Takeuchi Measuring equipment of pore distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201266A (en) * 1995-01-30 1996-08-09 Minoru Takeuchi Pore distribution measuring instrument and constant-quantity injector
JPH08247920A (en) * 1995-03-07 1996-09-27 Minoru Takeuchi Measuring equipment of pore distribution

Similar Documents

Publication Publication Date Title
JPS6284109A (en) Production of thermoplastic resin composition
KR101686705B1 (en) (Meth)Acrylate-based resin composition having properties of good impact resistance and transparency
KR101150016B1 (en) Styrenic themoplastic resin compositions with good mechanical properties and low gloss
JPH0366329B2 (en)
JPH0335048A (en) Impact-resistant thermoplastic resin composition
JPS60192754A (en) Thermoplastic resin composition
EP0095769B1 (en) Impact-resistant methacrylic resin composition
EP0264721A2 (en) Thermoplastic resin composition
KR100845447B1 (en) Transparent impact-resistant thermoplastic resin composition
US4886857A (en) Styrene based resin composition
US4701495A (en) Thermoplastic resin composition
JPH07165844A (en) Rubber-modified polystyrene resin composition, its production, and injection-molded product
JPH0539427A (en) Resin composition
JP2508192B2 (en) Process for producing N-arylmaleimide copolymer
JP3625566B2 (en) Thermoplastic resin composition
KR100726486B1 (en) Agent for reducing gloss of thermoplastic resin composition and method for preparing thereof
JPH0627254B2 (en) Resin composition
JP3862452B2 (en) Thermoplastic resin composition
JPH0730228B2 (en) Matte thermoplastic resin composition
JPH0632961A (en) Preparation of thermoplastic resin composition excellent in impact resistance, weatherability, moldability and appearance
JPH08199055A (en) Flame-retardant polycarbonate resin composition excellent in light resistance, moldability, and impact resistance
JP2501015B2 (en) Impact resistance, weather resistance, thermoplastic resin composition
JP2558182B2 (en) Method for producing thermoplastic resin composition excellent in impact resistance, weather resistance and moldability
JPH0673200A (en) Delustered film for laminate
JPH0388842A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112